
Wide-area cooperative storage with CFS

Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, Ion Stoica*
MIT Laboratory for Computer Science

chord @ I(:s.mit.edu
http://pdos.lcs.mit.edu/chord/

Abstract
The Cooperative File System (CFS) is a new peer-to-peer read-
only storage system that provides provable guarantees for the ef-
ficiency, robustness, and load-balance of file storage and retrieval.
CFS does this with a completely decentralized architecture that can
scale to large systems. CFS servers provide a distributed hash table
(DHash) for block storage. CFS clients interpret DHash blocks as
a file system. DHash distributes and caches blocks at a fine granu-
laxity to achieve load balance, uses replication for robustness, and
decreases latency with server selection. DHash finds blocks using
the Chord location protocol, which operates in time logarithmic in
the number of servers.

CFS is implemented using the SFS file system toolkit and runs
on Linux, OpenBSD, and FreeBSD. Experience on a globally de-
ployed prototype shows that CFS delivers data to clients as fast
as FTP. Controlled tests show that CFS is scalable: with 4,096
servers, looking up a block of data involves contacting only seven
servers. The tests also demonstrate nearly perfect robustness and
unimpaired performance even when as many as half the servers
fail.

1. Introduction
Existing peer-to-peer systems (such as Napster [20], Gnu-

tella [11], and Freenet [6]) demonstrate the benefits of cooperative
storage and serving: fault tolerance, load balance, and the ability to
harness idle storage and network resources. Accompanying these
benefits arc a number of design challenges. A peer-to-peer archi-
tecture should be symmetric and decentralized, and should operate
well with unmanaged volunteer participants. Finding desired data
in a large system must be fast; servers must be able to join and leave
the system frequently without affecting its robustness or efficiency;
and load must be balanced across the available servers. While the
peer-to-peer systems in common use solve some of these problems,

*University of California, Berkeley

This research was sponsored by the Defense Advanced Research
Projects Agency (DARPA) and the Space and Naval Warfare Sys-
tems Center, San Diego, under contract N66001-00-1-8933.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first page,
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SOSP01 Banff, Canada
© 2001 ACM ISBN 1-58113-389-8-1/01110,..$5.00

none solves all of them. CFS (the Cooperative File System) is a
new design that meets all of these challenges.

A CFS file system exists as a set of blocks distributed over the
available CFS servers. CFS client software interprets the stored
blocks as file system data and meta-data and presents an ordinary
read-only file-system interface to applications. The core of the CFS
software consists of two layers, DHash and Chord. The DHash
(distributed hash) layer performs block fetches for the client, dis-
tributes the blocks among the servers, and maintains cached and
replicated copies. DHash uses the Chord [31] distributed lookup
system to locate the servers responsible for a block. This table
summarizes the CFS software layering:

Layer
FS

DHash
Chord

Responsibility
Interprets blocks as files; presents a file system in-
terface to applications.
Stores unstructured data blocks reliably.
Maintains routing tables used to find blocks.

Chord implements a hash-like operation that maps from block
identifiers to servers. Chord assigns each server an identifier drawn
from the same 160-bit identifier space as block identifiers. These
identifiers can be thought of as points on a circle. The mapping
that Chord implements takes a block's ID and yields the block's
successor , the server whose ID most closely follows the block's ID
on the identifier circle. To implement this mapping, Chord main-
tains at each server a table with information about O(log N) other
servers, where N is the total number of servers. A Chord lookup
sends messages to O(log N) servers to consult their tables. Thus
CFS can find data efficiently even with a large number of servers,
and servers can join and leave the system with few table updates.

DHash layers block management on top of Chord. DHash pro-
vides load balance for popular large files by arranging to spread the
blocks of each file over many servers. To balance the load imposed
by popular small files, DHash caches each block at servers likely to
be consulted by future Chord lookups for that block. DHash sup-
ports pre-fetching to decrease download latency. DHash replicates
each block at a small number of servers, to provide fault tolerance.
DHash enforces weak quotas on the amount of data each server can
inject, to deter abuse. Finally, DHash allows control over the num-
ber of vir tual servers per server, to provide control over how much
data a server must store on behalf of others.

CFS has been implemented using the SFS toolkit [16]. This
paper reports experimental results from a small international de-
ployment of CFS servers and from a large-scale controlled test-bed.
These results confirm the contributions of the CFS design:

• an aggressive approach to load balance by spreading file
blocks randomly over servers;

202

• download performance on an Internet-wide prototype de-
ployment as fast as standard FTP;

• provable efficiency and provably fast recovery times after
failure;

• simple algorithms to achieve the above results.

CFS is not yet in operational use, and such use will likely prompt
refinements to its design. One potential area for improvement is
the ability of the Chord lookup algorithm to tolerate malicious
participants, by verifying the routing information received from
other servers. Another area that CFS does not currently address
is anonymity; it is expected that anonymity, if needed, would be
layered on top of the basic CFS system.

The remainder of this paper is organized as follows. Section 2
discusses related work. Section 3 outlines the design and design
goals of CFS. Section 4 describes the Chord location protocol. Sec-
tion 5 presents the detailed design of CFS. Section 6 describes im-
plementation details, and Section 7 presents experimental results.
Section 8 discusses open issues and future work. Finally, Section 9
summarizes our findings and concludes the paper.

2. Related Work
CFS was inspired by Napster [20], Gnutella [11], and particu-

larly Freenet [6]. CFS uses peer-to-peer distributed hashing similar
in spirit to a number of ongoing research projects [26, 29, 35]. In
comparison to existing peer-to-peer file sharing systems, CFS of-
fers simplicity of implementation and high performance without
compromising correctness. CFS balances server load, finds data
quickly for clients, and guarantees data availability in the face of
server failures with very high probability. CFS, as a complete sys-
tem, has individual aspects in common with many existing systems.
The major relationships are summarized below.

2.1 Naming and Authentication
CFS authenticates data by naming it with public keys or content-

hashes, as do many other distributed storage systems [9, 6, 7, 13,
29, 34]. The use of content-hashes to securely link together differ-
ent pieces of data is due to Merkle [18]; the use of public keys to
authentically name data is due to the SFS system [17].

CFS adopts naming, authentication, and file system structure
ideas from SFSRO [9], which implements a secure distributed read-
only file system--that is, a file system in which files can be modi-
fied only by their owner, and only through complete replacement of
the file. However, SFSRO and CFS have significant differences at
the architectural and mechanism levels. SFSRO defines protocols
and authentication mechanisms which a client can use to retrieve
data from a given server. CFS adds the ability to dynamically find
the server currently holding the desired data, via the Chord location
service. This increases the robustness and the availability of CFS,
since changes in the set of servers are transparent to clients.

2.2 Peer-to-Peer Search
Napster [20] and Gnutella [11] are arguably the most widely used

peer-to-peer file systems today. They present a keyword search in-
terface to clients, rather than retrieving uniquely identified data. As
a result they are more like search engines than distributed hash ta-
bles, and they trade scalability for this power: Gnutella broadcasts
search queries to many machines, and Napster performs searches
at a central facility. CFS as described in this paper doesn't provide
search, but we are developing a scalable distributed search engine
for CFS.

Mojo Nation [19] is a broadcast query peer-to-peer storage sys-
tem which divides files into blocks and uses a secret sharing algo-
rithm to distribute the blocks to a number of hosts. CFS also divides
files into blocks but does not use secret sharing.

2.3 Anonymous Storage
Freenet [5] uses probabilistic routing to preserve the anonym-

ity of clients, publishers, and servers. The anonymity requirement
limits Freenet's reliability and performance. Freenet avoids associ-
ating a document with any predictable server, and avoids forming
any globally coherent topology among servers. The former means
that unpopular documents may simply disappear from the system,
since no server has the responsibility for maintaining replicas. The
latter means that a search may need to visit a large fraction of the
Freenet network. As an example, Hong shows in his Figure 14-12
that in a network with 1,000 servers, the lookup path length can
exceed 90 hops [23]. This means that if the hop count is limited
to 90, a lookup may fail even though the document is available.
Because CFS does not try to provide anonymity, it can guarantee
much tighter bounds on lookup cost; for example, in a 4,096-node
system, lookups essentially never exceed 10 hops.

CFS's caching scheme is similar to Freenet's in the sense that
both leave cached copies of data along the query path from client
to where the data was found. Because CFS finds data in signifi-
cantly fewer hops than Freenet, and CFS' structured lookup paths
are more likely to overlap than Freenet's, CFS can make better use
of a given quantity of cache space.

