
Faculty of Computer Science

Dalhousie University

Object-Orientation

Winter 2012

Reading: Chapter 9

CSCI 3136

Principles of Programming Languages



What is a Object-Oriented Programming?

Object-Orientation

CSCI 3136: Principles of Programming Languages

Elements of object-oriented programming:

• Data items to be manipulated are objects.

• Objects are members of classes, that is, classes are types.

• Objects store data in fields and behaviour in methods specified by their
classes.

Main characteristics of most object-oriented programming systems:

• Encapsulation by hiding internals of an object from the user of the object.

• Customization of behaviour through inheritance.

• Polymorphism through dynamic method binding.



Advantages of Object-Oriented Programming

It reduces conceptual load:

• It reduces the amount of detail the programmer must think about at the
same time.

It provides fault and change containment:

• It limits the portion of a program that needs to be looked at when
debugging.

• It limits the portion of a program that needs to be changed when changing
the behaviour of an object without changing its interface.

It provides independence of program components and thus facilitates code
reuse.

Object-Orientation

CSCI 3136: Principles of Programming Languages



Advantages of Object-Oriented Programming

It reduces conceptual load:

• It reduces the amount of detail the programmer must think about at the
same time.

It provides fault and change containment:

• It limits the portion of a program that needs to be looked at when
debugging.

• It limits the portion of a program that needs to be changed when changing
the behaviour of an object without changing its interface.

It provides independence of program components and thus facilitates code
reuse.

Note: Most of these are consequences of encapsulation and thus apply also to
programming using modules.

Object-Orientation

CSCI 3136: Principles of Programming Languages



Some Object-Oriented Languages

• SIMULA 67

• Smalltalk 72

• C++, 80s

• Modula-3, late 80s

• CLOS, 88

• Eiffel, 92

• Oberon, 90s (last version 95)

• Java, 95

• Ada 95

Object-Orientation

CSCI 3136: Principles of Programming Languages



Class Example in C++

void list_node::insert_before(list_node *new_node) {
if (!new_node->singleton())

throw new list_err("inserting more than a single node");
prev->next = new_node;
new_node->prev = prev;
new_node->next = this;
prev = new_node;
new_node->head_node = head_node;

}

class list_node {

list_node *prev, *next, *head;

public:

int val;

list_node();
~list_node();

list_node *predecessor();
list_node *successor();
bool singleton();
void insert_before(list_node *new_node);
void remove();

};

Header

Implementation

Object-Orientation

CSCI 3136: Principles of Programming Languages



Class Example in C++

void list_node::insert_before(list_node *new_node) {
if (!new_node->singleton())

throw new list_err("inserting more than a single node");
prev->next = new_node;
new_node->prev = prev;
new_node->next = this;
prev = new_node;
new_node->head_node = head_node;

}

class list_node {

list_node *prev, *next, *head;

public:

int val;

list_node();
~list_node();

list_node *predecessor();
list_node *successor();
bool singleton();
void insert_before(list_node *new_node);
void remove();

};

Header

Implementation

Private fields

Object-Orientation

CSCI 3136: Principles of Programming Languages



Class Example in C++

void list_node::insert_before(list_node *new_node) {
if (!new_node->singleton())

throw new list_err("inserting more than a single node");
prev->next = new_node;
new_node->prev = prev;
new_node->next = this;
prev = new_node;
new_node->head_node = head_node;

}

class list_node {

list_node *prev, *next, *head;

public:

int val;

list_node();
~list_node();

list_node *predecessor();
list_node *successor();
bool singleton();
void insert_before(list_node *new_node);
void remove();

};

Header

Implementation

Private fields

Public field

Object-Orientation

CSCI 3136: Principles of Programming Languages



Class Example in C++

void list_node::insert_before(list_node *new_node) {
if (!new_node->singleton())

throw new list_err("inserting more than a single node");
prev->next = new_node;
new_node->prev = prev;
new_node->next = this;
prev = new_node;
new_node->head_node = head_node;

}

class list_node {

list_node *prev, *next, *head;

public:

int val;

list_node();
~list_node();

list_node *predecessor();
list_node *successor();
bool singleton();
void insert_before(list_node *new_node);
void remove();

};

