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REASONS TO CHOOSE A PARTICULAR PROGRAMMING LANGUAGE

• Easy to express complex ideas
• Easy to control exactly how the computation is carried out
• Rich set of data types
• Extensive (standard) library
• Active, friendly community
• Was used for this project before I joined
• Good compiler support
• Open-source
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WHY ARE THERE SO MANY PROGRAMMING LANGUAGES?

• Trade-off between features
• Speed vs expressiveness/elegance
• Speed, type safety vs rapid development
• …

• Tinkering with programming languages is fun
… and then they sometimes get adopted.

• Corporate pressure
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GENERAL PURPOSE VS SPECIAL PURPOSE

General-purpose programming language:

• Designed to express arbitrary computations
• Turing-complete

Examples:
• C, C++, Java, Python, Ruby
• Haskell, Scheme, Prolog
• Lua, Tcl/Tk
• …

Special-purpose programming language:

• Designed to make it easy to express certain
types of programs

• May not be Turing-complete

Examples:

• (La)TeX, HTML/XML, XSLT
• R, Matlab
• sed, awk
• …
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TYPES OF PROGRAMMING LANGUAGES

C

Pascal

Modula

Ada

Fortran

C++

Python

Ruby

Java

Objective C

Swift

Lisp

ML

Scala Scheme Haskell Prolog

Hilog

Postscript

Forth

Factor

Concatenative LogicImperative Object-oriented Functional

Declarative

5/30



TYPES OF PROGRAMMING LANGUAGES

C

Pascal

Modula

Ada

Fortran

C++

Python

Ruby

Java

Objective C

Swift

Lisp

ML

Scala Scheme Haskell Prolog

Hilog

Postscript

Forth

Factor

Concatenative LogicImperative Object-oriented Functional

Declarative

5/30



TYPES OF PROGRAMMING LANGUAGES

C

Pascal

Modula

Ada

Fortran

C++

Python

Ruby

Java

Objective C

Swift

Lisp

ML

Scala Scheme Haskell Prolog

Hilog

Postscript

Forth

Factor

Concatenative Logic

Imperative Object-oriented

Functional

Declarative

5/30



TYPES OF PROGRAMMING LANGUAGES

C

Pascal

Modula

Ada

Fortran

C++

Python

Ruby

Java

Objective C

Swift

Lisp

ML

Scala Scheme Haskell Prolog

Hilog

Postscript

Forth

Factor

Concatenative Logic

Imperative Object-oriented

Functional

Declarative

5/30



TYPES OF PROGRAMMING LANGUAGES

C

Pascal

Modula

Ada

Fortran

C++

Python

Ruby

Java

Objective C

Swift

Lisp

ML

Scala Scheme Haskell Prolog

Hilog

Postscript

Forth

Factor

Concatenative

Logic

Imperative Object-oriented

Functional

Declarative

5/30



TYPES OF PROGRAMMING LANGUAGES

C

Pascal

Modula

Ada

Fortran

C++

Python

Ruby

Java

Objective C

Swift

Lisp

ML

Scala Scheme Haskell Prolog

Hilog

Postscript

Forth

Factor

Concatenative LogicImperative Object-oriented Functional

Declarative

5/30



TYPES OF PROGRAMMING LANGUAGES

C

Pascal

Modula

Ada

Fortran

C++

Python

Ruby

Java

Objective C

Swift

Lisp

ML

Scala Scheme

Haskell

Prolog

Hilog

Postscript

Forth

Factor

Concatenative LogicImperative Object-oriented Functional

Declarative

5/30



TYPES OF PROGRAMMING LANGUAGES

C

Pascal

Modula

Ada

Fortran

C++

Python

Ruby

Java

Objective C

Swift

Lisp

ML

Scala

Scheme Haskell

Prolog

Hilog

Postscript

Forth

Factor

Concatenative LogicImperative Object-oriented Functional

Declarative

5/30



TYPES OF PROGRAMMING LANGUAGES

C

Pascal

Modula

Ada

Fortran

C++

Python

Ruby

Java

Objective C

Swift

Lisp

ML

Scala Scheme Haskell

Prolog

Hilog

Postscript

Forth

Factor

Concatenative LogicImperative Object-oriented Functional

Declarative

5/30



TYPES OF PROGRAMMING LANGUAGES

C