Like Freenet, Publius [34] focuses on anonymity, but achieves
it with encryption and secret sharing rather than routing. Pub-
lius requires a static, globally-known list of servers; it stores each
share at a fixed location that is predictable from the file name. Free
Haven [7] uses both cryptography and routing (using re-mailers [4])
to provide anonymity; like Gnutella, Free Haven finds data with a
global search.

CFS does not attempt to provide anonymity, focusing instead on
efficiency and robustness. We believe that intertwining anonymity
with the basic data lookup mechanism interferes with correctness
and performance. On the other hand, given a robust location and
storage layer, anonymous client access to CFS could be provided
by separate anonymizing proxies, using techniques similar to those
proposed by Chaum [4] or Reiter and Rubin [27].

2.4 Peer-to-Peer Hash Based Systems
CFS layers storage on top of an effÉcient distributed hash lookup

algorithm. A number of recent peer-to-peer systems use simi-
lar approaches with similar scalability and performance, including
CAN [26], PAST [28, 29], OceanStore [13, 35], and Ohaha [22]. A
detailed comparison of these algorithms can be found in [31].

The PAST [29] storage system differs from CFS in its approach
to load balance. Because a PAST server stores whole files, a server
might not have enough disk space to store a large file even though
the system as a whole has sufficient free space. A PAST server
solves this by offloading files it is responsible for to servers that do
have spare disk space. PAST handles the load of serving popular
files by caching them along the lookup path.

CFS stores blocks, rather than whole files, and spreads blocks
evenly over the available servers; this prevents large files from
causing unbalanced use of storage. CFS solves the related problem
of different servers having different amounts of storage space with
a mechanism called virtual servers, which gives server managers
control over disk space consumption. CFS' block storage granu-
laxity helps it handle the load of serving popular large files, since
the serving load is spread over many servers along with the blocks.

203

,s I

DHash ~ DHash ~ DHash

CFS Client CFS Sewer CFS Server

Figure 1: CFS software structure. Vertical links are local APIs;
horizontal links are RPC APIs.

This is more space-efficient, for large files, than whole-file caching.
CFS relies on caching only for files small enough that distributing
blocks is not effective. Evaluating the performance impact of block
storage granularity is one of the purposes of this paper.

OceanStore [13] aims to build a global persistent storage util-
ity. It provides data privacy, allows client updates, and guarantees
durable storage. However, these features come at a price: com-
plexity. For example, OceanStore uses a Byzantine agreement pro-
tocol for conflict resolution, and a complex protocol based on Plax-
ton trees [24] to implement the location service [35]. OceanStore
assumes that the core system will be maintained by commercial
providers.

Ohaha [22] uses consistent hashing to map files and keyword
queries to servers, and a Freenet-like routing algorithm to locate
files. As a result, it shares some of the same weaknesses as Freenet.

2.5 Web Caches
Content distribution networks (CDNs), such as Akamal [I],

handle high demand for data by distributing replicas on multiple
servers. CDNs are typically managed by a central entity, while CFS
is built from resources shared and owned by a cooperative group of
users.

There are several proposed scalable cooperative Web caches [3,
8, 10, 15]. To locate data, these systems either multicast queries or
require that some or all servers know about all other servers. As
a result, none of the proposed methods is both highly scalable and
robust. In addition, load balance is hard to achieve as the content
of each cache depends heavily on the query pattern.

Cache Resolver [30], like CFS, uses consistent hashing to evenly
map stored data among the servers [12, 14]. However, Cache Re-
solver assumes that clients know the entire set of servers; main-
taining an up-to-date server list is likely to be difficult in a large
peer-to-peer system where servers join and depart at unpredictable
times.

3. Design Overview
CFS provides distributed read-only file storage. It is structured as

a collection of servers that provide block-level storage. Publishers
(producers of data) and clients (consumers of data) layer file system
semantics on top of this block store much as an ordinary file system
is layered on top of a disk. Many unrelated publishers may store
separate file systems on a single CFS system; the CFS design is
intended to support the possibility of a single world-wide system
consisting of millions of servers.

3.1 System Structure
Figure 1 illustrates the structure of the CFS software. Each CFS

client contains three software layers: a file system client, a DHash

d i r e c t o r y i n o d e d a t a block
. block , , ~ block H(B I) [-"-'D-~
r t t ~) m r) D . [I

. . . . r o o t - b l o c k I [- " l - ~ " " l V " I ~ ' " ' " I ~ r
puooc,oy. V*I I/

Figure 2: A simple CFS file system structure example. The
root-block is identified by a public key and signed by the corre-
sponding private key. The other blocks are identified by cryp-
tographic hashes of their contents.

storage layer, and a Chord lookup layer. The client file system uses
the DHash layer to retrieve blocks. The client DHash layer uses the
client Chord layer to locate the servers that hold desired blocks.

Each CFS server has two software layers: a DHash storage layer
and a Chord layer. The server DHash layer is responsible for stor-
ing keyed blocks, maintaining proper levels of replication as servers
come and go, and caching popular blocks. The server DHash and
Chord layers interact in order to integrate looking up a block iden-
tifier with checking for cached copies of the block. CFS servers
are oblivious to file system semantics: they simply provide a dis-
tributed block store.

CFS clients interpret DHash blocks in a file system format
adopted from SFSRO [9]; the format is similar to that of the UNIX
V7 file system, but uses DHash blocks and block identifiers in place
of disk blocks and disk addresses. As shown in Figure 2, each block
is either a piece of a file or a piece of file system meta-data, such as
a directory. The maximum size of any block is on the order of tens
of kilobytes. A parent block contains the identifiers of its children.

The publisher inserts the file system's blocks into the CFS sys-
tem, using a hash of each block's content (a content-hash) as its
identifier. Then the publisher signs the root block with his or her
private key, and inserts the root block into CFS using the corre-
sponding public key as the root block's identifier. Clients name a
file system using the public key; they can check the integrity of
the root block using that key, and the integrity of blocks lower in
the tree with the content-hash identifiers that refer to those blocks.
This approach guarantees that clients see an authentic and inter-
nally consistent view of each file system, though under some cir-
cumstances a client may see an old version of a recently updated
file system.

A CFS file system is read-only as far as clients are concerned.
However, a file system may be updated by its publisher. This in-
volves updating the file system's root block in place, to make it
point to the new data. CFS authenticates updates to root blocks by
checking that the new block is signed by the same key as the old
block. A timestamp prevents replays of old updates. CFS allows
file systems to be updated without changing the root block's iden-
tifier so that external references to data need not be changed when
the data is updated.

CFS stores data for an agreed-upon finite interval. Publishers
that want indefinite storage periods can periodically ask CFS for an
extension; otherwise, a CFS server may discard data whose guar-
anteed period has expired. CFS has no explicit delete operation:
instead, a publisher can simply stop asking for extensions. In this
area, as in its replication and caching policies, CFS relies on the
assumption that large amounts of spare disk space are available.

3.2 CFS Properties
CFS provides consistency and integrity of file systems by adopt-

ing the SFSRO file system format. CFS extends SFSRO by provid-

204

ing the following desirable desirable properties:

Decentralized control. CFS servers need not share any ad-
ministrative relationship with publishers. CFS servers could
be ordinary Internet hosts whose owners volunteer spare stor-
age and network resources.

Scalability. CFS lookup operations use space and messages
at most logarithmic in the number of servers.

Availability. A client can always retrieve data as long as
it is not trapped in a small partition of the underlying net-
work, and as long as one of the data's replicas is reachable
using the underlying network. This is true even if servers are
constantly joining and leaving the CFS system. CFS places
replicas on servers likely to be at unrelated network locations
to ensure independent failure.

Load balance. CFS ensures that the burden of storing and
serving data is divided among the servers in rough proportion
to their capacity. It maintains load balance even if some data
are far more popular than others, through a combination of
caching and spreading each file's data over many servers.

Persistence. Once CFS commits to storing data, it keeps it
available for at least an agreed-on interval.

Quotas. CFS limits the amount of data that any particular IP
address can insert into the system. This provides a degree of
protection against malicious attempts to exhaust the system's
storage.

Efficiency. Clients can fetch CFS data with delay compara-
ble to that of FTE due to CFS' use of efficient lookup algo-
rithms, caching, pre-fetching, and server selection.

The next two sections present Chord and DHash, which together
provide these properties.