Header

Implementation

Private fields

Public field

Constructor

Object-Orientation

CSCI 3136: Principles of Programming Languages



Class Example in C++

void list_node::insert_before(list_node *new_node) {
if (!new_node->singleton())

throw new list_err("inserting more than a single node");
prev->next = new_node;
new_node->prev = prev;
new_node->next = this;
prev = new_node;
new_node->head_node = head_node;

}

class list_node {

list_node *prev, *next, *head;

public:

int val;

list_node();
~list_node();

list_node *predecessor();
list_node *successor();
bool singleton();
void insert_before(list_node *new_node);
void remove();

};

Header

Implementation

Private fields

Public field

Constructor
Destructor

Object-Orientation

CSCI 3136: Principles of Programming Languages



Class Example in C++

void list_node::insert_before(list_node *new_node) {
if (!new_node->singleton())

throw new list_err("inserting more than a single node");
prev->next = new_node;
new_node->prev = prev;
new_node->next = this;
prev = new_node;
new_node->head_node = head_node;

}

class list_node {

list_node *prev, *next, *head;

public:

int val;

list_node();
~list_node();

list_node *predecessor();
list_node *successor();
bool singleton();
void insert_before(list_node *new_node);
void remove();

};

Header

Implementation

Private fields

Public methods

Public field

Constructor
Destructor

Object-Orientation

CSCI 3136: Principles of Programming Languages



Class Example in C++

void list_node::insert_before(list_node *new_node) {
if (!new_node->singleton())

throw new list_err("inserting more than a single node");
prev->next = new_node;
new_node->prev = prev;
new_node->next = this;
prev = new_node;
new_node->head_node = head_node;

}

class list_node {

list_node *prev, *next, *head;

public:

int val;

list_node();
~list_node();

list_node *predecessor();
list_node *successor();
bool singleton();
void insert_before(list_node *new_node);
void remove();

};

Header

Implementation

Private fields

Public methods

Public field

Method definition outside class
needs to be qualified.

Constructor
Destructor

Object-Orientation

CSCI 3136: Principles of Programming Languages



Class Example in C++

void list_node::insert_before(list_node *new_node) {
if (!new_node->singleton())

throw new list_err("inserting more than a single node");
prev->next = new_node;
new_node->prev = prev;
new_node->next = this;
prev = new_node;
new_node->head_node = head_node;

}

class list_node {

list_node *prev, *next, *head;

public:

int val;

list_node();
~list_node();

list_node *predecessor();
list_node *successor();
bool singleton();
void insert_before(list_node *new_node);
void remove();

};

Header

Implementation

Private fields

Public methods

Public field

Method definition outside class
needs to be qualified.

Reference to current object

Constructor
Destructor

Object-Orientation

CSCI 3136: Principles of Programming Languages



Inheritance

Using inheritance we can define a new derived or child class based on an
existing parent class or superclass.

The derived class

• Inherits all fields and methods of the superclass,

• Can define additional fields and methods, and

• Can override existing fields and methods.

Purpose: Extend or specialize the behaviour of the superclass.

Object-Orientation

CSCI 3136: Principles of Programming Languages



Inheritance

Using inheritance we can define a new derived or child class based on an
existing parent class or superclass.

This allows us to define a class hierarchy.

• If only single inheritance is allowed, the hierarchy is a tree.

• If multiple inheritance is allowed, the hierarchy is a lattice.

The derived class

• Inherits all fields and methods of the superclass,

• Can define additional fields and methods, and

• Can override existing fields and methods.

Purpose: Extend or specialize the behaviour of the superclass.

Object-Orientation

CSCI 3136: Principles of Programming Languages



Syntax of Inheritance

C++

class push_button : public widget { ... }

Java

public class push_button extends widget { ... }

Ada

type push_button is new widget with ...

Object-Orientation

CSCI 3136: Principles of Programming Languages



Syntax of Inheritance

C++

class push_button : public widget { ... }

Java

public class push_button extends widget { ... }

Ada

type push_button is new widget with ...

Bad example in the textbook (C++)

class queue : public list { ... }

Why is this a bad example?

Object-Orientation

CSCI 3136: Principles of Programming Languages



Overriding Methods of a Base Class

To replace a method of a base class, redefine it in the derived class:

class widget {
...
void paint();
...

};

class push_button : public widget {
...
void paint();
...

