REGULAR LANGUAGES, FINITE AUTOMATA, AND
 LEXICAL ANALYSIS
 PRINCIPLES OF PROGRAMMING LANGUAGES

Norbert Zeh
Winter 2018
Dalhousie University

PROGRAM TRANSLATION FLOW CHART

LEXICAL ANALYSIS

Goal

Transform input text into much more compact token stream (keywords, parentheses, operators, identifiers, ...).

LEXICAL ANALYSIS

Goal

Transform input text into much more compact token stream (keywords, parentheses, operators, identifiers, ...).

class DictEntry $\{$ int Key $;$ float value They $\}$ $/ /$ The associated value $;$

LEXICAL ANALYSIS

Goal

Transform input text into much more compact token stream (keywords, parentheses, operators, identifiers, ...).

$$
\begin{aligned}
& \text { kwClass identifier ‘\{' } \\
& \text { identifier identifier ‘;' } \\
& \text { identifier identifier ';' } \\
& \text { '\}' ';' }
\end{aligned}
$$

LEXICAL ANALYSIS

Goal

Transform input text into much more compact token stream (keywords, parentheses, operators, identifiers, ...).

$$
\begin{aligned}
& \text { kwClass identifier ‘\{' } \\
& \text { identifier identifier ‘;' } \\
& \text { identifier identifier ‘;' } \\
& \text { '\}' ‘;' }
\end{aligned}
$$

Tools

- Regular expressions
- Finite automata: Very simple and efficient machines just powerful enough to carry out lexical analysis

ROAD MAP

- Regular languages
- Regular expressions
- Deterministic finite automata (DFA)
- Non-deterministic finite automata (NFA)
- Expressive power of DFA and NFA
- Equivalence of regular expressions, DFA, and NFA
- Building a scanner
- Regular expression \rightarrow NFA \rightarrow DFA
- Minimizing the DFA
- Limitations of regular languages

ROAD MAP

- Regular languages

```
Regular expressions
Deterministic finite automata (DFA)
Non-deterministic finite automata (NIFA)
- Expressive power of DFA and NFA
Equivalence of megular expressions, DFA, and NFA
- Building a scanner
- Rooularaxnrocsinn NFA -DFA
Minimizing the DFA
```

- Limitations of regular languages

REGULAR LANGUAGES

Definition: Regular Language

REGULAR LANGUAGES

Definition: Regular Language
Base cases:

REGULAR LANGUAGES

Definition: Regular Language
Base cases: \emptyset, are regular languages

REGULAR LANGUAGES

Definition: Regular Language
Base cases: $\emptyset,\{\epsilon\}$, are regular languages

REGULAR LANGUAGES

Definition: Regular Language
Base cases: $\emptyset,\{\epsilon\}$, and $\{a\}$ are regular languages, where $a \in \Sigma$.

REGULAR LANGUAGES

Definition: Regular Language
Base cases: $\emptyset,\{\epsilon\}$, and $\{a\}$ are regular languages, where $a \in \Sigma$.
Induction: If A and B are regular languages, then

REGULAR LANGUAGES

Definition: Regular Language
Base cases: $\emptyset,\{\epsilon\}$, and $\{a\}$ are regular languages, where $a \in \Sigma$.
Induction: If A and B are regular languages, then

- $A \cup B$ is a regular language,

REGULAR LANGUAGES

Definition: Regular Language
Base cases: $\emptyset,\{\epsilon\}$, and $\{a\}$ are regular languages, where $a \in \Sigma$.
Induction: If A and B are regular languages, then

- $A \cup B$ is a regular language,
- $A B=\{a b \mid a \in A, b \in B\}$ is a regular language, ($a b$ is the concatenation of a and b)

REGULAR LANGUAGES

Definition: Regular Language

Base cases: $\emptyset,\{\epsilon\}$, and $\{a\}$ are regular languages, where $a \in \Sigma$.
Induction: If A and B are regular languages, then

- $A \cup B$ is a regular language,
- $A B=\{a b \mid a \in A, b \in B\}$ is a regular language, ($a b$ is the concatenation of a and b)
- $A^{*}=A^{0} \cup A^{1} \cup A^{2} \cup \cdots$ is a regular language:
- $A^{0}=\{\epsilon\}$
- $A^{i}=\left\{\sigma_{1} \sigma_{2} \mid \sigma_{1} \in A^{i-1}, \sigma_{2} \in A\right\}$

REGULAR LANGUAGES

Definition: Regular Language

Base cases: $\emptyset,\{\epsilon\}$, and $\{a\}$ are regular languages, where $a \in \Sigma$.
Induction: If A and B are regular languages, then

- $A \cup B$ is a regular language,
- $A B=\{a b \mid a \in A, b \in B\}$ is a regular language, ($a b$ is the concatenation of a and b)
- $A^{*}=A^{0} \cup A^{1} \cup A^{2} \cup \cdots$ is a regular language:
- $A^{0}=\{\epsilon\}$
- $A^{i}=\left\{\sigma_{1} \sigma_{2} \mid \sigma_{1} \in A^{i-1}, \sigma_{2} \in A\right\}$

This is the only way to produce infinite regular languages!

EXAMPLES OF REGULAR LANGUAGES

EXAMPLES OF REGULAR LANGUAGES

- $\{a, b, a b\}$

EXAMPLES OF REGULAR LANGUAGES

- $\{a, b, a b\}$
- Any finite language!

EXAMPLES OF REGULAR LANGUAGES

- $\{a, b, a b\}$
- Any finite language!
- $\{0\}^{*}$

EXAMPLES OF REGULAR LANGUAGES

- $\{a, b, a b\}$
- Any finite language!
- $\{0\}^{*}$
- $\{0,1\}^{*}$

EXAMPLES OF REGULAR LANGUAGES

- $\{a, b, a b\}$
- Any finite language!
- \{0\}*
- $\{0,1\}^{*}$
- $\{a, b, c\}^{*}$

EXAMPLES OF REGULAR LANGUAGES

- $\{a, b, a b\}$
- Any finite language!
- \{0\}*
- $\{0,1\}^{*}$
- $\{a, b, c\}^{*}$
- $\left\{01^{n} 0 \mid n \geq 0\right\}$

EXAMPLES OF REGULAR LANGUAGES

- $\{a, b, a b\}$
- Any finite language!
- $\{0\}^{*}$
- $\{0,1\}^{*}$
- $\{a, b, c\}^{*}$
- $\left\{01^{n} 0 \mid n \geq 0\right\}$
- Set of all positive integers in decimal representation

EXAMPLES OF REGULAR LANGUAGES

- $\{a, b, a b\}$
- Any finite language!
- $\{0\}^{*}$
- $\{0,1\}^{*}$
- $\{a, b, c\}^{*}$
- $\left\{01^{n} 0 \mid n \geq 0\right\}$
- Set of all positive integers in decimal representation
- $\left\{0^{m} 1^{n} \mid m \geq 0, n \geq 0\right\}$

EXAMPLES OF REGULAR LANGUAGES

- $\{a, b, a b\}$
- Any finite language!
- $\{0\}^{*}$
- $\{0,1\}^{*}$
- $\{a, b, c\}^{*}$
- $\left\{01^{n} 0 \mid n \geq 0\right\}$
- Set of all positive integers in decimal representation
- $\left\{0^{m} 1^{n} \mid m \geq 0, n \geq 0\right\}$
- $\left\{a^{k} b^{m} c^{n} \mid k \geq 0, m \geq 0, n \geq 0\right\}$

EXAMPLES OF REGULAR LANGUAGES

- $\{a, b, a b\}$
- Any finite language!
- \{0\}*
- $\{0,1\}^{*}$
- $\{a, b, c\}^{*}$
- $\left\{01^{n} 0 \mid n \geq 0\right\}$
- Set of all positive integers in decimal representation
- $\left\{0^{m} 1^{n} \mid m \geq 0, n \geq 0\right\}$
- $\left\{a^{k} b^{m} c^{n} \mid k \geq 0, m \geq 0, n \geq 0\right\}$
- $\left\{\left(\left(^{n}\right)^{n} \mid n \geq 0\right\}\right.$

EXAMPLES OF REGULAR LANGUAGES

- $\{a, b, a b\}$
- Any finite language!
- \{0\}*
- $\{0,1\}^{*}$
- $\{a, b, c\}^{*}$
- $\left\{01^{n} 0 \mid n \geq 0\right\}$
- Set of all positive integers in decimal representation
- $\left\{0^{m} 1^{n} \mid m \geq 0, n \geq 0\right\}$
- $\left\{a^{k} b^{m} c^{n} \mid k \geq 0, m \geq 0, n \geq 0\right\}$
- $\left.f\left({ }^{n}\right)^{n} \mid n \geq 0\right\}$

EXAMPLES OF REGULAR LANGUAGES

- $\{a, b, a b\}$
- Any finite language!
- \{0\}*
- $\{0,1\}^{*}$
- $\{a, b, c\}^{*}$
- $\left\{01^{n} 0 \mid n \geq 0\right\}$
- Set of all positive integers in decimal representation
- $\left\{0^{m} 1^{n} \mid m \geq 0, n \geq 0\right\}$
- $\left\{a^{k} b^{m} c^{n} \mid k \geq 0, m \geq 0, n \geq 0\right\}$
- $\left.f\left({ }^{n}\right)^{n} \mid n \geq 0\right\}$
- $\left\{a^{p} \mid p\right.$ is a prime number $\}$

EXAMPLES OF REGULAR LANGUAGES

- $\{a, b, a b\}$
- Any finite language!
- \{0\}*
- $\{0,1\}^{*}$
- $\{a, b, c\}^{*}$
- $\left\{01^{n} 0 \mid n \geq 0\right\}$
- Set of all positive integers in decimal representation
- $\left\{0^{m} 1^{n} \mid m \geq 0, n \geq 0\right\}$
- $\left\{a^{k} b^{m} c^{n} \mid k \geq 0, m \geq 0, n \geq 0\right\}$
- $\left.f\left(f^{n}\right)^{n} \mid n \geq 0\right\}$
- $\left\{a^{p} \mid\right.$ pis aprime number

EXAMPLES OF REGULAR LANGUAGES

- $\{a, b, a b\}$
- Any finite language!
- \{0\}*
- $\{0,1\}^{*}$
- $\{a, b, c\}^{*}$
- $\left\{01^{n} 0 \mid n \geq 0\right\}$
- Set of all positive integers in decimal representation
- $\left\{0^{m} 1^{n} \mid m \geq 0, n \geq 0\right\}$
- $\left\{a^{k} b^{m} c^{n} \mid k \geq 0, m \geq 0, n \geq 0\right\}$
- $\left.f\left(f^{n}\right)^{n} \mid n \geq 0\right\}$
- $a^{p} \mid$ pis a prime number
- All syntactically correct C programs

EXAMPLES OF REGULAR LANGUAGES

- $\{a, b, a b\}$
- Any finite language!
- \{0\}*
- $\{0,1\}^{*}$
- $\{a, b, c\}^{*}$
- $\left\{01^{n} 0 \mid n \geq 0\right\}$
- Set of all positive integers in decimal representation
- $\left\{0^{m} 1^{n} \mid m \geq 0, n \geq 0\right\}$
- $\left\{a^{k} b^{m} c^{n} \mid k \geq 0, m \geq 0, n \geq 0\right\}$
- $\left.f\left({ }^{n}\right)^{n} \mid n \geq 0\right\}$
- $\left\{a^{p} \mid\right.$ pis a prime number $\}$
- All syntactically correct C programs
- Regular languages

```
Regular expressions
Deterministic finite automata (DFA)
Non-deterministic finite automata (NIFA)
- Expressive power of DFA and NFA
Equivalence of megular expressions, DFA, and NFA
- Building a scanner
- Røoular axnroscinn NFA -DFA
Minimizing the DFA
```

- Limitations of regular languages

ROAD MAP

- Regular languages
- Regular expressions

Deterministic finite automata (DFA)
Non-deterministic finite automata (NFA)
Expressive power of DFA and NFA
Equivalence of regular expressions, DFA, and NFA

Building a scanner
Reoular axnrossinr \rightarrow NFA \rightarrow DFA
Minimizing the DFA

- Limitations of regular languages

REGULAR EXPRESSIONS

... are a notation for specifying regular languages.

REGULAR EXPRESSIONS

... are a notation for specifying regular languages.
Definition: Regular expression

REGULAR EXPRESSIONS

... are a notation for specifying regular languages.
Definition: Regular expression
Base cases: \emptyset, ϵ, and a are regular expressions, where $a \in \Sigma$.

REGULAR EXPRESSIONS

... are a notation for specifying regular languages.

Definition: Regular expression

Base cases: \emptyset, ϵ, and a are regular expressions, where $a \in \Sigma$.
Induction: If A and B are regular expressions, then

REGULAR EXPRESSIONS

... are a notation for specifying regular languages.

Definition: Regular expression

Base cases: \emptyset, ϵ, and a are regular expressions, where $a \in \Sigma$.
Induction: If A and B are regular expressions, then

- $A \mid B$ is a regular expression,

REGULAR EXPRESSIONS

... are a notation for specifying regular languages.