4. Chord Layer
CFS uses the Chord protocol to locate blocks [31]. Chord sup-

ports just one operation: given a key, it will determine the node re-
sponsible for that key. Chord does not itself store keys and values,
but provides primitives that allow higher-layer software to build a
wide variety of storage systems; CFS is one such use of the Chord
primitive. The rest of this section summarizes Chord and describes
new algorithms for robustness and server selection to support ap-
plications such as CFS.

4.1 Consistent Hashing
Each Chord node has a unique m-bit node identifier (ID), ob-

tained by hashing the node's IP address and a virtual node index.
Chord views the IDs as occupying a circular identifier space. Keys
are also mapped into this ID space, by hashing them to m-bit key
IDs. Chord defines the node responsible for a key to be the succes-
sor of that key's ID. The successor of an ID j is the node with the
smallest ID that is greater than or equal to j (with wrap-around),
much as in consistent hashing [12].

Consistent hashing lets nodes enter and leave the network with
minimal movement of keys. To maintain correct successor map-
pings when a node n joins the network, certain keys previously as-
signed to n 's successor become assigned to n. When node n leaves
the network, all o f n ' s assigned keys are reassigned to its successor.
No other changes in the assignment of keys to nodes need occur.

Consistent hashing is straightforward to implement, with
constant-time lookups, if all nodes have an up-to-date list of all
other nodes. However, such a system does not scale; Chord pro-
vides a scalable, distributed version of consistent hashing.

4.2 The Chord Lookup Algorithm
A Chord node uses two data structures to perform lookups: a

successor list and a finger table. Only the successor list is required
for correctness, so Chord is careful to maintain its accuracy. The
finger table accelerates lookups, but does not need to be accurate,
so Chord is less aggressive about maintaining it. The following
discussion first describes how to perform correct (but slow) 1ookups
with the successor list, and then describes how to accelerate them
up with the finger table. This discussion assumes that there are no
malicious participants in the Chord protocol; while we believe that
it should be possible for nodes to verify the routing information that
other Chord participants send them, the algorithms to do so are left
for future work.

Every Chord node maintains a list of the identities and IP ad-
dresses of its r immediate successors on the Chord ring. The fact
that every node knows its own successor means that a node can al-
ways process a lookup correctly: if the desired key is between the
node and its successor, the latter node is the key's successor; oth-
erwise the lookup can be forwarded to the successor, which moves
the lookup strictly closer to its destination.

A new node n learns of its successors when it first joins the
Chord ring, by asking an existing node to perform a lookup for
n 's successor; n then asks that successor for its successor list. The
r entries in the list provide fault tolerance: if a node's immedi-
ate successor does not respond, the node can substitute the second
entry in its successor list. All r successors would have to simulta-
neously fail in order to disrupt the Chord ring, an event that can be
made very improbable with modest values of r. An implementa-
tion should use a fixed r, chosen to be 2 log 2 N for the foreseeable
maximum number of nodes N.

The main complexity involved with successor lists is in notify-
ing an existing node when a new node should be its successor. The
stabilization procedure described in [31] does this in a way that
guarantees to preserve the connectivity of the Chord ring's succes-
sor pointers.

Lookups performed only with successor lists would require an
average of N / 2 message exchanges, where N is the number of
servers. To reduce the number of messages required to O(log N) ,
each node maintains a finger table table with m entries. The i th
entry in the table at node n contains the identity of the first node
that succeeds n by at least 2 i-1 on the ID circle. Thus every node
knows the identities of nodes at power-of-two intervals on the ID
circle from its own position. A new node initializes its finger table
by querying an existing node. Existing nodes whose finger table or
successor list entries should refer to the new node find out about it
by periodic lookups.

Figure 3 shows pseudo-code to look up the successor of iden-
tifier id. The main loop is in find_predecessor, which sends
preceding_node_list RPCs to a succession of other nodes; each
RPC searches the tables of the other node for nodes yet closer
to id. Because finger table entries point to nodes at power-of-
two intervals around the ID ring, each iteration will set n' to a
node halfway on the ID ring between the current n ' and id. Since
preceding_node_list never returns an ID greater than id, this process
will never overshoot the correct successor. It may under-shoot, es-
pecially if a new node has recently joined with an ID just before
id; in that case the check for id ~ (n', n'.successor] ensures that

205

//Ask node n to find id's successor;first
//finds id's predecessor, then asks that
/~predecessor for its own successor.
n.flnd_successor(id)

n I :find..predecessor(id);
return n ~ .successor();

//Ask node n to find id's predecessor.
n.flnd_predecessor(id)

7"~ t : 7"1,;

while (id ~ (n ' , n'.successorO])
l = nt.preceding_node_list(id);
n t = m a x n " E Is.t. n " isalive

return n';

/ /Ask node n for a list o f nodes in its finger table or
//successor list that precede id.
n . p r e c e d i n g _ n o d e _ l i s t (id)

return {n' E {fingers LI successors}
s.t. n ' E (mid]}

Figure 3: The pseudo-code to find the successor node of an
identifier id. Remote procedure calls are preceded by the re-
mote node.

find.predecessor persists until it finds a pair of nodes that straddle
id.

Two aspects of the lookup algorithm make it robust. First, an
RPC to preceding_node_list on node rt returns a list of nodes that n
believes are between it and the desired id. Any one of them can be
used to make progress towards the successor ofid; they must all be
unresponsive for a lookup to fall. Second, the while loop ensures
that find_predecessor will keep trying as long as it can find any next
node closer to id. As long as nodes are careful to maintain correct
successor pointers, find_predecessor will eventually succeed.

In the usual case in which most nodes have correct finger table
information, each iteration of the while loop eliminates half the
remaining distance to the target. This means that the hops early in
a lookup travel long distances in the ID space, and later hops travel
small distances. The efficacy of the caching mechanism described
in Section 5.2 depends on this observation.

The following two theorems, proved in an accompanying techni-
cal report [32], show that neither the success nor the performance
of Chord lookups is likely to be affected even by massive simul-
taneous failures. Both theorems assume that the successor list has
length r = O(log N). A Chord ring is stable if every node's suc-
cessor list is correct.

THEOREM 1. In a network that is initially stable, i f every
node then fails with probability 1/2, then with high probability
find_successor returns the closest living successor to the query key.

THEOREM 2. In a network that is initially stable, if every node
then fails with probability 1/2, then the expected time to execute
find_successor is O(log N).

The evaluation in Section 7 validates these theorems experimen-
tally.

4.3 Server Selection
Chord reduces lookup latency by preferentially contacting nodes

likely to be nearby in the underlying network. This server selection
was added to Chord as part of work on CFS, and was not part of
Chord as originally published.

At each step in find..predecessor(id) (Figure 3), the node doing
the lookup (n) can choose the next hop from a set of nodes. Ini-
tially this set is the contents of n ' s own routing tables; subsequently
the set is the list of nodes returned by the preceding_node_list RPC
to the previous hop (m). Node m tells n the measured latency to
each node in the set; m collected these latencies when it acquired
its finger table entries. Different choices of next-hop node will take
the query different distances around the ID ring, but impose differ-
ent RPC latencies; the following calculation seeks to pick the best
combination.

Chord estimates the total cost C(n i) of using each node in the
set of potential next hops:

C(ni) = di + d × H (n ,)

H (n i) = o n e s ((n ~ - i d) > > (1 6 0 - l o g N))

H (n i) is an estimate of the number of Chord hops that would re-
main after contacting ni. N is node n ' s estimate of the total number
of Chord nodes in the system, based on the density of nodes nearby
on the ID ring. log N is an estimate of the number of significant
high bits in an ID; id and its successor are likely to agree in these
bits, but not in less significant bits. (ni - id) > > (160 - log N)
yields just the significant bits in the ID-space distance between ni
and the target key id, and the ones function counts how many bits
are set in that difference; this is approximately the number of Chord
hops between ni and id. Multiplying by d, the average latency of
all the RPCs that node n has ever issued, estimates the time it would
take to send RPCs for those hops. Adding di, the latency to node ni
as reported by node m, produces a complete cost estimate. Chord
uses the node with minimum C(ni) as the next hop.

One benefit of this server selection method is that no extra mea-
surements are necessary to decide which node is closest; the de-
cisions are made based on latencies observed while building fin-
ger tables. However, nodes rely on latency measurements taken by
other nodes. This works well when low latencies from nodes a to b,
and b to c, mean that latency is also low from a to c. Measurements
of our Internet test-bed suggest that this is often true [33].