Pascal

Modula

Ada

Fortran

C++

Python

Ruby

Java

Objective C

Swift

Lisp

ML

Scala Scheme Haskell Prolog

Hilog

Postscript

Forth

Factor

Concatenative LogicImperative Object-oriented Functional

Declarative

5/30



TYPES OF PROGRAMMING LANGUAGES

C

Pascal

Modula

Ada

Fortran

C++

Python

Ruby

Java

Objective C

Swift

Lisp

ML

Scala Scheme Haskell Prolog

Hilog

Postscript

Forth

Factor

Concatenative LogicImperative Object-oriented Functional

Declarative

5/30



TYPES OF PROGRAMMING LANGUAGES

C

Pascal

Modula

Ada

Fortran

C++

Python

Ruby

Java

Objective C

Swift

Lisp

ML

Scala Scheme Haskell Prolog

Hilog

Postscript

Forth

Factor

Concatenative LogicImperative Object-oriented Functional

Declarative

5/30



THE LANGUAGES I USE

Rust or C++
• When I need performance

C
• When I feel nostalgic

Haskell
• When I want to have fun and
write elegant code that I trust

Prolog
• When I want to solve puzzles

Python
• When I need to write a
prototype quickly

Scala
• When I’m told to use Java

Java
• Never

Scheme
• When I’d rather teach you
Haskell
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IMPERATIVE VS DECLARATIVE PROGRAMMING

Imperative programming:

• Focus on telling the
computer exactly which
steps to execute

• Close to the machine
• Difficult to analyze/
automatically optimize

• Functions called for
• Return values
• Side effects

Declarative programming:

• Focus on telling the computer what
to do, not how to do it

• More high-level, elegant, expressive
• Need to include evaluation engine
in run-time system

• Can come with performance
penalties

• Easier to analyze/automatically
optimize/parallelize
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SIDE EFFECTS

• Variable updates, I/O (disk, screen, keyboard, network, …)

… are evil:

• Source of 90% of all software bugs

… are the only reason we compute at all:

• Taking input and communicating results requires side effects.
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FUNCTIONAL PROGRAMMING

• Functions have no side effects
• Variables are immutable once defined
• Functions are first-class objects
• Can express imperative computations elegantly!

Pros:

• Easier to analyze/optimize
• No specified execution order→ easy to parallelize

Cons:

• Can be less efficient than
well-designed imperative code

• Some imperative data
structures are inherently more
efficient than their purely
functional counterparts
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LOGIC PROGRAMMING

General program structure:

• Database of facts, represented as logical predicates
• Rules for deducing new facts from known facts
• Execution driven by queries whether certain facts are true

Runtime system:

• Engine to perform the deduction process efficiently

Pros:

• Even higher abstraction than
functional programming

• In theory, no need to worry
about execution details at all

Cons:

• In practice, need to understand
execution details enough to

• Avoid infinite loops in deduction
• Obtain efficient programs
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INTERMISSION: SCHEME AND PROLOG TUTORIALS
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AN EXAMPLE WHERE FUNCTIONAL PROGRAMMING SHINES: MERGE SORT (1)

C++:

template <typename It>
void merge_sort(const It &begin, const It &end) {

auto n = end - begin;
if (n < 2)

return;
auto mid = begin + n / 2;
merge_sort(begin, mid);
merge_sort(mid, end);
std::vector<std::iterator_traits<It>::value_type>

left(begin, mid);
std::vector<std::iterator_traits<It>::value_type>

right(mid, end);
merge(left, right, begin);