Definition: Regular expression

Base cases: \emptyset, ϵ, and a are regular expressions, where $a \in \Sigma$.
Induction: If A and B are regular expressions, then

- $A \mid B$ is a regular expression,
- $A B$ is a regular expression,

REGULAR EXPRESSIONS

... are a notation for specifying regular languages.

Definition: Regular expression

Base cases: \emptyset, ϵ, and a are regular expressions, where $a \in \Sigma$.
Induction: If A and B are regular expressions, then

- $A \mid B$ is a regular expression,
- $A B$ is a regular expression,
- (A) is a regular expression,

REGULAR EXPRESSIONS

... are a notation for specifying regular languages.

Definition: Regular expression

Base cases: \emptyset, ϵ, and a are regular expressions, where $a \in \Sigma$.
Induction: If A and B are regular expressions, then

- $A \mid B$ is a regular expression,
- $A B$ is a regular expression,
- (A) is a regular expression,
- A* is a regular expression.

REGULAR EXPRESSIONS

... are a notation for specifying regular languages.

Definition: Regular expression

Base cases: \emptyset, ϵ, and a are regular expressions, where $a \in \Sigma$.
Induction: If A and B are regular expressions, then

- $A \mid B$ is a regular expression,
- $A B$ is a regular expression,
- (A) is a regular expression,
- A* is a regular expression.

Interpretation:

- Precedence: Kleene star (*), Concatenation, Union (I)
- Parentheses indicate grouping

REGULAR EXPRESSIONS MODEL REGULAR LANGUAGES

Every regular expression R defines a corresponding regular language $\mathcal{L}(R)$:

REGULAR EXPRESSIONS MODEL REGULAR LANGUAGES

Every regular expression R defines a corresponding regular language $\mathcal{L}(R)$:

$$
R=\emptyset \quad \Longrightarrow \quad \mathcal{L}(R)=\emptyset
$$

REGULAR EXPRESSIONS MODEL REGULAR LANGUAGES

Every regular expression R defines a corresponding regular language $\mathcal{L}(R)$:

$$
\begin{array}{lll}
R=\emptyset & \Longrightarrow & \mathcal{L}(R)=\emptyset \\
R=\epsilon & \Longrightarrow & \mathcal{L}(R)=\{\epsilon\}
\end{array}
$$

REGULAR EXPRESSIONS MODEL REGULAR LANGUAGES

Every regular expression R defines a corresponding regular language $\mathcal{L}(R)$:

$$
\begin{array}{lll}
R=\emptyset & \Longrightarrow & \mathcal{L}(R)=\emptyset \\
R=\epsilon & \Longrightarrow & \mathcal{L}(R)=\{\epsilon\} \\
R=\mathrm{a} & \Longrightarrow & \mathcal{L}(R)=\{\mathrm{a}\}
\end{array}
$$

REGULAR EXPRESSIONS MODEL REGULAR LANGUAGES

Every regular expression R defines a corresponding regular language $\mathcal{L}(R)$:

$$
\begin{array}{lll}
R=\emptyset & \Longrightarrow & \mathcal{L}(R)=\emptyset \\
R=\epsilon & \Longrightarrow & \mathcal{L}(R)=\{\epsilon\} \\
R=\mathrm{a} & \Longrightarrow & \mathcal{L}(R)=\{\mathrm{a}\} \\
R=A \mid B & \Longrightarrow & \mathcal{L}(R)=\mathcal{L}(A) \cup \mathcal{L}(B)
\end{array}
$$

REGULAR EXPRESSIONS MODEL REGULAR LANGUAGES

Every regular expression R defines a corresponding regular language $\mathcal{L}(R)$:

$$
\begin{array}{lll}
R=\emptyset & \Longrightarrow & \mathcal{L}(R)=\emptyset \\
R=\epsilon & \Longrightarrow & \mathcal{L}(R)=\{\epsilon\} \\
R=a & \Longrightarrow & \mathcal{L}(R)=\{a\} \\
R=A \mid B & \Longrightarrow & \mathcal{L}(R)=\mathcal{L}(A) \cup \mathcal{L}(B) \\
R=A B & \Longrightarrow & \mathcal{L}(R)=\mathcal{L}(A) \mathcal{L}(B)
\end{array}
$$

REGULAR EXPRESSIONS MODEL REGULAR LANGUAGES

Every regular expression R defines a corresponding regular language $\mathcal{L}(R)$:

$$
\begin{array}{lll}
R=\emptyset & \Longrightarrow & \mathcal{L}(R)=\emptyset \\
R=\epsilon & \Longrightarrow & \mathcal{L}(R)=\{\epsilon\} \\
R=a & \Longrightarrow & \mathcal{L}(R)=\{a\} \\
R=A \mid B & & \mathcal{L}(R)=\mathcal{L}(A) \cup \mathcal{L}(B) \\
R=A B & & \mathcal{L}(R)=\mathcal{L}(A) \mathcal{L}(B) \\
R=(A) & \Longrightarrow & \mathcal{L}(R)=\mathcal{L}(A)
\end{array}
$$

REGULAR EXPRESSIONS MODEL REGULAR LANGUAGES

Every regular expression R defines a corresponding regular language $\mathcal{L}(R)$:

$$
\begin{array}{lll}
R=\emptyset & & \mathcal{L}(R)=\emptyset \\
R=\epsilon & \Longrightarrow & \mathcal{L}(R)=\{\epsilon\} \\
R=\mathrm{a} & \Longrightarrow & \mathcal{L}(R)=\{\mathrm{a}\} \\
R=A \mid B & \Longrightarrow & \mathcal{L}(R)=\mathcal{L}(A) \cup \mathcal{L}(B) \\
R=A B & & \mathcal{L}(R)=\mathcal{L}(A) \mathcal{L}(B) \\
R=(A) & \Longrightarrow & \mathcal{L}(R)=\mathcal{L}(A) \\
R=A * & & \mathcal{L}(R)=\mathcal{L}(A)^{*}
\end{array}
$$

EXAMPLES OF REGULAR EXPRESSIONS

(0|1)*

EXAMPLES OF REGULAR EXPRESSIONS

(0|1)* all binary strings

EXAMPLES OF REGULAR EXPRESSIONS

$(0 \mid 1) * \quad$ all binary strings
$(0 \mid 1) * 0$

EXAMPLES OF REGULAR EXPRESSIONS

$\begin{array}{ll}(0 \mid 1) * & \text { all binary strings } \\ (0 \mid 1) * 0 \quad \text { all binary strings that end in } 0\end{array}$

EXAMPLES OF REGULAR EXPRESSIONS

```
(0|1)* all binary strings
(0|1)*0 all binary strings that end in 0
(0|1)00*
```


EXAMPLES OF REGULAR EXPRESSIONS

$\begin{array}{ll}(0 \mid 1) * & \text { all binary strings } \\ (0 \mid 1) * 0 & \text { all binary strings that end in } 0 \\ (0 \mid 1) 00 * & \text { all binary strings that start with } 0 \text { or } 1, \text { followed by one or more } 0 \text { s }\end{array}$

EXAMPLES OF REGULAR EXPRESSIONS

$\begin{array}{ll}(0 \mid 1) * & \text { all binary strings } \\ (0 \mid 1) * 0 & \text { all binary strings that end in } 0 \\ (0 \mid 1) 00 * & \text { all binary strings that start with } 0 \text { or } 1, \text { followed by one or more } 0 \text { s } \\ 0 \mid 1(0 \mid 1) * & \end{array}$

EXAMPLES OF REGULAR EXPRESSIONS

$\begin{array}{ll}(0 \mid 1) * & \text { all binary strings } \\ (0 \mid 1) * 0 & \text { all binary strings that end in } 0 \\ (0 \mid 1) 00 * & \text { all binary strings that start with } 0 \text { or } 1, \text { followed by one or more } 0 \text { s } \\ 0 \mid 1(0 \mid 1) * & \text { all binary numbers without leading } 0 s\end{array}$

EXAMPLES OF REGULAR EXPRESSIONS

$(0 \mid 1) *$	all binary strings
$(0 \mid 1) * 0$	all binary strings that end in 0
$(0 \mid 1) 00 *$	all binary strings that start with 0 or 1, followed by one or more 0 s
$0 \mid 1(0 \mid 1) *$	all binary numbers without leading 0 s

What regular expression describes the set \mathcal{L} of binary strings that do not contain 101 as a substring?

- $1001001110 \in \mathcal{L}$
- $00010010100 \notin \mathcal{L}$

EXAMPLES OF REGULAR EXPRESSIONS

$(0 \mid 1) *$	all binary strings
$(0 \mid 1) * 0$	all binary strings that end in 0
$(0 \mid 1) 00 *$	all binary strings that start with 0 or 1, followed by one or more 0 s
$0 \mid 1(0 \mid 1) *$	all binary numbers without leading 0 s

What regular expression describes the set \mathcal{L} of binary strings that do not contain 101 as a substring?

- $1001001110 \in \mathcal{L}$
- $00010010100 \notin \mathcal{L}$

$$
(0 \mid \epsilon)(1 \mid 000 *) *(0 \mid \epsilon)
$$

REGULAR EXPRESSIONS IN PRACTICE (1)

No e or $\emptyset:$

REGULAR EXPRESSIONS IN PRACTICE (1)

No \in or $\emptyset:$

- The empty string is represented as the empty string: $a(b \mid)$ instead of $a(b \mid \epsilon)$ to express the language $\{\mathrm{a}, \mathrm{ab}\}$.

REGULAR EXPRESSIONS IN PRACTICE (1)

No \in or $\emptyset:$

- The empty string is represented as the empty string: $a(b \mid)$ instead of $a(b \mid \epsilon)$ to express the language $\{\mathrm{a}, \mathrm{ab}\}$.
- The empty language is not very useful in practice.

REGULAR EXPRESSIONS IN PRACTICE (1)

No \in or $\emptyset:$

- The empty string is represented as the empty string: $a(b \mid)$ instead of $a(b \mid \epsilon)$ to express the language $\{\mathrm{a}, \mathrm{ab}\}$.
- The empty language is not very useful in practice.

Additional repetition constructs:

REGULAR EXPRESSIONS IN PRACTICE (1)

No \in or $\emptyset:$

- The empty string is represented as the empty string: $a(b \mid)$ instead of $a(b \mid \epsilon)$ to express the language $\{\mathrm{a}, \mathrm{ab}\}$.
- The empty language is not very useful in practice.

Additional repetition constructs:

- $R+=R R *$: one or more repetitions of R

REGULAR EXPRESSIONS IN PRACTICE (1)

No \in or $\emptyset:$

- The empty string is represented as the empty string: $a(b \mid)$ instead of $a(b \mid \epsilon)$ to express the language $\{\mathrm{a}, \mathrm{ab}\}$.
- The empty language is not very useful in practice.

Additional repetition constructs:

- $R+=R R *$: one or more repetitions of R
- R ? $=(R \mid)$: zero or one repetition of R

REGULAR EXPRESSIONS IN PRACTICE (1)

No \in or \emptyset :

- The empty string is represented as the empty string: $a(b \mid)$ instead of $a(b \mid \epsilon)$ to express the language $\{\mathrm{a}, \mathrm{ab}\}$.
- The empty language is not very useful in practice.

Additional repetition constructs:

- $R+=R R *$: one or more repetitions of R
- R ? $=(R \mid)$: zero or one repetition of R
- $R\{n\}, R\{, n\}, R\{m\},, R\{m, n\}$: n, up to n, at least m, between m and n repetitions of R

REGULAR EXPRESSIONS IN PRACTICE (1)

No \in or \emptyset :

- The empty string is represented as the empty string: $\mathrm{a}(\mathrm{b} \mid)$ instead of $\mathrm{a}(\mathrm{b} \mid \epsilon)$ to express the language $\{\mathrm{a}, \mathrm{ab}\}$.
- The empty language is not very useful in practice.

Additional repetition constructs:

- $R+=R R *$: one or more repetitions of R
- R ? $=(R \mid)$: zero or one repetition of R
- $R\{n\}, R\{, n\}, R\{m\},, R\{m, n\}$: n, up to n, at least m, between m and n repetitions of R

Some capabilities beyond regular languages:

- Allow, for example, recognition of languages such as $\alpha \beta \alpha$, for $\alpha, \beta \in \Sigma^{*}$.

REGULAR EXPRESSIONS IN PRACTICE (2)

Character classes allow us to write tedious expressions such as a|b| $\cdot \mid$ |z more easily.

REGULAR EXPRESSIONS IN PRACTICE (2)

Character classes allow us to write tedious expressions such as a|b|‥|z more easily.

Examples:
. "Recent" years: $199(6|7| 8 \mid 9) \mid 20(0(0|1| 2|3| 4|5| 6|7| 8 \mid 9) \mid 1(0|1| 2|3| 4|5| 6|7| 8))$

REGULAR EXPRESSIONS IN PRACTICE (2)

Character classes allow us to write tedious expressions such as a|b|…|z more easily.