4.4 Node ID Authentication
If Chord nodes could use arbitrary IDs, an attacker could destroy

chosen data by choosing a node ID just after the dam's ID. With
control of the successor, the attacker's node could effectively delete
the block by denying that the block existed.

To limit the opportunity for this attack, a Chord node ID must
be of the form h(x), where h is the SHA-1 hash function and x is
the node's IP address concatenated with a virtual node index. The
virtual node index must fall between 0 and some small maximum.
As a result, a node cannot easily control the choice of its own Chord
ID.

When a new node n joins the system, some existing nodes may
decide to add n to their finger tables. As part of this process, each
such existing node sends a message to n ' s claimed IP address con-
taining a nonce. If the node at that IP address admits to having n ' s
ID, and the claimed IP address and virtual node index hash to the
ID, then the existing node accepts n.

With this defense in place, an attacker would have to control
roughly as many IP addresses as there are total other nodes in the
Chord system in order to have a good chance of targeting arbitrary
blocks. However, owners of large blocks of IP address space tend
to be more easily identifiable (and less likely to be malicious) than
individuals.

206

5. DHash Layer
The CFS DHash layer stores and retrieves uniquely identified

blocks, and handles distribution, replication, and caching of those
blocks. DHash uses Chord to help it locate blocks.

DHash reflects a key CFS design decision: to split each file sys-
tem (and file) into blocks and distribute those blocks over many
servers. This arrangement balances the load of serving popular
files over many servers. It also increases the number of messages
required to fetch a whole file, since a client must look up each
block separately. However, the network bandwidth consumed by
a lookup is small compared to the bandwidth required to deliver
the block. In addition, CFS hides the block lookup latency by pre-
fetching blocks.

Systems such as Freenet [6] and PAST [29] store whole files.
This results in lower lookup costs than CFS, one lookup per file
rather than per block, but requires more work to achieve load bal-
ance. Servers unlucky enough to be responsible for storing very
large files may run out disk space even though the system as a
whole has sufficient free space. Balancing the load of serving
whole files typically involves adaptive caching. Again, this may
be awkward for large files; a popular file must be stored in its en-
tirety at each caching server. DHash also uses caching, but only
depends on it for small files.

DHash's block granularity is particularly well suited to serving
large, popular files, such as software distributions. For example, in
a 1,000-server system, a file as small as 8 megabytes will produce
a reasonably balanced serving load with 8 KByte blocks. A sys-
tem that balances load by caching whole files would require, in this
case, about 1,000 times as much total storage to achieve the same
load balance. On the other hand, DHash is not as efficient as a
whole-file scheme for large but unpopular files, though the experi-
ments in Section 7.1 show that it can provide competitive download
speeds. DHash's block granularity is not likely to affect (for bet-
ter or worse) performance or load balance for small files. For such
files, DHash depends on caching and on server selection among
block replicas (described in Section 5.1).

Table 1 shows the API that the DHash layer exposes. The CFS
file system client layer uses g e e to implement application requests
to open files, read files, navigate directories, etc. Publishers of data
use a special application that inserts or updates a CFS file system
using the put-h and put_s calls.

5.1 Replication
DHash replicates each block on k CFS servers to increase avail-

ability, maintains the k replicas automatically as servers come and
go, and places the replicas in a way that clients can easily find them.

DHash places a block's replicas at the k servers immediately af-
ter the block's successor on the Chord ring (see Figure 4). DHash
can easily find the identities of these servers from Chord's r-entry
successor list. CFS must be configured so that r > k. This place-
ment of replicas means that, after a block's successor server fails,
the block is immediately available at the block's new successor.

The DHash software in a block's successor server manages repli-
cation of that block, by making sure that all k of its successor
servers have a copy of the block at all times. If the successor
server fails, the block's new successor assumes responsibility for
the block.

The value of this replication scheme depends in part on the in-
dependence of failure and unreachability among a block's k replica
servers. Servers close to each other on the ID ring are not likely to
be physically close to each other, since a server's ID is based on a
hash of its IP address. This provides the desired independence of
failure.

Figure 4: The placement of an example block's replicas and
cached copies around the Chord identifier ring. The block's ID
is shown with a tick mark. The block is stored at the succes-
sor of its ID, the server denoted with the square. The block is
replicated at the successor's immediate successors (the circles).
The hops of a typical lookup path for the block are shown with
arrows; the block will be cached at the servers along the lookup
path (the triangles).

CFS could save space by storing coded pieces of blocks rather
than whole-block replicas, using an algorithm such as IDA [25].
CFS doesn't use coding, because storage space is not expected to
be a highly constrained resource.

The placement of block replicas makes it easy for a client to se-
lect the replica likely to be fastest to download. The result of the
Chord lookup for block id is the identity of the server that immedi-
ately precedes id. The client asks this predecessor for its successor
list, which will include the identities of the servers holding replicas
of block id as well as latency measurements between the predeces-
sor and these servers. The client then fetches the block from the
replica with the lowest reported latency. As with the Chord server
selection described in Section 4.3, this approach works best when
proximity in the underlying network is transitive. Fetching from
the lowest-latency replica has the side-effect of spreading the load
of serving a block over the replicas.

5.2 Caching
DHash caches blocks to avoid overloading servers that hold pop-

ular data. Each DHash layer sets aside a fixed amount of disk stor-
age for its cache. When a CFS client looks up a block key, it per-
forms a Chord lookup, visiting intermediate CFS servers with IDs
successively closer to that of the key's successor (see Figure 4).
At each step, the client asks the intermediate server whether it has
the desired block cached. Eventually the client arrives at either the
key's successor or at an intermediate server with a cached copy.
The client then sends a copy of the block to each of the servers
it contacted along the lookup path. Future versions of DHash will
s6nd a copy to just the second-to-last server in the path traversed by
the lookup; this will reduce the amount of network traffic required
per lookup, without significantly decreasing the caching effective-
ness.

Since a Chord lookup takes shorter and shorter hops in ID space
as it gets closer to the target, lookups from different clients for the
same block will tend to visit the same servers late in the lookup.
As a result, the policy of caching blocks along the lookup path is
likely to be effective.

DHash replaces cached blocks in least-recently-used order.
Copies of a block at servers with IDs far from the block's succes-

207

Function Description
put_h (block) Computes the block's key by hashing its contents, and sends it to the key's successor server

for storage.
put_s (b lock , pubkey) Stores or updates a signed block; used for root blocks. The block must be signed with the

given public key. The block's Chord key will be the hash of pubkey.
ge t (key) Fetches and returns the block associated with the specified Chord key.

Table 1: DHash client API; exposed to client file system software.

sor are likely to be discarded first, since clients are least likely to
stumble upon them. This has the effect of preserving the cached
copies close to the successor, and expands and contracts the degree
of caching for each block according to its popularity.

While caching and replication are conceptually similar, DHash
provides them as distinct mechanisms. DHash stores replicas in
predictable places, so it can ensure that enough replicas always
exist. In contrast, the number of cached copies cannot easily be
counted, and might fall to zero. If fault-tolerance were achieved
solely through cached copies, an unpopular block might simply dis-
appear along with its last cached copy.

CFS avoids most cache consistency problems because blocks are
keyed by content hashes. Root blocks, however, use public keys
as identifiers; a publisher can change a root block by inserting a
new one signed with the corresponding private key. This means
that cached root blocks may become stale, causing some clients
to see an old, but internally consistent, file system. A client can
check the freshness of a cached root block [9] to decide whether
to look for a newer version. Non-root blocks that no longer have
any references to them will eventually be eliminated from caches
by LRU replacement.

5.3 Load Balance
DHash spreads blocks evenly around the ID space, since the con-

tent hash function uniformly distributes block IDs. If each CFS
server had one ID, the fact that IDs are uniformly distributed would
mean that every server would carry roughly the same storage bur-
den. This is not desirable, since different servers may have different
storage and network capacities. In addition, even uniform distribu-
tion doesn't produce perfect load balance; the maximum storage
burden is likely to be about log(N) times the average due to irreg-
ular spacing between server IDs [12].

To accommodate heterogeneous server capacities, CFS uses the
notion (from [12]) of a real server acting as multiple virtual servers.

The CFS protocol operates at the virtual server level. A virtual
server uses a Chord ID that is derived from hashing both the real
server's IP address and the index of the virtual server within the
real server.