}
12/30



AN EXAMPLE WHERE FUNCTIONAL PROGRAMMING SHINES: MERGE SORT (2)

template <typename It>
void merge(

const std::vector<std::iterator_traits<It>::value_type> &left,
const std::vector<std::iterator_traits<It>::value_type> &right,
It out) {
auto l = left.begin(), r = right.begin();
while (l != left.end() && r != right.end()) {

if (*r < *l)
*out++ = *r++;

else
*out++ = *l++;

}
while (l != left.end())

*out++ = *l++;
while (r != right.end())

*out++ = *r++;
} 13/30



AN EXAMPLE WHERE FUNCTIONAL PROGRAMMING SHINES: MERGE SORT (3)

Haskell:

mergeSort :: Ord t => [t] -> [t]
mergeSort [] = []
mergeSort [x] = [x]
mergeSort xs = merge (mergeSort ls) (mergeSort rs)

where n = length xs
(ls, rs) = splitAt (n `div` 2) xs

merge :: Ord t => [t] -> [t] -> [t]
merge [] rs = rs
merge ls [] = ls
merge ls@(l:ls') rs@(r:rs') | r < l = r : merge ls rs'

| otherwise = l : merge ls' rs
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AN EXAMPLE WHERE FUNCTIONAL PROGRAMMING SHINES: MERGE SORT (4)

Prolog:

list_sorted([], []).
list_sorted([X], [X]).
list_sorted(List, Sorted) :-

list_left_right(List, Left, Right),
list_sorted(Left, LeftSorted),
list_sorted(Right, RightSorted),
merged_left_right(Sorted, LeftSorted, RightSorted).

merged_left_right(Left, Left, []).
merged_left_right([R|Right], [], [R|Right]).
merged_left_right([L|Merged], [L|Left], [R|Right]) :-

L #=< R, merged_left_right(Merged, Left, [R|Right]).
merged_left_right([R|Merged], [L|Left], [R|Right]) :-

R #< L, merged_left_right(Merged, [L|Left], Right).
15/30



AN EXAMPLE WHERE FUNCTIONAL PROGRAMMING SHINES: MERGE SORT (5)

list_left_right(List, Left, Right) :-
phrase(parse_half(List, Left), List, Right).

parse_half([], []) --> [].
parse_half([_], []) --> [].
parse_half([_,_|List], [L|Left]) --> [L], parse_half(List, Left).

16/30



AN EXAMPLE WHERE IMPERATIVE PROGRAMMING SHINES:
DYNAMIC DATA STRUCTURES (1)

Problem: Build a permutation of the integers {0, 1, . . . ,n− 1} specified by
indicating, for each element, after which element it is to be inserted.

Example:

0 0 1 0 3 2
1 2 3 4 5 6

0 4 2 6 1 3 5

00 10 2 10 2 1 30 4 2 1 30 4 2 1 3 5

12 34 56

Input:

Output:
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AN EXAMPLE WHERE IMPERATIVE PROGRAMMING SHINES:
DYNAMIC DATA STRUCTURES (2)

C++: Linear time

std::vector<int> dynamic_permute(const std::vector<int> &refs) {
int n = ref.size() + 1;
std::list<int> seq;
std::vector<std::list<int>::iterator> list_nodes(n);
list_nodes[0] = seq.insert(seq.end(), 0);
for (int i = 1; i < n; ++i)

list_nodes[i] = seq.insert(next(list_nodes[ref[i]]), i);
return std::vector<int>(seq.begin(), seq.end());

}

0

4 2 6

1 3 5
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AN EXAMPLE WHERE IMPERATIVE PROGRAMMING SHINES:
DYNAMIC DATA STRUCTURES (3)

Doing this without mutation:

0

3

1 2

0 1 2

When “updating” any node in a functional data structure, all nodes with a path of
pointers to it need to be replaced too.