};

Object-Orientation

CSCI 3136: Principles of Programming Languages



Overriding Methods of a Base Class

To replace a method of a base class, redefine it in the derived class:

class widget {
...
void paint();
...

};

class push_button : public widget {
...
void paint();
...

};

Methods of the base class are still accessible in the derived class:

• Using scope resolution (::) in C++
• Using the super keyword in Java or Smalltalk

• Using explicit renaming in Eiffel

Object-Orientation

CSCI 3136: Principles of Programming Languages



Syntax of Accessing Members of the Base Class

C++: widget::paint()
Java: super.paint()
C#: base.paint()
Smalltalk: super paint.
Objective C: [super paint]
Eiffel: class queue inherit list

rename remove as old_remove

Object-Orientation

CSCI 3136: Principles of Programming Languages



Encapsulation

Using modules:

• Define an opaque module type, a type whose definition is not exported by
the module.

• Export subroutines to manipulate objects of the type. The implementation
of these subroutines is not visible to the module’s user.

Using classes:

• Public methods are accessible to the class’s user, private methods are not.

• Private methods are accessible to other objects of the same class.

• Effective use of inheritance requires more fine-grained control over
visibility of methods than sufficient when using modules.

Object-Orientation

CSCI 3136: Principles of Programming Languages



Visibility in C++

Three visibility levels:

• Private methods/fields are visible to members of objects of the same class
and to friends.

• Protected methods/fields are visible to members of objects of the same
class or derived classes and to friends.

• Public methods/fields are visible to the whole world.

Object-Orientation

CSCI 3136: Principles of Programming Languages



Visibility in C++

Three visibility levels:

• Private methods/fields are visible to members of objects of the same class
and to friends.

• Protected methods/fields are visible to members of objects of the same
class or derived classes and to friends.

• Public methods/fields are visible to the whole world.

Friends:

• A class can declare other classes and functions to be its friends, thereby
providing them with access to its private and protected members.

class X {
int a;
friend void f(int);
friend class Y;

};
Object-Orientation

CSCI 3136: Principles of Programming Languages



Altering Visibility in Derived Classes

Object-Orientation

CSCI 3136: Principles of Programming Languages

Derived classes can restrict (but not increase) the visibility of its base class’s
members in objects of the derived class.

class A : public B { ... }

• All methods have the same visibility in the derived class as in the base class.

class A : protected B { ... }

• Public and protected members of the base class become protected in the
derived class. Private members remain private.

class A : private B { ... }

• All members of the base class become private in the derived class.



Altering Visibility of Individual Members

class A {
public:

void a();
void b();

private:
void c();

};

class B : private A {
public:

using A::a();
using A::c();

};

Object-Orientation

CSCI 3136: Principles of Programming Languages



Altering Visibility of Individual Members

class A {
public:

void a();
void b();

private:
void c();

};

class B : private A {
public:

using A::a();
using A::c();

};

• a() is public in B.

• b() is private in B.

• The second using statement is illegal because it would increase the
visibility of a private member of A.

Object-Orientation

CSCI 3136: Principles of Programming Languages



Visibility Rules in Other Languages

Eiffel

• Derived classes can both restrict and increase the visibility of members of
base classes.

Java

• Similar to C++, with the following exceptions.

• Base classes are always public.

• Protected members are visible in derived classes and in the same package.

• No notion of friends.

Python

• All class members are public.

Smalltalk, Objective C

• All methods are public.

• All fields are private.

Object-Orientation

CSCI 3136: Principles of Programming Languages



Constructors

Object-Orientation

CSCI 3136: Principles of Programming Languages

A constructor does not allocate the
space for an object; it initializes
(“constructs”) the object in the
allocated space.

Execution order of constructors:

• Constructor(s) of base class(es).

• Constructors of class members.

• Constructor of the class itself.

class A {
public:

A() { cout << "A"; }
};

class B {
public:

B() { cout << "B"; }
}

class C : A {
B b;

public:
C() { cout << "C"; }

};

int main() {
C c;

}

This prints "ABC".