Examples:

- "Recent" years: $199(6|7| 8 \mid 9) \mid 20(0(0|1| 2|3| 4|5| 6|7| 8 \mid 9) \mid 1(0|1| 2|3| 4|5| 6|7| 8))$

$$
\rightarrow 199[6-9] \mid 20(0[0-9] \mid 1[0-8])
$$

- Identifier in C: (a|b| $\left.\cdots|z| A|B| \cdots|Z|_{-}\right)\left(a|b| \cdots|z| A|B| \cdots|Z| 0|1| \cdots|9|_{-}\right) *$

REGULAR EXPRESSIONS IN PRACTICE (2)

Character classes allow us to write tedious expressions such as a|b|…|z more easily.

Examples:

- "Recent" years: $199(6|7| 8 \mid 9) \mid 20(0(0|1| 2|3| 4|5| 6|7| 8 \mid 9) \mid 1(0|1| 2|3| 4|5| 6|7| 8))$

$$
\rightarrow 199[6-9] \mid 20(0[0-9] \mid 1[0-8])
$$

- Identifier in C: (a|b| $\left.\cdots|z| A|B| \cdots|Z|_{-}\right)\left(a|b| \cdots|z| A|B| \cdots|Z| 0|1| \cdots|9|_{-}\right) *$

$$
\left.\rightarrow\left[a-z A-Z _\right][a-z A-Z 0-9]\right] *
$$

REGULAR EXPRESSIONS IN PRACTICE (2)

Character classes allow us to write tedious expressions such as a|b|…|z more easily.

Examples:

- "Recent" years: $199(6|7| 8 \mid 9) \mid 20(0(0|1| 2|3| 4|5| 6|7| 8 \mid 9) \mid 1(0|1| 2|3| 4|5| 6|7| 8))$

$$
\rightarrow 199[6-9] \mid 20(0[0-9] \mid 1[0-8])
$$

- Identifier in C: (a|b| $\left.\cdots|z| A|B| \cdots|Z|_{-}\right)\left(a|b| \cdots|z| A|B| \cdots|Z| 0|1| \cdots|9|_{-}\right) *$

$$
\rightarrow[a-z A-Z]\left[a-z A-Z 0-9 _\right] *
$$

- Anything but a lowercase letter: [^a-z]

REGULAR EXPRESSIONS IN PRACTICE (2)

Character classes allow us to write tedious expressions such as a|b|…|z more easily.

Examples:

- "Recent" years: $199(6|7| 8 \mid 9) \mid 20(0(0|1| 2|3| 4|5| 6|7| 8 \mid 9) \mid 1(0|1| 2|3| 4|5| 6|7| 8))$

$$
\rightarrow 199[6-9] \mid 20(0[0-9] \mid 1[0-8])
$$

- Identifier in C: (a|b| $\left.\cdots|z| A|B| \cdots|Z|_{-}\right)\left(a|b| \cdots|z| A|B| \cdots|Z| 0|1| \cdots|9|_{-}\right) *$

$$
\rightarrow[a-z A-Z]\left[a-z A-Z 0-9 _\right] *
$$

- Anything but a lowercase letter: [^a-z]
- Any letter: .

REGULAR EXPRESSIONS IN PRACTICE (2)

Character classes allow us to write tedious expressions such as a|b|…|z more easily.

Examples:

- "Recent" years: $199(6|7| 8 \mid 9) \mid 20(0(0|1| 2|3| 4|5| 6|7| 8 \mid 9) \mid 1(0|1| 2|3| 4|5| 6|7| 8))$

$$
\rightarrow 199[6-9] \mid 20(0[0-9] \mid 1[0-8])
$$

- Identifier in C: (a|b| $\left.\cdots|z| A|B| \cdots|Z|_{-}\right)\left(a|b| \cdots|z| A|B| \cdots|Z| 0|1| \cdots|9|_{-}\right) *$

$$
\rightarrow[a-z A-Z]\left[a-z A-Z 0-9 _\right] *
$$

- Anything but a lowercase letter: [^a-z]
- Any letter: .
- Digit, non-digit: $\backslash d, \backslash D$

REGULAR EXPRESSIONS IN PRACTICE (2)

Character classes allow us to write tedious expressions such as a|b|‥|z more easily.

Examples:

- "Recent" years: $199(6|7| 8 \mid 9) \mid 20(0(0|1| 2|3| 4|5| 6|7| 8 \mid 9) \mid 1(0|1| 2|3| 4|5| 6|7| 8))$

$$
\rightarrow 199[6-9] \mid 20(0[0-9] \mid 1[0-8])
$$

- Identifier in C: (a|b| $\left.\cdots|z| A|B| \cdots|Z|_{-}\right)\left(a|b| \cdots|z| A|B| \cdots|Z| 0|1| \cdots|9|_{-}\right) *$

$$
\rightarrow[a-z A-Z]][a-z A-Z 0-9]] *
$$

- Anything but a lowercase letter: [^a-z]
- Any letter: .
- Digit, non-digit: \d, \D
- Whitespace, non-whitespace: \s, \S

REGULAR EXPRESSIONS IN PRACTICE (2)

Character classes allow us to write tedious expressions such as a|b|‥|z more easily.

Examples:

- "Recent" years: $199(6|7| 8 \mid 9) \mid 20(0(0|1| 2|3| 4|5| 6|7| 8 \mid 9) \mid 1(0|1| 2|3| 4|5| 6|7| 8))$

$$
\rightarrow 199[6-9] \mid 20(0[0-9] \mid 1[0-8])
$$

- Identifier in C: $\left(a|b| \cdots|z| A|B| \cdots|Z|_{-}\right)\left(a|b| \cdots|z| A|B| \cdots|Z| 0|1| \cdots|9|_{-}\right) *$ \rightarrow [a-zA-Z_][a-zA-ZO-9_]*
- Anything but a lowercase letter: [^a-z]
- Any letter: .
- Digit, non-digit: $\backslash d, \backslash D$
- Whitespace, non-whitespace: \s, \S
- Word character, non-word character: \w, \W

REGULAR EXPRESSIONS FOR LEXICAL ANALYSIS

- Special characters: '(' ')' '\{' '\}' '[' ']' ',' ';' ' ':'

REGULAR EXPRESSIONS FOR LEXICAL ANALYSIS

- Special characters: '(' ')' '\{' '\}' '[' ']' ',' ';' ' ':
- Mathematical operators: ' $+|-|*| /|=|+=|-=|*=| /=’$

REGULAR EXPRESSIONS FOR LEXICAL ANALYSIS

- Special characters: '(' ')' '\{' '\}' '[' ']' ', ', ';' ':'
- Mathematical operators: ' $+|-|*| /|=|+=|-=|*=| /=’$
- Keywords (C++): 'class|struct|union|iflelse|forlwhile|...'

REGULAR EXPRESSIONS FOR LEXICAL ANALYSIS

- Special characters: '(' ')' '\{' '\}' '[' ']' ',' ';' ' ':
- Mathematical operators: ' $+|-|*| /|=|+=|-=|*=| /=’$
- Keywords (C++): 'class|struct|union|if|else|for|while|...'
- Integer: '[+-]? $\backslash \mathrm{d}+$ '

REGULAR EXPRESSIONS FOR LEXICAL ANALYSIS

- Special characters: '(' ')' '\{' '\}' '[' ']' ',' ';' ' ':
- Mathematical operators: ' $+|-|*| /|=|+=|-=|*=| /=’$
- Keywords (C++): 'class|struct|union |iflelse|for|while|...'
- Integer: '[+-]? ${ }^{\text {d }+'}$
- Float: '[+-]?\d*\.?\d+([Ee][+-]? $\backslash \mathrm{d}+$)?'

REGULAR EXPRESSIONS FOR LEXICAL ANALYSIS

- Special characters: '(' ')' '\{' '\}' '[' ']' ',' ';' ' ':
- Mathematical operators: ' $+|-|*| /|=|+=|-=|*=| /=’$
- Keywords (C++): 'class|struct|union|if|else|for|while|...'
- Integer: '[+-]? ${ }^{\text {d }+ \text { ' }}$

- Identifier (C++): '[a-ZA-Z_][a-ZA-Z0-9_]*'

REGULAR EXPRESSIONS FOR LEXICAL ANALYSIS

- Special characters: '(' ')' ‘\{' '\}' '[' ']' ',' ';' ' ':'
- Mathematical operators: ' $+|-|*| /|=|+=|-=|*=| /=’$
- Keywords (C++): 'class|struct|union|if|else|for|while|...'
- Integer: '[+-]? ${ }^{\text {d+' }}$

- Identifier (C++): '[a-ZA-Z_][a-ZA-Z0-9_]*'

REGULAR EXPRESSIONS FOR LEXICAL ANALYSIS

- Special characters: '(' ')' ‘\{' '\}' '[' ']' ',' ';' ' ':'
- Mathematical operators: ' $+|-|*| /|=|+=|-=|*=| /=’$
- Keywords (C +1): 'classlstructunimanliffelselforlwhilel...'
- Integer: '[+-]? ${ }^{\text {d }+'}$
- Float: ‘[+-]? $\backslash \mathrm{d} * \backslash . ? \backslash d+([E e][+-] ? \backslash d+)$?'
- Identifier (C++): ‘[a-ZA-Z_][a-ZA-Z0-9_]*'

ROAD MAP

- Regular languages
- Regular expressions

Deterministic finite automata (DFA)
Non-deterministic finite automata (NFA)
Exnressive nnmer of DFA and NFA
Equivalence of regular expressions, DFA, and NFA

Building a scanner

- Reoular axnrossinr NFA \rightarrow DFA

Minimizing the DFA

- Limitations of regular languages

ROAD MAP

- Regular languages
- Regular expressions
- Deterministic finite automata (DFA)
- Non-deterministic finite automata (NFA)
- Expressive power of DFA and NFA
- Eruivalence of reoular exnressions, DFA, and NFA

Building a scanner
Regular expression \rightarrow NFA \rightarrow DFA
Minimizing the DFA

- Limitations of regular languages

DETERMINISTIC FINITE AUTOMATON (DFA)

... is a simple type of machine that can be used to decide regular languages.

DETERMINISTIC FINITE AUTOMATON (DFA)

... is a simple type of machine that can be used to decide regular languages.

Definition:

Deterministic finite automaton (DFA)
A tuple $D=\left(S, \Sigma, \delta, S_{0}, F\right)$:

- Set S of states
- Finite alphabet Σ
- Transition function $\delta: S \times \Sigma \rightarrow S$
- Initial state $s_{0} \in S$
- Set of final states $F \subseteq S$

DETERMINISTIC FINITE AUTOMATON (DFA)

... is a simple type of machine that can be used to decide regular languages.

Definition:

Deterministic finite automaton (DFA)
A tuple $D=\left(S, \Sigma, \delta, S_{0}, F\right)$:

- Set S of states
- Finite alphabet Σ
- Transition function $\delta: S \times \Sigma \rightarrow S$
- Initial state $s_{0} \in S$
- Set of final states $F \subseteq S$

Tabular representation:

Graph representation:

DETERMINISTIC FINITE AUTOMATON (DFA)

... is a simple type of machine that can be used to decide regular languages.

Definition:

Deterministic finite automaton (DFA)
A tuple $D=\left(S, \Sigma, \delta, S_{0}, F\right)$:

- Set S of states
- Finite alphabet Σ
- Transition function $\delta: S \times \Sigma \rightarrow S$
- Initial state $s_{0} \in S$
- Set of final states $F \subseteq S$

Tabular representation:

Graph representation:

DETERMINISTIC FINITE AUTOMATON (DFA)

... is a simple type of machine that can be used to decide regular languages.

Definition:

Deterministic finite automaton (DFA)
A tuple $D=\left(S, \Sigma, \delta, S_{0}, F\right)$:

- Set S of states
- Finite alphabet Σ
- Transition function $\delta: S \times \Sigma \rightarrow S$
- Initial state $s_{0} \in S$
- Set of final states $F \subseteq S$

Tabular representation:

Graph representation:

DETERMINISTIC FINITE AUTOMATON (DFA)

... is a simple type of machine that can be used to decide regular languages.

Definition:

Deterministic finite automaton (DFA)
A tuple $D=\left(S, \Sigma, \delta, S_{0}, F\right)$:

- Set S of states
- Finite alphabet Σ
- Transition function $\delta: S \times \Sigma \rightarrow S$
- Initial state $s_{0} \in S$
- Set of final states $F \subseteq S$

Tabular representation:

δ	0	1
s_{1}	s_{1}	s_{2}
s_{2}	s_{2}	s_{1}

Graph representation:

DETERMINISTIC FINITE AUTOMATON (DFA)

... is a simple type of machine that can be used to decide regular languages.