This makes standard pointer-based data structures difficult/impossible to
implement functionally.
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WHAT ABOUT TRADITIONAL PERMUTING? (1)

Problem: Given a list of elements, each annotated with its desired position in the
output list, build an array storing each element in the desired position.

Example:

(2, a) (0, b) (3, c) (1, e) (4, d)

b e a c d

Input:

Output:

20/30



WHAT ABOUT TRADITIONAL PERMUTING? (2)

C++:

template <typename T>
std::vector<T> permute(

const std::vector<std::pair<int, T>> &input) {
std::vector<T> output(input.size());
for (auto &item : input)

output[item.first] = item.second;
return output;

}

Haskell:

permute :: [(Int, t)] -> [t]
permute xs = elems (array (0, len xs - 1) xs)
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AN EXAMPLE WHERE LOGIC PROGRAMMING SHINES:
CONSTRAINT SATISFACTION (1)

4 2 6 1
2 3 6 1 7

6 9 5 4 3
9 4
4 2 8 3

8 9
9 8 2 3 7

4 1 3 6 8
1 6 7 2

4 8 7 3 2 9 6 1 5
2 3 5 6 4 1 7 8 9
1 6 9 5 8 7 4 2 3
6 9 1 7 3 8 2 5 4
5 4 2 9 1 6 8 3 7
8 7 3 2 5 4 1 9 6
9 5 8 4 6 2 3 7 1
7 2 4 1 9 3 5 6 8
3 1 6 8 7 5 9 4 2

Sudoku
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AN EXAMPLE WHERE LOGIC PROGRAMMING SHINES:
CONSTRAINT SATISFACTION (2)

Prolog:

Elegant but (ridiculously) slow

sudoku(Rows) :-
transpose(Rows, Columns),
rows_blocks(Rows, Blocks),
append([Rows, Columns, Blocks], Sets),
maplist(permutation([1, 2, 3, 4, 5, 6, 7, 8, 9]), Sets).

rows_blocks([], []).
rows_blocks([R1,R2,R3|Rows], [B1,B2,B3|Blocks]) :-

rows3_blocks3([R1,R2,R3], [B1,B2,B3]).

rows3_blocks3([[R11,R12,R13|R1], [R21,R22,R23|R2], [R31,R32,R33|R3]],
[[R11,R12,R13,R21,R22,R23,R31,R32,R33|Bs]) :-

rows3_blocks3([R1,R2,R3], Bs).
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AN EXAMPLE WHERE LOGIC PROGRAMMING SHINES:
CONSTRAINT SATISFACTION (3)

Prolog: Elegant and fast

sudoku(Rows) :-
transpose(Rows, Columns),
append(Rows, Vs), Vs ins 1..9,
maplist(all_distinct, Rows),
maplist(all_distinct, Columns),
Rows = [As,Bs,Cs,Ds,Es,Fs,Gs,Hs,Is],
blocks(As,Bs,Cs), blocks(Ds,Es,Fs), blocks(Gs,Hs,Is),
label(Vs).

blocks([], [], []).
blocks([A1,A2,A3|As], [B1,B2,B3|Bs], [C1,C2,C3|Cs]) :-

all_distinct([A1,A2,A3,B1,B2,B3,C1,C2,C3]), blocks(As,Bs,Cs).

What’s different? This uses efficient constraint propagation.
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What’s different? This uses efficient constraint propagation.
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AN EXAMPLE WHERE LOGIC PROGRAMMING SHINES:
CONSTRAINT SATISFACTION (4)

Prolog:

• 12 LOC
• Instantaneous answer
• SWI Prolog

• Free, well maintained,
feature-rich, ISO compliant

• Much slower than SICSTUS
Prolog (commercial)

Python:

• SAT solver (250 LOC)
• Encode puzzle as CNF (100 LOC)
• Instantaneous answer
• Could get faster if

• Implemented in C++
• Using state-of-the-art SAT solver
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AN EXAMPLE WHERE LOGIC PROGRAMMING SHINES:
CONSTRAINT SATISFACTION (5)