Constructor and Method Overloading (1)

class A {
...

public:
A() { ... } // Constructor 1
A(int x) { ... } // Constructor 2

void f(float x) { ... } // Method 1
void f(int x) { ... } // Method 2
void f(int x) const { ... } // Method 3

};

int main() {
A x; // Calls constructor 1
const A y(5); // Calls constructor 2

x.f(3.4); // Calls method 1
x.f(3); // Calls method 2
y.f(3); // Calls method 3
y.f(4.5); // Error: non-const method applied to const object

}

Object-Orientation

CSCI 3136: Principles of Programming Languages



Constructor and Method Overloading (2)

class A {
...

public:
A() { ... }

void f(int x) { ... } // Method 1
void f(int &x) { ... } // Method 2

};

int main() {
A x;
int y = 3;

x.f(y); // Error: cannot decide which method to call
}

Object-Orientation

CSCI 3136: Principles of Programming Languages



Copy Constructors and Assignment

class A {
int x;

public:
A() : x(0) { cout << "C1"; }
A(const A& a) : x(a.x) { cout << "C2"; }
const A& operator =(const A& a) { x = a.x; cout << "A"; }

};

int main() {
A u; // Prints "C1"
A v(u); // Prints "C2"
A w = u; // Prints "C2"
A x; // Prints "C1"
x = u; // Prints "A"

}

Object-Orientation

CSCI 3136: Principles of Programming Languages



Copy Constructors and Assignment

class A {
int x;

public:
A() : x(0) { cout << "C1"; }
A(const A& a) : x(a.x) { cout << "C2"; }
const A& operator =(const A& a) { x = a.x; cout << "A"; }

};

int main() {
A u; // Prints "C1"
A v(u); // Prints "C2"
A w = u; // Prints "C2"
A x; // Prints "C1"
x = u; // Prints "A"

}

A similar analysis applies to

class A {
int x;

public:
A() : x(1) {}

};

vs

class A {
int x;

public:
A() { x = 1; }

};

Object-Orientation

CSCI 3136: Principles of Programming Languages



Static vs Dynamic Method Binding (1)
class person {
public:

void print_mailing_label();
};

class student : public person {
public:

void print_mailing_label();
};

class professor : public person {
public:

void print_mailing_label();
};

int main() {
student s;
professor p;
person *x = &s, *y = &p;

// professor::print_mailing_label
p.print_mailing_label();
// student::print_mailing_label
s.print_mailing_label();
// ???
x->print_mailing_label();
y->print_mailing_label();

}

In languages with a reference model of
variables or when using pointers in
C++, we can use an object of a
derived class where an object of the
base class is expected.

When accessing an object of the
derived class through a variable whose
type is the base class, which method
should we call?

Assume the derived class overrides a
method of the base class.

Object-Orientation

CSCI 3136: Principles of Programming Languages



Static vs Dynamic Method Binding (2)

Static method binding:

• The method invoked is determined by the type of the variable through
which the object is accessed.

• Languages with static method binding: Simula, C++, Ada 95

Dynamic method binding:

• The method invoked is determined by the type of the accessed object.

• Languages with dynamic method binding: Smalltalk, Modula 3, Java, Eiffel

Which is more efficient: static or dynamic method binding?

Which is more natural?

Object-Orientation

CSCI 3136: Principles of Programming Languages



Static and Dynamic Method Binding in C++

class A {
public:

void f();
virtual void g();

};

class B : public A {
public:

void f();
void g();

};

int main() {
B b;
A *a = &b;

b.f(); // B::f
b.g(); // B::g
a->f(); // A::f
a->g(); // B::g

}

Given C++’s focus on efficiency, its
default is static method binding.

Dynamic method binding is available
by declaring the method to be virtual.

Object-Orientation

CSCI 3136: Principles of Programming Languages



Abstract Classes

An abstract method is a method that is required to be defined only in derived
classes.

C++

class person {
...
virtual void print_mailing_label() = 0;
...

};

Java

class person {
...
abstract void print_mailing_label();
...

};

An abstract class has at least one abstract method and thus cannot be
instantiated.

If all methods are abstract, then all the class does is define an interface.

Object-Orientation

CSCI 3136: Principles of Programming Languages



Implementation of Virtual Methods

The virtual method table or vtable is an array of addresses of the virtual
methods of the object.