Definition:

Deterministic finite automaton (DFA)
A tuple $D=\left(S, \Sigma, \delta, S_{0}, F\right)$:

- Set S of states
- Finite alphabet Σ
- Transition function $\delta: S \times \Sigma \rightarrow S$
- Initial state $s_{0} \in S$
- Set of final states $F \subseteq S$

Tabular representation:

$$
\begin{array}{r|rr}
\delta & 0 & 1 \\
\hline \rightarrow s_{1} & s_{1} & s_{2} \\
s_{2} & s_{2} & s_{1}
\end{array}
$$

Graph representation:

DETERMINISTIC FINITE AUTOMATON (DFA)

... is a simple type of machine that can be used to decide regular languages.

Definition:

Deterministic finite automaton (DFA)
A tuple $D=\left(S, \Sigma, \delta, S_{0}, F\right)$:

- Set S of states
- Finite alphabet Σ
- Transition function $\delta: S \times \Sigma \rightarrow S$
- Initial state $s_{0} \in S$
- Set of final states $F \subseteq S$

Tabular representation:

$$
\begin{array}{r|rl}
\delta & 0 & 1 \\
\hline \rightarrow s_{1} & S_{1} & S_{2} \\
* S_{2} & S_{2} & s_{1}
\end{array}
$$

Graph representation:

THE LANGUAGE DECIDED BY A DFA (1)

THE LANGUAGE DECIDED BY A DFA (1)

Acceptance/rejection of a string:

 IntuitionA DFA $D=\left(S, \Sigma, \delta, S_{0}, F\right)$ accepts a string $\sigma \in \Sigma^{*}$ if, after starting in

state s_{0} and reading σ, it finishes in an accepting state. Otherwise, it rejects σ.

THE LANGUAGE DECIDED BY A DFA (1)

Acceptance/rejection of a string:

 IntuitionA DFA $D=\left(S, \Sigma, \delta, S_{0}, F\right)$ accepts a string $\sigma \in \Sigma^{*}$ if, after starting in state s_{0} and reading σ, it finishes in an accepting state. Otherwise, it rejects σ.

THE LANGUAGE DECIDED BY A DFA (1)

Acceptance/rejection of a string:

 IntuitionA DFA $D=\left(S, \Sigma, \delta, S_{0}, F\right)$ accepts a string $\sigma \in \Sigma^{*}$ if, after starting in state s_{0} and reading σ, it finishes in an accepting state. Otherwise, it rejects σ.

THE LANGUAGE DECIDED BY A DFA (1)

Acceptance/rejection of a string:

 IntuitionA DFA $D=\left(S, \Sigma, \delta, S_{0}, F\right)$ accepts a string $\sigma \in \Sigma^{*}$ if, after starting in state s_{0} and reading σ, it finishes in an accepting state. Otherwise, it rejects σ.

THE LANGUAGE DECIDED BY A DFA (1)

Acceptance/rejection of a string:

 IntuitionA DFA $D=\left(S, \Sigma, \delta, S_{0}, F\right)$ accepts a string $\sigma \in \Sigma^{*}$ if, after starting in state s_{0} and reading σ, it finishes in an accepting state. Otherwise, it rejects σ.

THE LANGUAGE DECIDED BY A DFA (1)

Acceptance/rejection of a string:

 IntuitionA DFA $D=\left(S, \Sigma, \delta, S_{0}, F\right)$ accepts a string $\sigma \in \Sigma^{*}$ if, after starting in state s_{0} and reading σ, it finishes in an accepting state. Otherwise, it rejects σ.

THE LANGUAGE DECIDED BY A DFA (1)

Acceptance/rejection of a string:

 IntuitionA DFA $D=\left(S, \Sigma, \delta, S_{0}, F\right)$ accepts a string $\sigma \in \Sigma^{*}$ if, after starting in state s_{0} and reading σ, it finishes in an accepting state. Otherwise, it rejects σ.

THE LANGUAGE DECIDED BY A DFA (1)

Acceptance/rejection of a string:

 IntuitionA DFA $D=\left(S, \Sigma, \delta, S_{0}, F\right)$ accepts a string $\sigma \in \Sigma^{*}$ if, after starting in state s_{0} and reading σ, it finishes in an accepting state. Otherwise, it rejects σ.

THE LANGUAGE DECIDED BY A DFA (1)

Acceptance/rejection of a string:

 IntuitionA DFA $D=\left(S, \Sigma, \delta, S_{0}, F\right)$ accepts a string $\sigma \in \Sigma^{*}$ if, after starting in state s_{0} and reading σ, it finishes in an accepting state. Otherwise, it rejects σ.

THE LANGUAGE DECIDED BY A DFA (1)

Acceptance/rejection of a string:

 IntuitionA DFA $D=\left(S, \Sigma, \delta, S_{0}, F\right)$ accepts a string $\sigma \in \Sigma^{*}$ if, after starting in state s_{0} and reading σ, it finishes in an accepting state. Otherwise, it rejects σ.

THE LANGUAGE DECIDED BY A DFA (1)

Acceptance/rejection of a string:

 IntuitionA DFA $D=\left(S, \Sigma, \delta, S_{0}, F\right)$ accepts a string $\sigma \in \Sigma^{*}$ if, after starting in state s_{0} and reading σ, it finishes in an accepting state. Otherwise, it rejects σ.

| 0 | 0 | 0 | 1 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | 0.

THE LANGUAGE DECIDED BY A DFA (1)

Acceptance/rejection of a string:

 IntuitionA DFA $D=\left(S, \Sigma, \delta, S_{0}, F\right)$ accepts a string $\sigma \in \Sigma^{*}$ if, after starting in
state s_{0} and reading σ, it finishes in an accepting state. Otherwise, it rejects σ.

| 0 | 0 | 0 | 1 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | 0

THE LANGUAGE DECIDED BY A DFA (1)

Acceptance/rejection of a string: Intuition
A DFA $D=\left(S, \Sigma, \delta, S_{0}, F\right)$ accepts a string $\sigma \in \Sigma^{*}$ if, after starting in state s_{0} and reading σ, it finishes in an accepting state. Otherwise, it rejects σ.

0	0	0	1	0	1	1	0

THE LANGUAGE DECIDED BY A DFA (1)

Acceptance/rejection of a string:

 IntuitionA DFA $D=\left(S, \Sigma, \delta, S_{0}, F\right)$ accepts a string $\sigma \in \Sigma^{*}$ if, after starting in
state s_{0} and reading σ, it finishes in an accepting state. Otherwise, it rejects σ.

0	0	0	1	0	1	1	0

THE LANGUAGE DECIDED BY A DFA (1)

Acceptance/rejection of a string:

 IntuitionA DFA $D=\left(S, \Sigma, \delta, S_{0}, F\right)$ accepts a string $\sigma \in \Sigma^{*}$ if, after starting in
state s_{0} and reading σ, it finishes in an accepting state. Otherwise, it rejects σ.

| 0 | 0 | 0 | 1 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | 0

THE LANGUAGE DECIDED BY A DFA (1)

Acceptance/rejection of a string:

 IntuitionA DFA $D=\left(S, \Sigma, \delta, S_{0}, F\right)$ accepts a string $\sigma \in \Sigma^{*}$ if, after starting in
state s_{0} and reading σ, it finishes in an accepting state. Otherwise, it rejects σ.

0	0	0	1	0	1	1

THE LANGUAGE DECIDED BY A DFA (1)

Acceptance/rejection of a string:

 IntuitionA DFA $D=\left(S, \Sigma, \delta, S_{0}, F\right)$ accepts a string $\sigma \in \Sigma^{*}$ if, after starting in
state s_{0} and reading σ, it finishes in an accepting state. Otherwise, it rejects σ.

0	0	0	1	0	1	1	0

THE LANGUAGE DECIDED BY A DFA (1)

Acceptance/rejection of a string:

 IntuitionA DFA $D=\left(S, \Sigma, \delta, S_{0}, F\right)$ accepts a string $\sigma \in \Sigma^{*}$ if, after starting in state s_{0} and reading σ, it finishes in an accepting state. Otherwise, it rejects σ.

| 0 | 0 | 0 | 1 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | 0

THE LANGUAGE DECIDED BY A DFA (1)

Acceptance/rejection of a string:

 IntuitionA DFA $D=\left(S, \Sigma, \delta, S_{0}, F\right)$ accepts a string $\sigma \in \Sigma^{*}$ if, after starting in
state s_{0} and reading σ, it finishes in an accepting state. Otherwise, it rejects σ.

| 0 | 0 | 0 | 1 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | 0.

THE LANGUAGE DECIDED BY A DFA (1)

Acceptance/rejection of a string:

 IntuitionA DFA $D=\left(S, \Sigma, \delta, S_{0}, F\right)$ accepts a string $\sigma \in \Sigma^{*}$ if, after starting in
state s_{0} and reading σ, it finishes in an accepting state. Otherwise, it rejects σ.

| 0 | 0 | 0 | 1 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | 0.0

THE LANGUAGE DECIDED BY A DFA (1)

Acceptance/rejection of a string:

 IntuitionA DFA $D=\left(S, \Sigma, \delta, S_{0}, F\right)$ accepts a string $\sigma \in \Sigma^{*}$ if, after starting in
state s_{0} and reading σ, it finishes in an accepting state. Otherwise, it rejects σ.

| 0 | 0 | 0 | 1 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | 0.0

| 1 | 0 | 1 | 1 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | 0.

THE LANGUAGE DECIDED BY A DFA (1)

Acceptance/rejection of a string: Intuition
A DFA $D=\left(S, \Sigma, \delta, S_{0}, F\right)$ accepts a string $\sigma \in \Sigma^{*}$ if, after starting in state s_{0} and reading σ, it finishes in an accepting state. Otherwise, it rejects σ.

| 0 | 0 | 0 | 1 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | 0.

Language decided by a DFA
$\mathcal{L}(D)=\left\{\sigma \in \Sigma^{*} \mid D\right.$ accepts $\left.\sigma\right\}$

| 1 | 0 | 1 | 1 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | 0.0

THE LANGUAGE DECIDED BY A DFA (1)

Acceptance/rejection of a string: Intuition
A DFA $D=\left(S, \Sigma, \delta, S_{0}, F\right)$ accepts a string $\sigma \in \Sigma^{*}$ if, after starting in state s_{0} and reading σ, it finishes in an accepting state. Otherwise, it rejects σ.

Language decided by a DFA
$\mathcal{L}(D)=\left\{\sigma \in \Sigma^{*} \mid D\right.$ accepts $\left.\sigma\right\}$

| 0 | 0 | 0 | 1 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | 0.

| 1 | 0 | 1 | 1 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | 0.

This DFA decides the language of all binary strings with ...

THE LANGUAGE DECIDED BY A DFA (1)

Acceptance/rejection of a string: Intuition
A DFA $D=\left(S, \Sigma, \delta, S_{0}, F\right)$ accepts a string $\sigma \in \Sigma^{*}$ if, after starting in state s_{0} and reading σ, it finishes in an accepting state. Otherwise, it rejects σ.

Language decided by a DFA
$\mathcal{L}(D)=\left\{\sigma \in \Sigma^{*} \mid D\right.$ accepts $\left.\sigma\right\}$

| 0 | 0 | 0 | 1 | 0 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | 0.

| 1 | 0 | 1 | 1 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | 0.

This DFA decides the language of all binary strings with an odd number of 1 s .

THE LANGUAGE DECIDED BY A DFA (1)

Acceptance/rejection of a string: Intuition
A DFA $D=\left(S, \Sigma, \delta, S_{0}, F\right)$ accepts a string $\sigma \in \Sigma^{*}$ if, after starting in state s_{0} and reading σ, it finishes in an accepting state. Otherwise, it rejects σ.

Language decided by a DFA
$\mathcal{L}(D)=\left\{\sigma \in \Sigma^{*} \mid D\right.$ accepts $\left.\sigma\right\}$

0	0	0	1	0	1	1	0

1	0	1	1	0	0	1	0

This DFA decides the language of all binary strings with an odd number of 1 s .

THE LANGUAGE DECIDED BY A DFA (2)

THE LANGUAGE DECIDED BY A DFA (2)

THE LANGUAGE DECIDED BY A DFA (2)

A transition function for strings

$\delta^{*}: S \times \Sigma^{*} \rightarrow S$

THE LANGUAGE DECIDED BY A DFA (2)

A transition function for strings

$\delta^{*}: S \times \Sigma^{*} \rightarrow S$
$\delta^{*}(s, \sigma)$: the state reached after consuming σ if we start in state s.

THE LANGUAGE DECIDED BY A DFA (2)

A transition function for strings

$\delta^{*}: S \times \Sigma^{*} \rightarrow S$
$\delta^{*}(s, \sigma)$: the state reached after consuming σ if we start in state s.

- $\delta^{*}(S, \epsilon)=S$

THE LANGUAGE DECIDED BY A DFA (2)

A transition function for strings

$\delta^{*}: S \times \Sigma^{*} \rightarrow S$
$\delta^{*}(S, \sigma)$: the state reached after consuming σ if we start in state s.

- $\delta^{*}(S, \epsilon)=S$
- $\delta^{*}(s, x \sigma)=\delta^{*}(\delta(s, x), \sigma)$

THE LANGUAGE DECIDED BY A DFA (2)

A transition function for strings

$\delta^{*}: S \times \Sigma^{*} \rightarrow S$
$\delta^{*}(S, \sigma)$: the state reached after consuming σ if we start in state s.