A CFS server administrator configures the server with a number
of virtual servers in rough proportion to the server's storage and
network capacity. This number can be adjusted from time to time
to reflect observed load levels.

Use of virtual servers could potentially increase the number of
hops in a Chord lookup. CFS avoids this expense by allowing vir-
tual servers on the same physical server to examine each others'
tables; the fact that these virtual servers can take short-cuts through
each others' routing tables exactly compensates for the increased
number of servers.

CFS could potentially vary the number of virtual servers per real
server adaptively, based on current load. Under high load, a real
server could delete some of its virtual servers; under low load, a
server could create additional virtual servers. Any such algorithm
would need to be designed for stability under high load. If a server

is overloaded because the CFS system as a whole is overloaded,
then automatically deleting virtual servers might cause a cascade
of such deletions.

5.4 Quotas
The most damaging technical form of abuse that CFS is likely to

encounter is malicious injection of large quantities of data. The aim
of such an attack might be to use up all the disk space on the CFS
servers, leaving none available for legitimate data. Even a non-
malicious user could cause the same kind of problem by accident.

Ideally, CFS would impose per-publisher quotas based on re-
liable identification of publishers, as is done in the PAST sys-
tem [29]. Reliable identification usually requires some form of
centralized administration, such as a certificate authority. As a de-
centralized approximation, CFS bases quotas on the IP address of
the publisher. For example, if each CFS server limits any one IP
address to using 0.1% of its storage, then an attacker would have
to mount an attack from about 1,000 machines for it to be success-
ful. This mechanism also limits the storage used by each legitimate
publisher to just 0.1%, assuming each publisher uses just one IP
address.

This limit is not easy to subvert by simple forging of IP ad-
dresses, since CFS servers require that publishers respond to a con-
firmation request that includes a random nonce, as described in Sec-
tion 4.4. This approach is weaker than one that requires publishers
to have unforgeable identities, but requires no centralized adminis-
trative mechanisms.

If each CFS server imposes a fixed per-lP-address quota, then the
total amount of storage an IP address can consume will grow lin-
early with the total number of CFS servers. It may prove desirable
to enforce a fixed quota on total storage, which would require the
quota imposed by each server to decrease in proportion to the total
number of servers. An adaptive limit of this form is possible, using
the estimate of the total number of servers that the Chord software
maintains.

5.5 Updates and Deletion
CFS allows updates, but in a way that allows only the publisher

of a file system to modify it. A CFS server will accept a request to
store a block under either of two conditions. If the block is marked
as a content-hash block, the server will accept the block if the sup-
plied key is equal to the SHA-1 hash of the block's content. If the
block is marked as a signed block, the block must be signed by a
public key whose SHA-1 hash is the block's CFS key.

The low probability of finding two blocks with the same SHA-1
hash prevents an attacker from changing the block associated with a
content-hash key, so no explicit protection is required for most of a
file system's blocks. The only sensitive block is a file system's root
block, which is signed; its safety depends on the publisher avoiding
disclosure of the private key.

CFS does not support an explicit delete operation. Publishers
must periodically refresh their blocks if they wish CFS to continue
to store them. A CFS server may delete blocks that have not been

208

refreshed recently.
One benefit of CFS' implicit deletion is that it automatically re-

covers from malicious insertions of large quantities of data. Once
the attacker stops inserting or refreshing the data, CFS will gradu-
ally delete it.

6. Implementation
CFS is implemented in 7,000 lines of C++, including the 3,000

line Chord implementation. It consists of a number of separate
programs that run at user level. The programs communicate over
UDP with a C++ RPC package provided by the SFS toolkit [16]. A
busy CFS server may exchange short messages with a large num-
ber of other servers, making the overhead of TCP connection setup
unattractive compared to UDP. The internal structure of each pro-
gram is based on asynchronous events and callbacks, rather than
threads. Each software layer is implemented as a library with a
C++ interface. CFS runs on Linux, OpenBSD, and FreeBSD.

6.1 Chord Implementation
The Chord library maintains the routing tables described in Sec-

tion 4. It exports these tables to the DHash layer, which implements
its own integrated version of the Chord lookup algorithm. The im-
plementation uses the SHA-1 cryptographic hash function to pro-
duce CFS block identifiers from block contents. This means that
block and server identifiers are 160 bits wide.

The Chord implementation maintains a running estimate of the
total number of Chord servers, for use in the server selection algo-
rithm described in Section 4.3. Each server computes the fraction
of the ID ring that the r nodes in its successor list cover; let that
fraction be f . Then the estimated total number of servers in the
system is r / f .

6.2 DHash Implementation
DHash is implemented as a library which depends on Chord.

Each DHash instance is associated with a Chord virtual server and
communicates with that virtual server through a function call inter-
face. DHash instances on different servers communicate with one
another via RPC.

DHash has its own implementation of the Chord lookup algo-
rithm, but relies on the Chord layer to maintain the routing tables.
Integrating block lookup into DHash increases its efficiency. If
DHash instead called the Chord find_successor routine, it would
be awkward for DHash to check each server along the lookup path
for cached copies of the desired block. It would also cost an un-
needed round trip time, since both Chord and DHash would end up
separately contacting the block's successor server.

Pseudo-code for the DHash implementation of lookup(key) is
shown in Figure 5; this is DHash's version of the Chord code
shown in Figure 3. The function lookup(key) returns the data as-
sociated with key or an error if it cannot be found. The func-
tion lookup operates by repeatedly invoking the remote procedure
n'.lookup_step(key) which retums one of three possible values. If
the called server (n') stores or caches the data associated with key,
then n'.Iookup_step(key) returns that data. If n ' does not store the
data, then n'.Iookup-step(key) returns instead the closest predeces-
sor of key (determined by consulting local routing tables on n').
Finally, n'.lookup_step returns an error if n ' is the true successor of
the key but does not store its associated data.

If lookup tries to contact a failed server, the RPC machinery
will return RPC_FAILURE. The function lookup then backtracks
to the previously contacted server, tells it about the failed server
with alert, and asks it for the next-best predecessor. At some point
lookup(key) will have contacted a pair of servers on either side of

// RPC handler on server n. Returns block with ID key,
//or the best next server to talk to.
n . lookup_step(key)

if key ~ (stored U cached U replicated) then
return[COMPLETE, key, datakey]

else if key 6 (predecessor, myia~
r e t u r n NONEXISTENT

else if key 6 (myid,first live successor]
next_hop = first live successor

else
//Find highest server < key in my finger table or successor list.
next.hop = lookup_elosest-pred(key)

suec_list = {s 6 { f ingers U successors} s.t s > next_hop}
return [CONTINUE, next_hop, succ.list]

RPC handler to ask the Chord software to delete
server idfrom the finger list and successor list.
n.alert(id)

//Return the block associated with key, or an error.
//Runs on the server that invokes lookup().
lookup(key)

p.push(n) # A stack to accumulate the path.
[status, res] = n.lookup_step(key)
repeat

if (status = COMPLETE)
return res.datauey

else if (status = CONTINUE),

if (res.next_hop = p.top)
tip.top knew no server other than itself
return NONEXISTENT

else if (key 6 (p.top',p.top])
p.top should have had the block.
return NONEXISTENT

else #explore next hop
p.push(res.next-hop)
[status, res] = res.next_hop.lookup_step(key)

else if (status = RPC_FAILURE)

//Try again at previous hop.
failed = p.poP0
last = p.top 0
last.alert(failed)
[status, res] = last.lookup_step(key)

else
return NONEXISTENT

Figure 5: The procedure used by DHash to locate a block.

key. If there have been server failures, the second server of the
pair may not be the key's original successor. However, that second
server will be the first live successor, and will hold a replica for key,
assuming that not all of its replicas have failed.

Though the pseudo-code does not show it, the virtual servers on
any given physical server look at each others' routing tables and
block stores. This allows lookups to progress faster around the
ring, and increases the chances of encountering a cached block.

6.3 Client Implementation
The CFS client software layers a file system on top of DHash.

CFS exports an ordinary UNIX file system interface by acting as a
local NFS server using the SFS user level file system toolkit [16].
A CFS client runs on the same machine as CFS server; the client
communicates with the local server via a UNIX domain socket and
uses it as a proxy to send queries to non-local CFS servers.

The DHash back end is sufficiently flexible to support a number
of different client interfaces. For instance, we are currently imple-
menting a client which acts as a web proxy in order to layer its

209

name space on top of the name space of the world wide web.