0 1 0
1 0 1 1 1

0 1
1

0 0 1 1 1
0 1

1 1 1 1
1 1 1 0

1 1
0 0 0

1 1 0 0 1
0 0 0

1 1

1 0 0 1 1 0 1 1 0 1 0 0 1 0
1 1 0 0 1 1 0 0 1 0 1 1 0 0
0 1 1 0 0 1 0 1 1 0 0 1 0 1
0 0 1 1 0 0 1 0 0 1 1 0 1 1
1 0 0 1 1 0 0 1 1 0 1 0 1 0
0 1 1 0 0 1 0 0 1 1 0 1 0 1
0 1 0 1 0 0 1 1 0 0 1 1 0 1
1 0 1 0 1 1 0 0 1 1 0 0 1 0
1 0 1 1 0 0 1 1 0 0 1 1 0 0
0 1 0 0 1 0 1 1 0 0 1 1 0 1
1 1 0 0 1 1 0 0 1 1 0 0 1 0
0 0 1 1 0 1 0 0 1 1 0 0 1 1
1 0 0 1 1 0 1 1 0 0 1 1 0 0
0 1 1 0 0 1 1 0 0 1 0 0 1 1

Binary Puzzle

· No two identical rows/columns · #0s = #1s in each row/column
· No three consecutive 0s or 1s in any row or column 26/30



AN EXAMPLE WHERE LOGIC PROGRAMMING SHINES:
CONSTRAINT SATISFACTION (6)

binary(Rows) :-
append(Rows, Vs), Vs ins 0..1,
transpose(Rows, Columns),
maplist(no_triplets, Rows),
maplist(no_triplets, Columns),
maplist(zero_one_balance, Rows),
maplist(zero_one_balance, Columns),
phrase(pairs(Rows), Row_Pairs),
phrase(pairs(Columns), Column_Pairs),
maplist(not_same, Row_Pairs),
maplist(not_same, Column_Pairs),
label(Vs).

no_triplets(List) :-
length(List,L), L < 3.

no_triplets([A,B,C|List]) :-
A+B+C #> 0, A+B+C #< 3,
no_triplets([B,C|List]).

zero_one_balance(List) :-
length(List,L), Half is L // 2,
sum(List, #= Half).

not_same((List1,List2) :-
maplist(diff, List1, List2, Diffs),
sum(Diffs, #>, 0).

diff(A, B, Diff) :-
Diff #<==> A #\= B.

pairs([_]) --> [].
pairs([X|List]) -->

pairs_(X, List), pairs(List).

pairs_(_, []) --> [].
pairs_(X, [Y|List]) -->

[(X,Y)], pairs_(X,List).
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AN EXAMPLE WHERE LOGIC PROGRAMMING SHINES:
CONSTRAINT SATISFACTION (7)

Prolog:

• 31 LOC
• Around 7 secs to solve
• SWI Prolog

• Free, well maintained,
feature-rich, ISO compliant

• Much slower than SICSTUS
Prolog (commercial)

Python:

• SAT solver (250 LOC)
• Encode puzzle as CNF (150 LOC)
• Around 70 secs to solve
• Could get faster if

• Implemented in C++
• Using state-of-the-art SAT solver

28/30



EXPRESSIVENESS OF PROGRAMMING LANGUAGES

We want expressive programming languages that make programming easy:

• Concise
• Help to avoid common bugs
• Help to express exactly what we want

What do we want exactly?

Fine-grained control High-level abstractions

C++ Python, Ruby, Java, Scala Haskell Prolog

“Trust me, I know what I’m doing” Strict compile-time checks

Python, Ruby C++, Java Scala Haskell
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SUMMARY

Programming languages are the tools we use to express computations.

Different programming languages may be better for different jobs.

Be eager to explore new programming languages!

• Outside your comfort zone!
• It’s fun.
• It makes you a better programmer, even in your favourite language.
• Your favourite language may change.
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