- $\delta^{*}(S, \epsilon)=S$
- $\delta^{*}(s, x \sigma)=\delta^{*}(\delta(s, x), \sigma)$
$\delta^{*}\left(s, x_{1} x_{2} \ldots x_{n}\right)=\delta^{*}\left(\delta\left(s, x_{1}\right), x_{2} x_{3} \ldots x_{n}\right)$

THE LANGUAGE DECIDED BY A DFA (2)

A transition function for strings

$\delta^{*}: S \times \Sigma^{*} \rightarrow S$
$\delta^{*}(S, \sigma)$: the state reached after consuming σ if we start in state s.

- $\delta^{*}(S, \epsilon)=S$
- $\delta^{*}(s, x \sigma)=\delta^{*}(\delta(s, x), \sigma)$
$\delta^{*}\left(s, x_{1} x_{2} \ldots x_{n}\right)=\delta^{*}\left(\delta\left(s, x_{1}\right), x_{2} x_{3} \ldots x_{n}\right)$

Language decided by a DFA

For a DFA $D=\left(S, \Sigma, \delta, S_{0}, F\right)$,

$$
\mathcal{L}(D)=\left\{\sigma \in \Sigma^{*} \mid \delta^{*}\left(S_{0}, \sigma\right) \in F\right\} .
$$

EXAMPLES OF DFA

EXAMPLES OF DFA

- $\left\{\sigma \in\{0,1\}^{*} \mid \sigma\right.$ does not contain the substring 101\}

EXAMPLES OF DFA

EXAMPLES OF DFA

- $\left\{\sigma \in\{0,1\}^{*} \mid \sigma\right.$ does not contain the substring 101\}

EXAMPLES OF DFA

- $\left\{\sigma \in\{0,1\}^{*} \mid \sigma\right.$ does not contain the substring 101\}

EXAMPLES OF DFA

- $\left\{\sigma \in\{0,1\}^{*} \mid \sigma\right.$ does not contain the substring 101\}

- Valid C comments (/*...*/)

EXAMPLES OF DFA

- $\left\{\sigma \in\{0,1\}^{*} \mid \sigma\right.$ does not contain the substring 101\}

- Valid C con I have seen ' $/$ '',

ROAD MAP

- Regular languages
- Regular expressions
- Deterministic finite automata (DFA)
- Non-deterministic finite automata (NFA)
- Expressive power of DFA and NFA
- Fquivalence of regular exnressions, DFA, and NFA

Building a scanner
Regular expression \rightarrow NFA \rightarrow DFA
Minimizing the DFA

- Limitations of regular languages

ROAD MAP

- Regular languages
- Regular expressions
- Deterministic finite automata (DFA)
- Non-deterministic finite automata (NFA)
- Expressive power of DFA and NFA
- Equivalence of regular expressions, DFA, and NFA

Building a scanner

- Regular exnressior \rightarrow NFA \rightarrow DFA - Minimizing the DFA
- Limitations of regular languages

NON-DETERMINISTIC FINITE AUTOMATON (NFA) (1)

For a $D F A D=\left(S, \Sigma, \delta, s_{0}, F\right)$, reading a string σ puts the DFA into a unique state $\delta^{*}\left(s_{0}, \sigma\right)$. That's why it's called "deterministic".

NON-DETERMINISTIC FINITE AUTOMATON (NFA) (1)

For a DFA $D=\left(S, \Sigma, \delta, S_{0}, F\right)$, reading a string σ puts the DFA into a unique state $\delta^{*}\left(s_{0}, \sigma\right)$. That's why it's called "deterministic".

A non-deterministic finite automaton (NFA) has the ability to choose between multiple states to transition to after reading a character and may even "spontaneously" transition to a new state without reading anything.

NON-DETERMINISTIC FINITE AUTOMATON (NFA) (1)

For a DFA $D=\left(S, \Sigma, \delta, S_{0}, F\right)$, reading a string σ puts the DFA into a unique state $\delta^{*}\left(s_{0}, \sigma\right)$. That's why it's called "deterministic".

A non-deterministic finite automaton (NFA) has the ability to choose between multiple states to transition to after reading a character and may even "spontaneously" transition to a new state without reading anything.
$\Rightarrow \delta^{*}\left(S_{0}, \sigma\right)$ is potentially one of many states.

NON-DETERMINISTIC FINITE AUTOMATON (NFA) (1)

For a DFA $D=\left(S, \Sigma, \delta, S_{0}, F\right)$, reading a string σ puts the DFA into a unique state $\delta^{*}\left(s_{0}, \sigma\right)$. That's why it's called "deterministic".

A non-deterministic finite automaton (NFA) has the ability to choose between multiple states to transition to after reading a character and may even "spontaneously" transition to a new state without reading anything.
$\Rightarrow \delta^{*}\left(S_{0}, \sigma\right)$ is potentially one of many states.
Formally, $\delta^{*}\left(s_{0}, \sigma\right)$ is a set of states.

NON-DETERMINISTIC FINITE AUTOMATON (NFA) (1)

For a DFA $D=\left(S, \Sigma, \delta, S_{0}, F\right)$, reading a string σ puts the DFA into a unique state $\delta^{*}\left(s_{0}, \sigma\right)$. That's why it's called "deterministic".

A non-deterministic finite automaton (NFA) has the ability to choose between multiple states to transition to after reading a character and may even "spontaneously" transition to a new state without reading anything.
$\Rightarrow \delta^{*}\left(S_{0}, \sigma\right)$ is potentially one of many states.
Formally, $\delta^{*}\left(s_{0}, \sigma\right)$ is a set of states.
An NFA $N=\left(S, \Sigma, \delta, s_{0}, F\right)$ accepts σ if $\delta^{*}\left(S_{0}, \sigma\right) \cap F \neq \emptyset$.
(N has the ability to reach an accepting state while reading σ, assuming it makes the right choices.)

NON-DETERMINISTIC FINITE AUTOMATON (NFA) (2)

Definition:
Non-deterministic finite automaton (NFA)
A tuple $D=\left(S, \Sigma, \delta, S_{0}, F\right)$:

- Set of states S
- Finite alphabet Σ
- Transition function $\delta: S \times(\Sigma \cup\{\epsilon\}) \rightarrow 2^{S}$
- Initial state $s_{0} \in S$
- Set of final states $F \subseteq S$

NON-DETERMINISTIC FINITE AUTOMATON (NFA) (2)

Definition:
Non-deterministic finite automaton (NFA)
A tuple $D=\left(S, \Sigma, \delta, S_{0}, F\right)$:

- Set of states S
- Finite alphabet Σ
- Transition function $\delta: S \times(\Sigma \cup\{\epsilon\}) \rightarrow 2^{S}$
- Initial state $s_{0} \in S$
- Set of final states $F \subseteq S$

NON-DETERMINISTIC FINITE AUTOMATON (NFA) (2)

Definition:

Non-deterministic finite automaton (NFA)
A tuple $D=\left(S, \Sigma, \delta, S_{0}, F\right)$:

- Set of states S
- Finite alphabet Σ
- Transition function $\delta: S \times(\Sigma \cup\{\epsilon\}) \rightarrow 2^{S}$

δ	0	1	ϵ
$\rightarrow S_{1}$	$\left\{S_{1}, S_{2}\right\}$	$\left\{S_{1}\right\}$	\emptyset
S_{2}	\emptyset	$\left\{S_{3}\right\}$	\emptyset
$* S_{3}$	\emptyset	\emptyset	\emptyset

- Initial state $s_{0} \in S$
- Set of final states $F \subseteq S$

NON-DETERMINISTIC FINITE AUTOMATON (NFA) (2)

Definition:

Non-deterministic finite automaton (NFA)
A tuple $D=\left(S, \Sigma, \delta, S_{0}, F\right)$:

- Set of states S
- Finite alphabet Σ
- Transition function $\delta: S \times(\Sigma \cup\{\epsilon\}) \rightarrow 2^{S}$

δ	0	1	ϵ
$\rightarrow S_{1}$	$\left\{S_{1}\right\}$	$\left\{S_{1}\right\}$	$\left\{S_{2}\right\}$
S_{2}	$\left\{S_{3}\right\}$	\emptyset	\emptyset
S_{3}	\emptyset	$\left\{S_{4}\right\}$	\emptyset
$* S_{4}$	\emptyset	\emptyset	\emptyset

- Initial state $s_{0} \in S$
- Set of final states $F \subseteq S$

THE LANGUAGE DECIDED BY AN NFA (1)

THE LANGUAGE DECIDED BY AN NFA (1)

THE LANGUAGE DECIDED BY AN NFA (1)

THE LANGUAGE DECIDED BY AN NFA (1)

THE LANGUAGE DECIDED BY AN NFA (1)

THE LANGUAGE DECIDED BY AN NFA (1)

THE LANGUAGE DECIDED BY AN NFA (1)

THE LANGUAGE DECIDED BY AN NFA (1)

THE LANGUAGE DECIDED BY AN NFA (1)

THE LANGUAGE DECIDED BY AN NFA (1)

THE LANGUAGE DECIDED BY AN NFA (1)

0	0	1	0	1	0	0	1

THE LANGUAGE DECIDED BY AN NFA (1)

| 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad \quad$| 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

THE LANGUAGE DECIDED BY AN NFA (1)

| 0 | 0 | 1 | 0 | 1 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad \quad$| 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$$
\mathcal{L}(N)=\mathcal{L}((0 \mid 1) * 01)
$$

THE LANGUAGE DECIDED BY AN NFA (2)

0	0	1	0	1	0	0	1

THE LANGUAGE DECIDED BY AN NFA (2)

0	0	1	0	1	0	0	1

THE LANGUAGE DECIDED BY AN NFA (2)

0	0	1	0	1	0	0	1

THE LANGUAGE DECIDED BY AN NFA (2)

0	0	1	0	1	0	0	1

THE LANGUAGE DECIDED BY AN NFA (2)

0	0	1	0	1	0	0	1

THE LANGUAGE DECIDED BY AN NFA (2)

0	0	1	0	1	0	0	1

THE LANGUAGE DECIDED BY AN NFA (2)

0	0	1	0	1	0	0	1

THE LANGUAGE DECIDED BY AN NFA (2)

0	0	1	0	1	0	0	1

THE LANGUAGE DECIDED BY AN NFA (2)

0	0	1	0	1	0	0	1

THE LANGUAGE DECIDED BY AN NFA (2)

0	0	1	0	1	0	0	1

THE LANGUAGE DECIDED BY AN NFA (2)

0	0	1	0	1	0	0	1

THE LANGUAGE DECIDED BY AN NFA (2)

0	0	1	0	1	0	0	1

THE LANGUAGE DECIDED BY AN NFA (2)

THE LANGUAGE DECIDED BY AN NFA (2)

0	0	1	0	1	0	0	1

THE LANGUAGE DECIDED BY AN NFA (2)

0	0	1	0	1	0	0	1

THE LANGUAGE DECIDED BY AN NFA (2)

0	0	1	0	1	0	0	1

THE LANGUAGE DECIDED BY AN NFA (2)

0	0	1	0	1	0	0	1

THE LANGUAGE DECIDED BY AN NFA (2)

0	0	1	0	1	0	0	1

THE LANGUAGE DECIDED BY AN NFA (2)

0	0	1	0	1	0	0	1

THE LANGUAGE DECIDED BY AN NFA (2)

0	0	1	0	1	0	0	1

0	0	1	0	1	0	1	0

THE LANGUAGE DECIDED BY AN NFA (2)

| 0 | 0 | 1 | 0 | 1 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad 1 \quad$| 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$$
\mathcal{L}(N)=\mathcal{L}((0 \mid 1) * 01)
$$

THE LANGUAGE DECIDED BY AN NFA (3)

THE LANGUAGE DECIDED BY AN NFA (3)

Language decided by a DFA

For a DFA $D=\left(S, \Sigma, \delta, S_{0}, F\right)$,

$$
\mathcal{L}(D)=\left\{\sigma \in \Sigma^{*} \mid \delta^{*}\left(S_{0}, \sigma\right) \in F\right\} .
$$

THE LANGUAGE DECIDED BY AN NFA (3)

Language decided by a DFA

For a DFA $D=\left(S, \Sigma, \delta, S_{0}, F\right)$,

$$
\mathcal{L}(D)=\left\{\sigma \in \Sigma^{*} \mid \delta^{*}\left(s_{0}, \sigma\right) \in F\right\} .
$$

What should this definition look like for an NFA?

THE LANGUAGE DECIDED BY AN NFA (3)

Language decided by a DFA

For a DFA $D=\left(S, \Sigma, \delta, S_{0}, F\right)$,

$$
\mathcal{L}(D)=\left\{\sigma \in \Sigma^{*} \mid \delta^{*}\left(S_{0}, \sigma\right) \in F\right\} .
$$

What should this definition look like for an NFA?
-What is $\delta^{*}\left(S_{0}, \sigma\right)$?