7. Experimental Results
In order to demonstrate the practicality of the CFS design, we

present two sets of tests. The first explores CFS performance on a
modest number of servers distributed over the Internet, and focuses
on real-world client-perceived performance. The second involves
larger numbers of servers running on a single machine and focuses
on scalability and robustness.

Quotas (Section 5.4) were not implemented in the tested soft-
ware. Cryptographic verification of updates (Section 5.5) and
server ID authentication (Section 4.4) were implemented but not
enabled. This has no effect on the results presented here.

Unless noted, all tests were run with caching turned off, with
no replication, with just one virtual server per physical server, and
with server selection turned off. These defaults allow the effects
of these features to be individually illustrated. The experiments in-
volve only block-level DHash operations, with no file-system recta-
data; the client software driving the experiments fetches a file by
fetching a specified list of block identifiers. Every server maintains
a successor list with 2 logg.(N) entries, as mentioned in Section 4,
to help maintain ring connectivity. While CFS does not automati-
cally adjust the successor list length to match the number of servers,
its robustness is not sensitive to the exact value.

7.1 Real Life
The tests described in this section used CFS servers running on

a testbed of 12 machines scattered over the Internet. The machines
are part of the RON testbed [2]; 9 of them are at sites spread over
the United States, and the other three are in the Netherlands, Swe-
den, and South Korea. The servers held a one megabyte CFS file
split into 8K blocks. To test download speed, client software on
each machine fetched the entire file. The machines fetched the file
one at a time.

Three RPCs, on average, were required to fetch each block in
these experiments. The client software uses pre-fetch to overlap the
lookup and fetching of blocks. The client initially issues a window
of some number of parallel block fetches; as each fetch completes,
the client starts a new one.

Figure 6 shows the average download speeds, for a range of pre-
fetch window sizes, with and without server selection. A block
fetch without server selection averages about 430 milliseconds; this
explains why the download speed is about 20 KBytes/second when
fetching one 8KByte block at a time. Increasing the amount of
pre-fetch increases the speed; for example, fetching three blocks at
a time yields an average speed of about 50 KBytes/second. Large
amounts of pre-fetch are counter-productive, since they can congest
the client server's network connection.

Server selection increases download speeds substantially for
small amounts of pre-fetch, almost doubling the download speed
when no pre-fetch is used. The improvement is less dramatic for
larger amounts of pre-fetch, partially because concentrating block
fetches on just the nearest servers may overload those servers'
links. The data shown here were obtained using a flawed version of
the server selection algorithm; the correct algorithm would likely
yield better download speeds.

Figure 7 shows the distribution of speeds seen by the downloads
from the different machines, for different pre-fetch windows, with
and without server selection. The distributions of speeds without
server selection are fairly narrow: every download is likely to re-
quire a few blocks from every server, so all downloads see a similar
mix of per-block times. The best download speeds were from a ma-
chine at New York University with good connections to multiple

200

150 -

e ~

100- No Server Selection
- - With Server Selection

f , "

0
. . . . I I I I '

0 50 100 150 200

Prefetch Window (KBytes)

Figure 6: Download speeds achieved while fetching a one-
megabyte file with CFS on the Internet testbed, for a range of
pre-fetch window sizes. Each point is the average of the times
seen by each testbed machine. One curve includes server selec-
tion; the other does not.

1.0

i 0.8

• 0.6

0.4-

0.2-

0.0
0

~ i ~ ~ / : 8KBytes, nos.s.
i 'X T~" "" 4 - - 24 KBytes, no s.s.
w~ ~-- - "O- 40 KBytes, no s.s.

] ~ ;.~ ~ ~ 8KBytes, w/s.s.
~ o ~ , ~ (d I ---X-- 24 KBytes, w/s.s.
i ~ ¢ . . / j ¢ - "-X- 40Kaytes, w/s.s.
rS_,-,"

' ' ' ' ' ' " " ' I ' " " ' ' ' " ' ' I ' " ' ' ' ' ' ' '

100 200 300
Speed (K.Bytes/Second)

Figure 7: Cumulative distribution of the download speeds plot-
ted in Figure 6, for various pre-fetch windows. Results with
and without server selection are marked "w/s.s" and "no s.s."
respectively.

210

1.0 .- '"" ..-" " ' ~ 2-" :-" :-'-'-:':':"='-"

• o, #t" /
0.8 .; ,'

o 0.6 .:1: S /
" I [.:" t' ~ 8 KBytes

[/ ~t 64 KBytes
]] : ,!" - - - 1126KBytes

0.4-11 :' ;
t / i /

!"I
0.0 ...',,I

0 100 200 300 0
Speed (KBytes/sec)

Figure 8: Distribution of download speeds achieved by ordi-
nary TCP between each pair hosts on the Internet testbed, for
three file sizes.

backbones, The worst download speeds for small pre-fetch win-
dows were from sites outside the United States, which have high
latency to most of the servers. The worst speeds for large amounts
of pre-fetch were for fetches from cable modem sites in the United
States, which have limited link capacity.

The speed distributions with server selection are more skewed
than without it. Most of the time, server selection improves down-
load speeds by a modest amount. Sometimes it improves them sub-
stantially, usually for downloads initiated by well-connected sites.
Sometimes server selection makes download speeds worse, usually
for downloads initiated by sites outside the United States.

To show that the CFS download speeds are competitive with
other file access protocols, files of various sizes were transferred
between every pair of the testbed machines using ordinary TCP.
The files were transferred one at a time, one whole file per TCP
connection. Figure 8 shows the cumulative distribution of transfer
speeds over the various machine pairs, for 8 KByte, 64 KByte, and
1.1 MByte files. The wide distributions reflect the wide range of
propagation delays and link capacities between different pairs of
machines. The best speeds are between well-connected sites on the
east coast of the United States. The worst speeds for 8 KByte trans-
fers occur when both end-points are outside the United States; the
worst for one-megabyte transfers occur when one endpoint is out-
side the United States and the other is a cable modem, combining
high latency with limited link speed.

CFS with a 40 KByte pre-fetch window achieves speeds compet-
itive with TCP, on average. The CFS speeds generally have a distri-
bution much narrower than those of TCP. This means that users are
more likely to see repeatably good performance when fetching files
with CFS than when fetching files from, for example, FTP servers.

7.2 Controlled Experiments
The remainder of the results were obtained from a set of CFS

servers running on a single machine and using the local loopback
network interface to communicate with each other. These servers
act just as if they were on different machines. This arrangement is

8 -

6 -

4 -

2 -

f /

...... I I I

10 100 I000

Number of CFS Servers

Figure 9: The average number of RPCs that a client must issue
to find a block, as function of the total number of servers. The
error bars reflect one standard deviation. This experimental
data is linear on a log plot, and thus fits the expectation of a
logarithmic growth.

appropriate for controlled evaluation of CFS' scalability and toler-
ance to failure.

7.2.1 Lookup Cost
Looking up a block of data is expected to require O(log(N))

RPCs. The following experiment verifies this expectation. For each
of a range of numbers of servers, 10,000 blocks were inserted into
the system. Then 10,000 lookups were done, from a single server,
for randomly selected blocks. The number of RPCs required for
each lookup was recorded. The averages are plotted in Figure 9,
along with error bars showing one standard deviation.

The results are linear on a log plot, and thus fit the expectation
of logarithmic growth. The actual values are about ½ loga(N); for
example, with 4096 servers, lookups averaged 6.7 RPCs. The num-
ber of RPCs required is determined by the number of bits in which
the originating server's ID and the desired block's ID differ [31];
this will average about half of the bits, which accounts for the ½.

7.2.2 Load Balance
One of the main goals of CFS is to balance the load over the

servers. CFS achieves load balanced storage by breaking file sys-
tems up into many blocks and distributing the blocks over the
servers. It further balances storage by placing multiple virtual
servers per physical server, each virtual server with its own ID. We
expect that O(log(N)) virtual servers per physical server will be
sufficient to balance the load reasonably well [31].

Figure 10 shows typical distributions of ID space among 64
physical servers for 1, 6, and 24 virtual servers per physical server.
The crosses represent an actual distribution of 10,000 blocks over
64 physical servers each with 6 virtual servers. The desired result
is that each server's fraction be 0.016. With only one virtual server
per server (i.e., without using virtual servers), some servers would
store no blocks, and others would store many times the average.

211

.)

t

,~ 0.8
Z

~, 0.6.

i 0.4-

0.2.