Overhead: Two extra memory accesses.

class A {
int a;
double b;
char c;

public:
virtual void f();
int g();
virtual int h();
double k();

};

a
b

c

f:
h:

A’s vtableobject of class A

Object-Orientation

CSCI 3136: Principles of Programming Languages



Implementation of Single Inheritance

Record of derived class

• Append extra data
members to the record
of the base class.

• Provides trivial access
to these members
through pointers
whose type is the base
class.

Vtable of derived class

• Copy vtable of base class.

• Replace entries of overridden
virtual methods.

• Append entries of virtual methods
declared in derived class.

class A {
int a;
double b;
char c;

public:
virtual void f();
int g();
virtual int h();
double k();

};

class B : public A {
int d;

public:
void f();
virtual double l();
virtual double *m();

};

a
b

c

f:
h:

B’s vtableobject of class B

d

l:
m:

B::f

B::l
A::h

B::m

Object-Orientation

CSCI 3136: Principles of Programming Languages



Inheritance and Type Checks

class A { ... };
class B : public A { ... };

A a;
B b;
A *x;
B *y;

x = &b; // ok; references through q will use prefixes of b’s
// data space and vtable

y = &a; // static semantic error; a lacks the additional data and vtable
// entries of an object of class B

y = x; // error, but q actually does point to an instance of B

Object-Orientation

CSCI 3136: Principles of Programming Languages



Inheritance and Type Checks

class A { ... };
class B : public A { ... };

A a;
B b;
A *x;
B *y;

x = &b; // ok; references through q will use prefixes of b’s
// data space and vtable

y = &a; // static semantic error; a lacks the additional data and vtable
// entries of an object of class B

y = x; // error, but q actually does point to an instance of B

Is there a way to resolve the second error? It is not actually an error, but as it
is, the compiler cannot tell.

Object-Orientation

CSCI 3136: Principles of Programming Languages



Dynamic Cast

C++

• y = dynamic_cast<B*>(x);
• Permits the assignment if x points to an object of class B or a derived class.

Returns a null pointer otherwise.

Object-Orientation

CSCI 3136: Principles of Programming Languages



Dynamic Cast

C++

• y = dynamic_cast<B*>(x);
• Permits the assignment if x points to an object of class B or a derived class.

Returns a null pointer otherwise.

Java

• Same semantics but with C-style cast syntax:

y = (B) x;

Object-Orientation

CSCI 3136: Principles of Programming Languages



Dynamic Cast

C++

• y = dynamic_cast<B*>(x);
• Permits the assignment if x points to an object of class B or a derived class.

Returns a null pointer otherwise.

Java

• Same semantics but with C-style cast syntax:

y = (B) x;

Implementation: Include in each vtable the address of a run-time type
descriptor.

Object-Orientation

CSCI 3136: Principles of Programming Languages



Dynamic Cast

C++

• y = dynamic_cast<B*>(x);
• Permits the assignment if x points to an object of class B or a derived class.

Returns a null pointer otherwise.

Java

• Same semantics but with C-style cast syntax:

y = (B) x;

Implementation: Include in each vtable the address of a run-time type
descriptor.

Note: C++ also supports C-style casts without type checks. This is more
efficient but less safe.

Object-Orientation

CSCI 3136: Principles of Programming Languages



Type Casting in C++

dynamic_cast<T*> p

• Converts to type T* if the object pointed to by p is of class T or of a derived
class. Returns a null pointer otherwise.

• Possible only for classes derived from polymorphic base classes and only
when run-time type information (RTTI) is enabled.

static_cast<T*> p and reinterpret_cast<T*> p

• Perform conversions between unrelated types.

• static_cast performs some minimal type checking, while
reinterpret_cast makes a bit-for-bit copy.

const_cast<T*> p

• Does not perform any type conversion other than removing the const-ness
of a pointer.

Object-Orientation

CSCI 3136: Principles of Programming Languages



Multiple Inheritance

Multiple inheritance allows a derived class to have multiple baseclasses:

class A : public B, public C { ... }

Implementation issues

• How to access objects of A through a baseclass pointer.

• How to allow overriding of methods of different base classes.

• . . .

Semantic issues

• If a method m is defined in more than one base class, which method is
invoked by a.m(), where a is of class A?

• If B and C are derived classes of a common base class D, does A have two or
only one copy of each data member of D?

• . . .

Object-Orientation

CSCI 3136: Principles of Programming Languages