- How should it be related to F for N to accept σ ?

THE LANGUAGE DECIDED BY AN NFA (3)

Language decided by a DFA

For a DFA $D=\left(S, \Sigma, \delta, S_{0}, F\right)$,

$$
\mathcal{L}(D)=\left\{\sigma \in \Sigma^{*} \mid \delta^{*}\left(S_{0}, \sigma\right) \in F\right\} .
$$

What should this definition look like for an NFA?

- What is $\delta^{*}\left(S_{0}, \sigma\right)$?

The set of states reachable from so by reading σ.

- How should it be related to F for N to accept σ ?

THE LANGUAGE DECIDED BY AN NFA (3)

Language decided by an NFA

For an NFA $N=\left(S, \Sigma, \delta, S_{0}, F\right)$,

$$
\mathcal{L}(N)=\left\{\sigma \in \Sigma^{*} \mid \delta^{*}\left(S_{0}, \sigma\right) \cap F \neq \emptyset\right\}
$$

What should this definition look like for an NFA?

- What is $\delta^{*}\left(S_{0}, \sigma\right)$?

The set of states reachable from so by reading σ.

- How should it be related to F for N to accept σ ?

e-CLOSURE

Definition: ϵ-Closure

For some subset $S^{\prime} \subseteq S$ of states, $\operatorname{ECLOSE}\left(S^{\prime}\right)$ is the set of all states that can be reached from states in S^{\prime} using only ϵ-transitions.

Formally, $\operatorname{ECLOSE}\left(S^{\prime}\right)$ is the smallest superset $\operatorname{ECLOSE}\left(S^{\prime}\right) \supseteq S^{\prime}$ such that $\delta(s, \epsilon) \subseteq \operatorname{ECLOSE}\left(S^{\prime}\right)$ for all $s \in \operatorname{ECLOSE}\left(S^{\prime}\right)$.

e-CLOSURE

Definition: ϵ-Closure

For some subset $S^{\prime} \subseteq S$ of states, $\operatorname{ECLOSE}\left(S^{\prime}\right)$ is the set of all states that can be reached from states in S^{\prime} using only ϵ-transitions.

Formally, $\operatorname{ECLOSE}\left(S^{\prime}\right)$ is the smallest superset $\operatorname{ECLOSE}\left(S^{\prime}\right) \supseteq S^{\prime}$ such that $\delta(s, \epsilon) \subseteq \operatorname{ECLOSE}\left(S^{\prime}\right)$ for all $s \in \operatorname{ECLOSE}\left(S^{\prime}\right)$.

e-CLOSURE

Definition: ϵ-Closure

For some subset $S^{\prime} \subseteq S$ of states, $\operatorname{ECLOSE}\left(S^{\prime}\right)$ is the set of all states that can be reached from states in S^{\prime} using only ϵ-transitions.

Formally, $\operatorname{ECLOSE}\left(S^{\prime}\right)$ is the smallest superset $\operatorname{ECLOSE}\left(S^{\prime}\right) \supseteq S^{\prime}$ such that $\delta(s, \epsilon) \subseteq \operatorname{ECLOSE}\left(S^{\prime}\right)$ for all $s \in \operatorname{ECLOSE}\left(S^{\prime}\right)$.

THE LANGUAGE DECIDED BY AN NFA (4)

A transition function for strings

$\delta^{*}(s, \sigma)=$ the set of states reachable from s by reading σ.

THE LANGUAGE DECIDED BY AN NFA (4)

A transition function for strings

$\delta^{*}(s, \sigma)=$ the set of states reachable from s by reading σ.

- $\delta^{*}(S, \epsilon)=$

THE LANGUAGE DECIDED BY AN NFA (4)

A transition function for strings

$\delta^{*}(s, \sigma)=$ the set of states reachable from s by reading σ.

- $\delta^{*}(s, \epsilon)=\operatorname{ECLOSE}(\{s\})$

THE LANGUAGE DECIDED BY AN NFA (4)

A transition function for strings

$\delta^{*}(s, \sigma)=$ the set of states reachable from s by reading σ.

- $\delta^{*}(s, \epsilon)=\operatorname{ECLOSE}(\{s\})$
- $\delta^{*}(s, x \sigma)=$

THE LANGUAGE DECIDED BY AN NFA (4)

A transition function for strings

$\delta^{*}(s, \sigma)=$ the set of states reachable from s by reading σ.

- $\delta^{*}(s, \epsilon)=\operatorname{ECLOSE}(\{s\})$
- $\delta^{*}(s, X \sigma)=\bigcup_{S_{1} \in \operatorname{ECLOSE}(\{s\})}$

ϵ

THE LANGUAGE DECIDED BY AN NFA (4)

A transition function for strings

$\delta^{*}(s, \sigma)=$ the set of states reachable from s by reading σ.

- $\delta^{*}(S, \epsilon)=\operatorname{ECLOSE}(\{s\})$
- $\delta^{*}(s, x \sigma)=\bigcup_{S_{1} \in \operatorname{ECLOSE}(\{s\})} \bigcup_{S_{2} \in \mathcal{\delta}\left(s_{1}, x\right)}$

ϵ

THE LANGUAGE DECIDED BY AN NFA (4)

A transition function for strings

$\delta^{*}(s, \sigma)=$ the set of states reachable from s by reading σ.

- $\delta^{*}(S, \epsilon)=\operatorname{ECLOSE}(\{s\})$
- $\delta^{*}(s, X \sigma)=\bigcup_{s_{1} \in \operatorname{ECLOSE}(\{s\})} \bigcup_{s_{2} \in \delta\left(s_{1}, x\right)} \delta^{*}\left(s_{2}, \sigma\right)$

ROAD MAP

- Regular languages
- Regular expressions
- Deterministic finite automata (DFA)
- Non-deterministic finite automata (NFA)
- Expressive power of DFA and NFA
- Equivalence of regular expressions, DFA, and NFA

Building a scanner

- Reqular exnressinr \rightarrow NFA \rightarrow DFA - Minimizing the DFA
- Limitations of regular languages

ROAD MAP

- Regular languages
- Regular expressions
- Deterministic finite automata (DFA)
- Non-deterministic finite automata (NFA)
- Expressive power of DFA and NFA

> Equivalence of regular expressions, DFA, and NFA

Building a scanner

- Regular expression \rightarrow NFA \rightarrow DFA
- Minimizing the DFA
- Limitations of regular languages

NFA CAN BE MORE CONVENIENT THAN DFA (1)

- All binary strings that have 101 as a substring. DFA:

NFA CAN BE MORE CONVENIENT THAN DFA (1)

- All binary strings that have 101 as a substring.

DFA:

NFA:

start $\xrightarrow{\dot{\Omega}} \xrightarrow{\left(s_{1}\right)} \xrightarrow{\left(s_{2}\right)}$

NFA CAN BE MORE CONVENIENT THAN DFA (1)

- All binary strings that have 101 as a substring.

DFA:

NFA:

- All binary strings that do not have 101 as a substring.

NFA CAN BE MORE CONVENIENT THAN DFA (2)

A more compelling example: \mathcal{L} (.*1..) NFA

NFA CAN BE MORE CONVENIENT THAN DFA (2)

A more compelling example: \mathcal{L} (.*1..)

NFA CAN BE MORE CONVENIENT THAN DFA (2)

A more compelling example: \mathcal{L} (.*1..)

NFA CAN BE MORE CONVENIENT THAN DFA (3)

When testing for the presence of patterns, NFA are more convenient than DFA. They only have to guess right where the pattern starts! This does not work for testing for their absence.

NFA CAN BE MORE CONVENIENT THAN DFA (3)

When testing for the presence of patterns, NFA are more convenient than DFA. They only have to guess right where the pattern starts! This does not work for testing for their absence.

Testing for the presence of patterns is the common case in parsing programming languages (keywords, identifiers, ...).

NFA CAN BE MORE CONVENIENT THAN DFA (3)

When testing for the presence of patterns, NFA are more convenient than DFA. They only have to guess right where the pattern starts! This does not work for testing for their absence.

Testing for the presence of patterns is the common case in parsing programming languages (keywords, identifiers, ...).

But ... computers are not good at guessing!

NFA CAN BE MORE CONVENIENT THAN DFA (3)

When testing for the presence of patterns, NFA are more convenient than DFA. They only have to guess right where the pattern starts! This does not work for testing for their absence.

Testing for the presence of patterns is the common case in parsing programming languages (keywords, identifiers, ...).

But ... computers are not good at guessing!
\rightarrow We need to construct DFA.

ROAD MAP

- Regular languages
- Regular expressions
- Deterministic finite automata (DFA)
- Non-deterministic finite automata (NFA)
- Expressive power of DFA and NFA

> Equivalence of regular expressions, DFA, and NFA

Building a scanner

- Regular expression \rightarrow NFA \rightarrow DFA
- Minimizing the DFA
- Limitations of regular languages

ROAD MAP

- Regular languages
- Regular expressions
- Deterministic finite automata (DFA)
- Non-deterministic finite automata (NFA)
- Expressive power of DFA and NFA
- Equivalence of regular expressions, DFA, and NFA

Building a scanner

- Regular expression NFA -DFA
- Minimizing the DFA

Limitations of regular languages

ARE NFA MORE POWERFUL THAN DFA?

ARE NFA MORE POWERFUL THAN DFA?

No!

ARE NFA MORE POWERFUL THAN DFA?

No!

Theorem

The following statements are equivalent:

- \mathcal{L} is a regular language.
- \mathcal{L} can be decided by a DFA.
- L can be decided by an NFA.

ARE NFA MORE POWERFUL THAN DFA?

No!

Theorem

The following statements are equivalent:

- \mathcal{L} is a regular language.
- \mathcal{L} can be decided by a DFA.
- \mathcal{L} can be decided by an NFA.

Proof outline:

- Given an NFA N, construct a DFA D with $\mathcal{L}(D)=\mathcal{L}(N)$.
- Given a regular expression R, construct an NFA that decides $\mathcal{L}(R)$.
- Given an NFA N, construct a regular expression R with $\mathcal{L}(R)=\mathcal{L}(N)$.

ARE NFA MORE POWERFUL THAN DFA?

No!

Theorem

The following statements are equivalent:

- \mathcal{L} is a regular language.
- \mathcal{L} can be decided by a DFA.
- \mathcal{L} can be decided by an NFA.

Proof outline:

- Given an NFA N, construct a DFA D with $\mathcal{L}(D)=\mathcal{L}(N)$.
- Given a regular expression R, construct an NFA that decides $\mathcal{L}(R)$.
- Given an NFA N, construct a regular expression R with $\mathcal{L}(R)=\mathcal{L}(N)$.

ARE NFA MORE POWERFUL THAN DFA?

No!

Theorem

The following statements are equivalent:

- \mathcal{L} is a regular language.
- \mathcal{L} can be decided by a DFA.
- \mathcal{L} can be decided by an NFA.

Proof outline:

- Given an NFA N, construct a DFA D with $\mathcal{L}(D)=\mathcal{L}(N)$.
- Given a regular expression R, construct an NFA that decides $\mathcal{L}(R)$.
- Given an NFA N, construct a regular expression R with $\mathcal{L}(R)=\mathcal{L}(N)$.

FROM NFA TO DFA

Idea: Each DFA state represents a set of NFA states the NFA can be in after reading some string.

FROM NFA TO DFA

Idea: Each DFA state represents a set of NFA states the NFA can be in after reading some string.

Trivial construction: $N=\left(S, \Sigma, \delta, S_{0}, F\right) \rightarrow D=\left(2^{S}, \Sigma, \gamma, t_{0}, G\right)$

- $2^{S}=\left\{S^{\prime} \mid S^{\prime} \subseteq S\right\}$ (set of all subsets of S)

FROM NFA TO DFA

Idea: Each DFA state represents a set of NFA states the NFA can be in after reading some string.

Trivial construction: $N=\left(S, \Sigma, \delta, S_{0}, F\right) \rightarrow D=\left(2^{S}, \Sigma, \gamma, t_{0}, G\right)$

- $2^{S}=\left\{S^{\prime} \mid S^{\prime} \subseteq S\right\}$ (set of all subsets of S)

Problem: $\left|2^{S}\right|=2^{|S|}$

FROM NFA TO DFA

Idea: Each DFA state represents a set of NFA states the NFA can be in after reading some string.

Trivial construction: $N=\left(S, \Sigma, \delta, S_{0}, F\right) \rightarrow D=\left(2^{S}, \Sigma, \gamma, t_{0}, G\right)$

- $2^{S}=\left\{S^{\prime} \mid S^{\prime} \subseteq S\right\}$ (set of all subsets of S)

Problem: $\left|2^{S}\right|=2^{|S|}$
\rightarrow Can we construct only the subset of states in 2^{S} that are reachable from t_{0} ?

INITIAL STATE AND ACCEPTING STATES OF THE DFA

Idea: Each DFA state represents a set of NFA states the NFA can be in after reading some string.