0.0

t . t .+ . ;" -

,,,g
1.0

I !
0.00 0.02 0.04

f

+ Real

. 6
- - - 24

Fraction of ID Space per Physical Node

Figure 10: Representative cumulative distributions of the frac-
tion of the key space a server might be responsible for. 64
servers are simulated, each with 1, 6, or 24 virtual servers. The
data marked Real is derived from the distribution of 10,000
blocks among 64 servers, each with 6 virtual servers.

With multiple virtual servers per server, the sum of the parts of the
ID space that a server's virtual servers are responsible for is more
tightly clustered around the average.

The fact that CFS spreads the storage of blocks across servers
means that in many cases the burden of serving the blocks will
also be evenly spread. For large files this will be true even if some
files are more popular than others, since a file's blocks are widely
spread. If the popular data consists of only a few blocks, then the
servers that happen to be those blocks' successors will experience
high load. The next section describes how caching helps balance
the serving load for small files.

7.2.3 Caching
CFS caches blocks along the lookup path. As the initiating server

contacts successive servers, each checks whether it already has the
desired block cached. Once the initiating server has found the
block, it sends a copy to each of the servers it contacted during the
lookup; these servers add the block to their caches. This scheme is
expected to produce high cache hit rates because the lookup paths
for the same block from different sources will tend to intersect as
they get closer to block's successor server.

Figure 11 illustrates how well caching works. A single block is
inserted into a 1,000 server system. Then a sequence of randomly
chosen servers fetch the block. The graph shows how the number
of RPCs required to fetch the block decreases with the number of
cumulative fetches, due to the block being cached in more places.
Each plotted point is the average of 10 sequential fetches. A quirk
in the implementation prevents the originating server from check-
ing its own cache, which is why no fetches have an RPC count of
ze ro ,

As expected, the RPC counts decrease, since more and more
servers have the block cached. The RPC counts decrease signifi-
cantly after just a few lookups. Figure 9 shows that lookups without
caching in a 1,000-server system require an average of 5.7 RPCs,

5 -

4 -

~ 3 -

e~

T

- - & tttt
0 I I I I I

0 50 100 150 200 250

Cumulative Number of Lookups

Figure 11: Impact of caching on successive client fetches of
the same block. Each point is the average number of RPCs
for 10 successive fetches from randomly chosen servers; the er-
ror bars indicate one standard deviation. The system has 1,000
s e r v e r s .

while after 10 lookups with caching an average of only 3.2 hops are
required. The net effect is to improve client-perceived performance
and to spread the load of serving small files.

7.2.4 Storage Space Control
By varying the number of virtual servers on a physical server, a

server's owner can control the amount of data that CFS stores on
the server, and thus the amount that the server must serve. Fig-
ure 12 shows how effective this is. The experiment involves seven
physical servers, with 1, 2, 4, 8, 16, 32, 64, and 128 virtual servers,
respectively. 10,000 blocks are inserted into the system, and the re-
lationship between how many virtual servers a physical server has
and how many blocks it must store is plotted. For example, the
physical server with 16 virtual server stores 586 blocks; there are
a total of 255 virtual servers, so this is close to the expected value
627 = 10000 x 2 ~ ' Since the relationship of blocks to virtual
servers is linear, an administrator can easily adjust a CFS server's
storage consumption.

There is little memory overhead to running many virtual servers
to achieve fine-grained control over load. Each virtual server re-
quires its own finger table and successor list, as well as accounting
structures for the block store and cache; the total memory footprint
of these structures in our unoptimized implementation is less than
10KBytes.

7.2.5 Effect of Failure
After a CFS server falls, some time will pass before the remain-

ing servers react to the failure, by correcting their finger tables and
successor pointers and by copying blocks to maintain the desired
level of replication. Theorems 1 and 2 suggest that CFS will be
able to perform lookups correctly and efficiently before this recov-
ery process starts, even in the face of massive failure.

To test this, 1,000 blocks are inserted into a 1,000-server system.

212

I0

10000

z

1000 -

100 -.:

10.

. . . . | ' ' ' l ' ' ' ' l
1 10 100

Number of Virtual Nodes

Figure 12: Impact of the number of virtual servers per physical
server on the total amount of data that the physical server must
store.

0 ;p
~p

2

,t+

0 I I I I I

0.0 0.I 0.2 0.3 0.4 0.5

Failed Nodes (Fraction)

Figure 14: Average lookup RPC count as a function of the frac-
tion of the CFS servers that fail. There are 1,000 servers before
the failures. Each data point is the average of 5 experiments;
the error bars indicate the minimum and maximum results.

0.020

0.015
o

0.010

0.005

T

0.000 I x r ! " '
0.0 0.1

t

+

0.2 0.3 0.4 0.5

Failed Nodes (Fraction)

Figure 13: Fraction of block request failures as a function of
the fraction of 1,000 CFS servers that fail. Each data point is
the average of 5 experiments involving 1,000 block Iookups; the
error bars indicate the minimum and maximum results.

Each block has six replicas (including the main copy stored at the
direct successor). After the insertions, a fraction of the servers fail
without warning. Before Chord starts rebuilding its routing tables,
1,000 fetches of randomly selected blocks are attempted from a
single server. Figure 13 shows the fraction of lookups that fail, and
Figure 14 shows the average RPC count of the lookups.

No lookups fail when fewer than 20% of the servers fail, and
very few when less than 35% fail. The reason for this is that server
finger tables and successor lists provide many potential paths to
carry a query around the Chord ID ring; if the most desirable finger
table entry points to a failed server, CFS uses an entry that points
less far around the ring. Lookups start to fail when enough servers
fail that some blocks lose all six copies. For example, when 50% of
the servers fail, the probability of losing all of a block's replicas is
0.56 = 0.016; this is close to the value 0.013 shown in Figure 13.
All of the lookup failures encountered in this experiment are due to
all of a block's replicas failing; CFS was always able to find a copy
of a block if one was available.

Figure 14 shows that lookups take about one RPC longer as a
result of 50% of the servers failing. The RPC counts do not in-
clude attempts to contact failed servers. Lookups take longer after
failures because some of the finger table entries required for fast
lookups point to failed servers. If half of the finger table entries
are not valid, then each RPC makes about half as much progress as
expected; but one extra RPC fully corrects this.

Figure 15 shows the number of attempts to contact failed servers
that occur per lookup, averaged over 1,000 block lookups. After
the first time a server decides (by a timeout) that it has used a finger
table or successor-list entry that points to a failed server, it does not
use that server again until it has been stabilized. Given that massive
failures have little effect on the availability of data or the number of
RPCs per lookup, users are likely to perceive such failures because
of RPC timeouts during lookups. However, Figure 15 shows that a
typical block lookup shortly after a failure can expect less than one

213

0.8

o 0.6

0.4 9

~ o.2-

0.0
0.0

|

t

|

. I I I I I

0.1 0.2 0.3 0.4 0.5

Failed Nodes (Fraction)

Figure 15: Number of RPC timeouts incurred during 1,000
lookups, as a function of the fraction of the CFS servers that
fail. There are 1,000 servers before the failures. Each data
point is the average of 5 experiments; the error bars indicate
the minimum and maximum results.

timeout on the way to retrieving the desired block.
These experiments demonstrate that a large fraction of CFS

servers can fail without significantly affecting data availability or
performance.

8. Future Research
CFS could benefit from a keyword search system. One way to

provide this would be to adopt an existing centralized search en-
gine. A more ambitious approach would be to store the required
index files using CFS itself, an idea we are pursuing.

While CFS is robust in the case of fail-stop failures, it does not
specifically defend against malicious participants. A group of ma-
licious nodes could form an internally consistent CFS system; such
a system could not falsify documents, since CFS can verify authen-
ticity, but it could incorrectly claim that a document did not ex-
ist. Future versions of CFS will defend against this by periodically
checking the consistency of Chord tables with randomly chosen
other nodes.

CFS must copy blocks between servers whenever a node joins or
leaves the system in order to maintain the desired level of replica-
tion. If nodes often join the system for a short time before leaving,
these copies will be wasted. CFS should allow for lazy replica
copying.

CFS does not work through a NAT. Special arrangements might
make this possible, such as a pool of global servers acting as prox-
ies for hosts behind NATs [21].

The current CFS client uses a fixed pre-fetch window. No one
size will give best performance in all situations; the right size de-
pends on round trip time and available network bandwidth. The
pre-fetch window serves a purpose similar to TCP's congestion
window, and should use analogous adaptive algorithms.

9. Conclusions
CFS is a highly scalable, available and secure read-only file sys-

tem. It presents stored data to applications through an ordinary
file-system interface. Servers store uninterpreted blocks of data
with unique identifiers. Clients retrieve blocks from the servers
and interpret them as file systems.

CFS uses the peer-to-peer Chord lookup protocol to map blocks
to servers. This mapping is dynamic and implicit. As a result,
there is no directory information to be updated when the underly-
ing network changes. This makes CFS both robust and scalable.
CFS uses replication and caching to achieve availability and load
balance. CFS replicates a block along consecutive servers in the
identifier space. It caches a block along the lookup path starting
to the block's server. Finally, CFS provides simple but effective
protection against a single attacker inserting large amounts of data.

A prototype implementation of CFS has been implemented and
evaluated on a controlled Intemet-wide test-bed. Future operational
deployment will likely uncover opportunities for improvement, but
the current results indicate that CFS is a viable large-scale peer-to-
peer system.

Acknowledgments
We are grateful to Had Balakrishnan, John Zahorjan, and the
anonymous reviewers for helpful comments, and to David Ander-
sen for managing the RON testbed and letting us use it.

References
[1] Akamai Technologies, Inc. http://www.akamai.com/, 2001.

Cambridge, MA.
[2] ANDERSEN, n . , BALAKRISHNAN, H., KAASHOEK, M. F., AND

MORRIS, R. Resilient overlay networks. In Proceedings of the 18th
ACM Symposium on Operating Systems Principles (Oct. 2001).

[3] CHANKHUNTHOD, A., DANZIG, P., NEERDAELS, C., SCHWARTZ,
M., AND WORRELL, K. k hierarchical lntemet object cache. In
Proc. Usenix Technical Conference (Jan. 1996), pp. 153-163.

[4] CHAUM, D. Untraceable electronic mail, return addresses, and
digital pseudonyms. Communications of the ACM 24, 2 (Feb. 1981),
84-88.

[5] CLARKE, I. A distributed decentralised information storage and
retrieval system. Master's thesis, University of Edinburgh, 1999.

[6] CLARKE, 1., SANDBERG, O., WILEY, B., AND HONG, T. Freenet:
A distributed anonymous information storage and retrieval system. In
Proceedings of the Workshop on Design Issues in Anonymity and
Unobservability (July 2000), pp. 46-66.

[7] DINGLEDINE, R., FREEDMAN, i . , AND MOLNAR, D. The Free
Haven project: Distributed anonymous storage service. In
Proceedings of the Workshop on Design Issues in Anonymity and
Unobservability (July 2000), pp. 67-95.

[8] FAN, L., CAO, P., ALMEIDA, J., AND BRODER, A. Summary
cache: a scalable wide-area web-cache sharing protocol. Tech. Rep.
1361, Computer Science Department, University of Wisconsin,
Madison, Feb. 1998.

[9] FU, K., KAASHOEK, i . F., AND MAZI~RES, D. Fast and secure
distributed read-only file system. In Proceedings of the 4th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI) (October 2000), pp. 181-196.

[10] GADDE, S., CHASE, J., AND RABINOVICH, i . A taste of crispy
squid. In Workshop on lnternet Server Performance (June 1998),
pp. 129-136.

[11] Gnutella website, http://gnutella.wego.com.
[12] KARGER, D., LEHMAN, E., LEIGHTON, T., LEVINE, i , , LEWIN,

n . , AND PANIGRAHY, R. Consistent hashing and random trees:
Distributed caching protocols for relieving hot spots on the world
wide web. In Proceedings of the 29th Annual ACM Symposium on
Theory of Computing (May 1997), pp. 654-663.

[13] KUBIATOWICZ, J., BINDEL, D., CHEN, Y., CZERWINSKI, S.,

214

EATON, P., GEELS, D., GUMMADI, R., RHEA, S.,
WEATHERSPOON, H., WEIMER, W., WELLS, C., AND ZHAO, B.
Oceanstore: An architecture for global-scale persistent storage. In
Proceeedings of the Ninth international Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS) (November 2000), pp. 190--201.

[14] LEWlN, D. Consistent hashing and random trees: Algorithms for
caching in distributed networks. Master's thesis, MIT, 1998.

[15] MALPANI, R., LORCH, J., AND BERGER, D. Making world wide
web caching servers cooperate. In Fourth International World Wide
Web Conference (1995), pp. 107-110.

[16] MAZIi~RES, D. A toolkit for user-level file systems. In Proc. Usenix
Technical Conference (June 2001), pp. 261-274.

[17] MAZI~RES, D., KAMINSKY, M., KAASHOEK, i . F., AND
WITCHEL, E. Separating key management from file system security.
In Proceedings of the 17th ACM Symposium on Operating Systems
Principles (SOSP) (Dec. 1999), pp. 124--139.

[18] MERKLE, R. C. A digital signature based on a conventional
encryption function. In Advances in Cryptology--CRYPTO '87
(Berlin, 1987), C. Pomerance, Ed., vol. 293 of Lecture Notes in
Computer Science, Springer-Verlag, pp. 369-378.

[19] Mojo nation documentation, http://www.mojonation.neVdocsd.
[20] Napster. http://www.napster.com.
[21] NG, T. S. E., STOICA, 1., AND ZHANG, I-{. A waypoint service

approach to connect heterogeneous internet address spaces. In Proc.
Usenix Technical Conference (June 2001), pp. 319-332.

[22] Ohaha. h t tp : / /www.ohaha.com/des ign.html , as of June 17,
2001, the Ohaha application is no longer available.

[23] ORAM, A., Ed. Peer-to-Peer: Harnessing the Power of Disruptive
Computation. O'Reilly & Associates, 2001.

[24] PLAXTON, C., RAJARAMAN, R., AND RICHA, A. Accessing
nearby copies of replicated objects in a distributed environment. In
Proceedings of the ACM SPAA (June 1997), pp. 311-320.

[25] RABIN, M. Efficient dispersal of information for security, load
balancing, and fault tolerance. Journal of the ACM 36, 2 (1989),
335-348.

[26] RATNASAMY, S., FRANCIS, P., HANDLEY, M., KARP, R., AND
SHENKER, S. A scalable content-addressable network. In Proc. ACM
SIGCOMM (San Diego, 2001).

[27] REITER, M., AND RUBIN, A. Crowds: Anonymity for web
transactions. ACM Transactions on Information and System Security
1, 1 (Nov. 1998), 66-92.

[28] ROWSTRON, A., AND DRUSCHEL, P. Pastry: Sealable, distributed
object location and routing for large-scale peer-to-peer systems. In
Proceedings of the 18th IFIP/ACM International Conference on
Distributed Systems Platforms (Middleware 2001) (Nov. 2001).

[29] ROWSTRON, A., AND DRUSCHEL, P. Storage management and
caching in PAST, a large-scale, persistent peer-to-peer storage utility.
In Proceedings of the 18th ACM Symposium on Operating Systems
Principles (Oct. 2001).

[30] SHERMAN, A., KARGER, D., BERKHEIMER, A., BOGSTAD, B.,
DHANIDINA, R., IWAMOTO, K., KIM, B., MATKINS, L., AND
YERUSHALMI, Y. Web caching with consistent hashing. Computer
Networks 31, 11-16 (May 1999), 1203-1213.

[31] STOICA, 1., MORRIS, R., KARGER, D., KAASHOEK, M. F., AND
BALAKRISHNAN, n . Chord: A scalable peer-to-peer lookup service
for interact applications. In Proc. ACM SIGCOMM (San Diego,
2001).

[32] STOICA, I., MORRIS, R., KARGER, D., KAASHOEK, M. F., AND
BALAKRISHNAN, H. Chord: A scalable peer-to-peer lookup service
for internet applications. Tech. Rep. TR-819, MIT, Cambridge, MA,
March 2001.

[33] TYAN, T. A case study of server selection. Master's thesis, MIT,
Sept. 2001.

[34] WALDMAN, M., ROBIN, A., AND CRANOR, L. F. Publius: A
robust, tamper-evident, censorship-resistant, web publishing system.
In Proc. 9th USENIX Security Symposium (August 2000), pp. 59-72.

[35] ZHAO, B., KUBIATOWICZ, J., AND JOSEPH, A. Tapestry: An
infrastructure for fault-tolerant wide-area location and routing. Tech.
Rep. UCB/CSD-01-1141, Computer Science Division, U. C.
Berkeley, Apr. 2001.

215