Trivial construction: $N=\left(S, \Sigma, \delta, S_{0}, F\right) \rightarrow D=\left(2^{S}, \Sigma, \gamma, t_{0}, G\right)$

INITIAL STATE AND ACCEPTING STATES OF THE DFA

Idea: Each DFA state represents a set of NFA states the NFA can be in after reading some string.

Trivial construction: $N=\left(S, \Sigma, \delta, S_{0}, F\right) \rightarrow D=\left(2^{S}, \Sigma, \gamma, t_{0}, G\right)$

Initial state of DFA:

INITIAL STATE AND ACCEPTING STATES OF THE DFA

Idea: Each DFA state represents a set of NFA states the NFA can be in after reading some string.

Trivial construction: $N=\left(S, \Sigma, \delta, S_{0}, F\right) \rightarrow D=\left(2^{S}, \Sigma, \gamma, t_{0}, G\right)$

Initial state of DFA: The states the NFA can reach without consuming any input.

INITIAL STATE AND ACCEPTING STATES OF THE DFA

Idea: Each DFA state represents a set of NFA states the NFA can be in after reading some string.

Trivial construction: $N=\left(S, \Sigma, \delta, S_{0}, F\right) \rightarrow D=\left(2^{S}, \Sigma, \gamma, t_{0}, G\right)$

Initial state of DFA: The states the NFA can reach without consuming any input.

$$
t_{0}=\operatorname{ECLOSE}\left(\left\{s_{0}\right\}\right)
$$

INITIAL STATE AND ACCEPTING STATES OF THE DFA

Idea: Each DFA state represents a set of NFA states the NFA can be in after reading some string.

Trivial construction: $N=\left(S, \Sigma, \delta, S_{0}, F\right) \rightarrow D=\left(2^{S}, \Sigma, \gamma, t_{0}, G\right)$

Initial state of DFA: The states the NFA can reach without consuming any input.

$$
t_{0}=\operatorname{ECLOSE}\left(\left\{s_{0}\right\}\right)
$$

Accepting states of the DFA:

INITIAL STATE AND ACCEPTING STATES OF THE DFA

Idea: Each DFA state represents a set of NFA states the NFA can be in after reading some string.

Trivial construction: $N=\left(S, \Sigma, \delta, S_{0}, F\right) \rightarrow D=\left(2^{S}, \Sigma, \gamma, t_{0}, G\right)$

Initial state of DFA: The states the NFA can reach without consuming any input.

$$
t_{0}=\operatorname{ECLOSE}\left(\left\{s_{0}\right\}\right)
$$

Accepting states of the DFA: All subsets of S that include an accepting state.

INITIAL STATE AND ACCEPTING STATES OF THE DFA

Idea: Each DFA state represents a set of NFA states the NFA can be in after reading some string.

Trivial construction: $N=\left(S, \Sigma, \delta, S_{0}, F\right) \rightarrow D=\left(2^{S}, \Sigma, \gamma, t_{0}, G\right)$

Initial state of DFA: The states the NFA can reach without consuming any input.

$$
t_{0}=\operatorname{ECLOSE}\left(\left\{s_{0}\right\}\right)
$$

Accepting states of the DFA: All subsets of S that include an accepting state.

$$
G=\left\{S^{\prime} \subseteq S \mid S^{\prime} \cap F \neq \emptyset\right\}
$$

TRANSITION FUNCTION OF THE DFA (1)

Idea: Each DFA state represents a set of NFA states the NFA can be in after reading some string.

Trivial construction: $N=\left(S, \Sigma, \delta, S_{0}, F\right) \rightarrow D=\left(2^{S}, \Sigma, \gamma, t_{0}, G\right)$

TRANSITION FUNCTION OF THE DFA (1)

Idea: Each DFA state represents a set of NFA states the NFA can be in after reading some string.

Trivial construction: $N=\left(S, \Sigma, \delta, S_{0}, F\right) \rightarrow D=\left(2^{S}, \Sigma, \gamma, t_{0}, G\right)$

We want $\gamma^{*}\left(t_{0}, \sigma\right)=\gamma^{*}\left(\operatorname{ECLOSE}\left(\left\{S_{0}\right\}\right), \sigma\right)=\delta^{*}\left(S_{0}, \sigma\right)$.

TRANSITION FUNCTION OF THE DFA (2)

A transition function for sets of states of the NFA

$\delta^{*}\left(S^{\prime}, \sigma\right)=$ the set of states reachable from any state in S^{\prime} by reading σ.

TRANSITION FUNCTION OF THE DFA (2)

A transition function for sets of states of the NFA

$\delta^{*}\left(S^{\prime}, \sigma\right)=$ the set of states reachable from any state in S^{\prime} by reading σ.

- $\delta^{*}\left(S^{\prime}, \epsilon\right)=$

$$
\begin{array}{ll}
S^{\prime} & 0 \\
0 \\
0
\end{array}
$$

TRANSITION FUNCTION OF THE DFA (2)

A transition function for sets of states of the NFA

$\delta^{*}\left(S^{\prime}, \sigma\right)=$ the set of states reachable from any state in S^{\prime} by reading σ.

- $\delta^{*}\left(S^{\prime}, \epsilon\right)=\operatorname{ECLOSE}\left(S^{\prime}\right)$

TRANSITION FUNCTION OF THE DFA (2)

A transition function for sets of states of the NFA

$\delta^{*}\left(S^{\prime}, \sigma\right)=$ the set of states reachable from any state in S^{\prime} by reading σ.

- $\delta^{*}\left(S^{\prime}, \epsilon\right)=\operatorname{ECLOSE}\left(S^{\prime}\right)$
- $\delta^{*}\left(S^{\prime}, x \sigma\right)=$

TRANSITION FUNCTION OF THE DFA (2)

A transition function for sets of states of the NFA

$\delta^{*}\left(S^{\prime}, \sigma\right)=$ the set of states reachable from any state in S^{\prime} by reading σ.

- $\delta^{*}\left(S^{\prime}, \epsilon\right)=\operatorname{ECLOSE}\left(S^{\prime}\right)$
- $\delta^{*}\left(S^{\prime}, x \sigma\right)=\bigcup_{S_{1} \in \operatorname{ECLOSE}\left(S^{\prime}\right)}$

ϵ

TRANSITION FUNCTION OF THE DFA (2)

A transition function for sets of states of the NFA

$\delta^{*}\left(S^{\prime}, \sigma\right)=$ the set of states reachable from any state in S^{\prime} by reading σ.

- $\delta^{*}\left(S^{\prime}, \epsilon\right)=\operatorname{ECLOSE}\left(S^{\prime}\right)$
- $\delta^{*}\left(S^{\prime}, x \sigma\right)=\bigcup_{S_{1} \in \operatorname{ECLOSE}\left(S^{\prime}\right)} \bigcup_{S_{2} \in \delta\left(s_{1}, x\right)}$

TRANSITION FUNCTION OF THE DFA (2)

A transition function for sets of states of the NFA

$\delta^{*}\left(S^{\prime}, \sigma\right)=$ the set of states reachable from any state in S^{\prime} by reading σ.

- $\delta^{*}\left(S^{\prime}, \epsilon\right)=\operatorname{ECLOSE}\left(S^{\prime}\right)$
- $\delta^{*}\left(S^{\prime}, x \sigma\right)=\bigcup_{s_{1} \in \operatorname{ECLOSE}\left(S^{\prime}\right)} \bigcup_{s_{2} \in \delta\left(S_{1}, x\right)} \delta^{*}\left(S_{2}, \sigma\right)$

TRANSITION FUNCTION OF THE DFA (3)

Transition function of the DFA

Let

- $\gamma\left(S^{\prime}, x\right)=\bigcup_{s \in S^{\prime}} \operatorname{ECLOSE}(\delta(s, x))$,

TRANSITION FUNCTION OF THE DFA (3)

Transition function of the DFA

Let

- $\gamma\left(S^{\prime}, x\right)=\bigcup_{s \in S^{\prime}} \operatorname{ECLOSE}(\delta(s, x))$,
- $\gamma^{*}\left(S^{\prime}, \epsilon\right)=S^{\prime}$, and
- $\gamma^{*}\left(S^{\prime}, x \sigma\right)=\gamma^{*}\left(\gamma\left(S^{\prime}, x\right), \sigma\right)$.

TRANSITION FUNCTION OF THE DFA (3)

Transition function of the DFA

Let

- $\gamma\left(S^{\prime}, x\right)=\bigcup_{s \in S^{\prime}} \operatorname{ECLOSE}(\delta(s, x))$,
- $\gamma^{*}\left(S^{\prime}, \epsilon\right)=S^{\prime}$, and
- $\gamma^{*}\left(S^{\prime}, x \sigma\right)=\gamma^{*}\left(\gamma\left(S^{\prime}, x\right), \sigma\right)$.

$$
\delta^{*}\left(S^{\prime}, \sigma\right)=\gamma^{*}\left(\operatorname{ECLOSE}\left(S^{\prime}\right), \sigma\right)
$$

TRANSITION FUNCTION OF THE DFA (3)

Transition function of the DFA

Let

- $\gamma\left(S^{\prime}, x\right)=\bigcup_{s \in S^{\prime}} \operatorname{ECLOSE}(\delta(s, x))$,
- $\gamma^{*}\left(S^{\prime}, \epsilon\right)=S^{\prime}$, and
- $\gamma^{*}\left(S^{\prime}, x \sigma\right)=\gamma^{*}\left(\gamma\left(S^{\prime}, x\right), \sigma\right)$.

TRANSITION FUNCTION OF THE DFA (3)

Transition function of the DFA

Let

- $\gamma\left(S^{\prime}, x\right)=\bigcup_{s \in S^{\prime}} \operatorname{ECLOSE}(\delta(s, x))$,
- $\gamma^{*}\left(S^{\prime}, \epsilon\right)=S^{\prime}$, and
- $\gamma^{*}\left(S^{\prime}, x \sigma\right)=\gamma^{*}\left(\gamma\left(S^{\prime}, x\right), \sigma\right)$.

TRANSITION FUNCTION OF THE DFA (3)

Transition function of the DFA

Let

- $\gamma\left(S^{\prime}, x\right)=\bigcup_{s \in S^{\prime}} \operatorname{ECLOSE}(\delta(s, x))$,
- $\gamma^{*}\left(S^{\prime}, \epsilon\right)=S^{\prime}$, and
- $\gamma^{*}\left(S^{\prime}, x \sigma\right)=\gamma^{*}\left(\gamma\left(S^{\prime}, x\right), \sigma\right)$.

TRANSITION FUNCTION OF THE DFA (3)

Transition function of the DFA

Let

- $\gamma\left(S^{\prime}, x\right)=\bigcup_{s \in S^{\prime}} \operatorname{ECLOSE}(\delta(s, x))$,
- $\gamma^{*}\left(S^{\prime}, \epsilon\right)=S^{\prime}$, and
- $\gamma^{*}\left(S^{\prime}, x \sigma\right)=\gamma^{*}\left(\gamma\left(S^{\prime}, x\right), \sigma\right)$.

TRANSITION FUNCTION OF THE DFA (3)

Transition function of the DFA

Let

- $\gamma\left(S^{\prime}, x\right)=\bigcup_{s \in S^{\prime}} \operatorname{ECLOSE}(\delta(s, x))$,
- $\gamma^{*}\left(S^{\prime}, \epsilon\right)=S^{\prime}$, and
- $\gamma^{*}\left(S^{\prime}, x \sigma\right)=\gamma^{*}\left(\gamma\left(S^{\prime}, x\right), \sigma\right)$.

TRANSITION FUNCTION OF THE DFA (3)

Transition function of the DFA

Let

- $\gamma\left(S^{\prime}, x\right)=\bigcup_{s \in S^{\prime}} \operatorname{ECLOSE}(\delta(s, x))$,
- $\gamma^{*}\left(S^{\prime}, \epsilon\right)=S^{\prime}$, and
- $\gamma^{*}\left(S^{\prime}, x \sigma\right)=\gamma^{*}\left(\gamma\left(S^{\prime}, x\right), \sigma\right)$.

TRANSITION FUNCTION OF THE DFA (3)

Transition function of the DFA

Let

- $\gamma\left(S^{\prime}, x\right)=\bigcup_{s \in S^{\prime}} \operatorname{ECLOSE}(\delta(s, x))$,
- $\gamma^{*}\left(S^{\prime}, \epsilon\right)=S^{\prime}$, and
- $\gamma^{*}\left(S^{\prime}, x \sigma\right)=\gamma^{*}\left(\gamma\left(S^{\prime}, x\right), \sigma\right)$.

FROM NFA TO DFA: CONSTRUCTING ONLY THE STATES WE NEED

$$
N=\left(S, \Sigma, \delta, S_{0}, F\right) \rightarrow D=\left(T, \Sigma, \gamma, t_{0}, G\right)
$$

FROM NFA TO DFA: CONSTRUCTING ONLY THE STATES WE NEED

$$
N=\left(S, \Sigma, \delta, S_{0}, F\right) \rightarrow D=\left(T, \Sigma, \gamma, t_{0}, G\right)
$$

So far, $T=2^{S}$, but only a subset of states may be reachable from t_{0}. \rightarrow We would like to choose T to be this subset.

FROM NFA TO DFA: CONSTRUCTING ONLY THE STATES WE NEED

$$
N=\left(S, \Sigma, \delta, S_{0}, F\right) \rightarrow D=\left(T, \Sigma, \gamma, t_{0}, G\right)
$$

So far, $T=2^{S}$, but only a subset of states may be reachable from t_{0}. \rightarrow We would like to choose T to be this subset.

Obvious idea: Construct D with $T=2^{S}$, then throw away the states not reachable from t_{0}.

FROM NFA TO DFA: CONSTRUCTING ONLY THE STATES WE NEED

$$
N=\left(S, \Sigma, \delta, s_{0}, F\right) \rightarrow D=\left(T, \Sigma, \gamma, t_{0}, G\right)
$$

So far, $T=2^{S}$, but only a subset of states may be reachable from t_{0}. \rightarrow We would like to choose T to be this subset.

Obvious idea: Construct D with $T=2^{S}$, then throw away the states not reachable from t_{0}.
Too costly!

FROM NFA TO DFA: CONSTRUCTING ONLY THE STATES WE NEED

$$
N=\left(S, \Sigma, \delta, s_{0}, F\right) \rightarrow D=\left(T, \Sigma, \gamma, t_{0}, G\right)
$$

So far, $T=2^{S}$, but only a subset of states may be reachable from t_{0}.
\rightarrow We would like to choose T to be this subset.
Obvious idea: Construct D with $T=2^{S}$, then throw away the states not reachable from t_{0}.
Too costly!
Almost as obvious: Generate only the states we can reach from t_{0} :

- Start with $T=\left\{t_{0}\right\}$ and a queue $Q=\left\{t_{0}\right\}$ of new states.
- While $Q \neq \emptyset$:
- Remove some $t \in Q$ from Q.
- For each $x \in \Sigma$, add $\gamma(t, x)$ to T, and to Q if $\gamma(t, x)$ was not in T before.

FROM NFA TO DFA: EXAMPLE

	δ	0	1
\rightarrow	$\left\{S_{0}\right\}$	$\left\{S_{1}\right\}$	\emptyset
	$\left\{S_{1}\right\}$	\emptyset	$\left\{S_{2}, S_{3}, S_{6}, S_{9}\right\}$
	\emptyset		
	$\left\{S_{2}, S_{3}, S_{6}, S_{9}\right\}$		

FROM NFA TO DFA: EXAMPLE

	δ	0	1
\rightarrow	$\left\{s_{0}\right\}$	$\left\{s_{1}\right\}$	\emptyset
	$\left\{s_{1}\right\}$	\emptyset	$\left\{s_{2}, s_{3}, s_{6}, s_{9}\right\}$
	\emptyset	\emptyset	\emptyset
	$\left\{s_{2}, s_{3}, S_{6}, s_{9}\right\}$		

FROM NFA TO DFA: EXAMPLE

	δ	0	1
	$\left\{S_{0}\right\}$	$\left\{S_{1}\right\}$	\emptyset
	$\left\{S_{1}\right\}$	\emptyset	$\left\{S_{2}, S_{3}, S_{6}, S_{9}\right\}$
	\emptyset	\emptyset	\emptyset
	$\left\{S_{2}, S_{3}, S_{6}, S_{9}\right\}$	$\left\{S_{7}\right\}$	

FROM NFA TO DFA: EXAMPLE

	δ	0	1
\rightarrow	$\left\{S_{0}\right\}$	$\left\{S_{1}\right\}$	\emptyset
	$\left\{S_{1}\right\}$	\emptyset	$\left\{S_{2}, S_{3}, S_{6}, S_{9}\right\}$
	\emptyset	\emptyset	\emptyset
	$\left\{S_{2}, S_{3}, S_{6}, S_{9}\right\}$	$\left\{S_{7}\right\}$	$\left\{S_{4}, S_{10}\right\}$

FROM NFA TO DFA: EXAMPLE

	δ	0
	$\left\{S_{0}\right\}$	$\left\{S_{1}\right\}$
	$\left\{S_{1}\right\}$	\emptyset
	\emptyset	\emptyset
	$\left\{S_{2}, S_{3}, S_{6}, S_{9}\right\}$	\emptyset
$\left\{S_{7}\right\}$		$\left.S_{3}, S_{6}, S_{9}\right\}$
	$\left\{S_{4}, S_{10}\right\}$	\emptyset

FROM NFA TO DFA: EXAMPLE

FROM NFA TO DFA: EXAMPLE

FROM NFA TO DFA: EXAMPLE

	δ	0
\rightarrow	$\left\{S_{0}\right\}$	$\left\{S_{1}\right\}$
	$\left\{S_{1}\right\}$	\emptyset
	\emptyset	\emptyset
	$\left\{S_{2}, S_{3}, S_{6}, S_{9}\right\}$	$\left\{S_{2}, S_{3}, S_{6}, S_{9}\right\}$
	$\left\{S_{7}\right\}$	\emptyset
	$\left\{S_{4}, S_{10}\right\}$	
	$\left\{S_{2}, S_{3}, S_{6}, S_{8}, S_{9}\right\}$	$\left\{S_{4}, S_{10}\right\}$
		\emptyset

FROM NFA TO DFA: EXAMPLE

	δ	0
\rightarrow	$\left\{S_{0}\right\}$	$\left\{S_{1}\right\}$
	$\left\{S_{1}\right\}$	\emptyset
\emptyset	\emptyset	\emptyset
$\left\{S_{2}, S_{3}, S_{6}, S_{9}\right\}$	$\left\{S_{2}, S_{3}, S_{6}, S_{9}\right\}$	
$\left\{S_{7}\right\}$	\emptyset	$\left\{S_{4}, S_{10}\right\}$
	$\left\{S_{4}, S_{10}\right\}$	
$\left\{S_{2}, S_{3}, S_{6}, S_{8}, S_{9}\right\}$	\emptyset	
	$\left\{S_{5}\right\}$	

FROM NFA TO DFA: EXAMPLE

FROM NFA TO DFA: EXAMPLE

δ	0	1
$\rightarrow \quad\left\{S_{0}\right\}$	$\left\{\mathrm{S}_{1}\right\}$	\emptyset
$\left\{S_{1}\right\}$	\emptyset	$\left\{s_{2}, s_{3}, s_{6}, s_{9}\right\}$
\emptyset	\emptyset	\emptyset
$\left\{s_{2}, s_{3}, s_{6}, S_{9}\right\}$	\{ S_{7} \}	$\left\{S_{4}, S_{10}\right\}$
\{ S_{7} \}	$\left\{S_{2}, S_{3}, S_{6}, S_{8}, S_{9}\right\}$	\emptyset
$\left\{S_{4}, S_{10}\right\}$	$\left\{S_{5}\right\}$	$\left\{S_{2}, S_{3}, S_{6}, S_{9}, S_{11}\right\}$
$\begin{gathered} \left\{S_{2}, S_{3}, S_{6}, S_{8}, S_{9}\right\} \\ \left\{S_{5}\right\} \end{gathered}$		
$\left\{s_{2}, S_{3}, S_{6}, S_{9}, S_{11}\right\}$		

FROM NFA TO DFA: EXAMPLE

δ	0	1
$\rightarrow \quad\left\{S_{0}\right\}$	$\left\{\mathrm{S}_{1}\right\}$	\emptyset
$\left\{\mathrm{S}_{1}\right\}$	\emptyset	$\left\{s_{2}, S_{3}, S_{6}, S_{9}\right\}$
\emptyset	\emptyset	\emptyset
$\left\{s_{2}, s_{3}, s_{6}, s_{9}\right\}$	\{ S_{7} \}	$\left\{S_{4}, \mathrm{~S}_{10}\right\}$
$\left\{\mathrm{S}_{7}\right\}$	$\left\{S_{2}, S_{3}, S_{6}, S_{8}, S_{9}\right\}$	\emptyset
$\left\{S_{4}, S_{10}\right\}$	$\left\{\mathrm{S}_{5}\right\}$	$\left\{s_{2}, s_{3}, S_{6}, s_{9}, s_{11}\right\}$
$\begin{gathered} \left\{S_{2}, S_{3}, S_{6}, S_{8}, S_{9}\right\} \\ \left\{S_{5}\right\} \end{gathered}$	$\left\{\mathrm{S}_{7}\right\}$	
$\left\{s_{2}, S_{3}, S_{6}, S_{9}, S_{11}\right\}$		

FROM NFA TO DFA: EXAMPLE

δ	0	1
$\rightarrow \quad\left\{S_{0}\right\}$	$\left\{\mathrm{S}_{1}\right\}$	\emptyset
$\left\{\mathrm{S}_{1}\right\}$	\emptyset	$\left\{s_{2}, s_{3}, s_{6}, s_{9}\right\}$
\emptyset	\emptyset	\emptyset
$\left\{S_{2}, S_{3}, S_{6}, S_{9}\right\}$	\{S7 ${ }^{\text {, }}$	$\left\{S_{4}, S_{10}\right\}$
$\left\{\mathrm{S}_{7}\right\}$	$\left\{S_{2}, S_{3}, S_{6}, S_{8}, S_{9}\right\}$	\emptyset
$\left\{S_{4}, S_{10}\right\}$	$\left\{\mathrm{S}_{5}\right\}$	$\left\{s_{2}, s_{3}, s_{6}, s_{9}, s_{11}\right\}$
$\left\{s_{2}, s_{3}, s_{6}, s_{8}, s_{9}\right\}$ $\left\{S_{5}\right\}$	\{S ${ }^{\text {\% }}$ \}	$\left\{S_{4}, S_{10}\right\}$
$\left\{S_{2}, S_{3}, S_{6}, S_{9}, S_{11}\right\}$		

FROM NFA TO DFA: EXAMPLE

δ	0	1
$\rightarrow \quad\left\{S_{0}\right\}$	$\left\{\mathrm{S}_{1}\right\}$	\emptyset
$\left\{S_{1}\right\}$	\emptyset	$\left\{s_{2}, s_{3}, S_{6}, s_{9}\right\}$
\emptyset	\emptyset	\emptyset
$\left\{S_{2}, S_{3}, S_{6}, S_{9}\right\}$	\{S7 ${ }^{\text {d }}$	$\left\{S_{4}, S_{10}\right\}$
$\left\{\mathrm{S}_{7}\right\}$	$\left\{S_{2}, S_{3}, S_{6}, S_{8}, S_{9}\right\}$	\emptyset
$\left\{S_{4}, S_{10}\right\}$	$\left\{S_{5}\right\}$	$\left\{s_{2}, S_{3}, S_{6}, S_{9}, s_{11}\right\}$
$\left\{s_{2}, s_{3}, s_{6}, s_{8}, s_{9}\right\}$	$\left\{\mathrm{S}_{7}\right\}$	$\left\{S_{4}, S_{10}\right\}$
$\left\{S_{5}\right\}$	\emptyset	\emptyset
$\left\{S_{2}, S_{3}, S_{6}, S_{9}, S_{11}\right\}$		

FROM NFA TO DFA: EXAMPLE

	δ	0
\rightarrow	$\left\{S_{0}\right\}$	$\left\{S_{1}\right\}$
	$\left\{S_{1}\right\}$	\emptyset
\emptyset	\emptyset	\emptyset
	$\left\{S_{2}, S_{3}, S_{6}, S_{9}\right\}$	$\left\{S_{2}, S_{3}, S_{6}, S_{9}\right\}$
	$\left\{S_{7}\right\}$	\emptyset
	$\left\{S_{4}, S_{10}\right\}$	$\left.S_{2}, S_{3}, S_{6}, S_{8}, S_{9}\right\}$
	$\left\{S_{5}\right\}$	$\left\{S_{4}, S_{10}\right\}$
	$\left.\emptyset S_{2}, S_{3}, S_{6}, S_{8}, S_{9}\right\}$	$\left.S_{9}\right\}$
	$\left\{S_{7}\right\}$	$\left\{S_{5}\right\}$
	$\left\{S_{2}, S_{3}, S_{6}, S_{9}, S_{11}\right\}$	\emptyset
	$\left\{S_{7}\right\}$	\emptyset

FROM NFA TO DFA: EXAMPLE

	δ	0
\rightarrow	$\left\{S_{0}\right\}$	$\left\{S_{1}\right\}$
	$\left\{S_{1}\right\}$	\emptyset
\emptyset	\emptyset	\emptyset
	$\left\{S_{2}, S_{3}, S_{6}, S_{9}\right\}$	$\left\{S_{2}, S_{3}, S_{6}, S_{9}\right\}$
	$\left\{S_{7}\right\}$	\emptyset
	$\left\{S_{4}, S_{10}\right\}$	$\left.S_{2}, S_{3}, S_{6}, S_{8}, S_{9}\right\}$
	$\left\{S_{5}\right\}$	$\left\{S_{4}, S_{10}\right\}$
	$\left.\emptyset S_{2}, S_{3}, S_{3}, S_{6}, S_{9}, S_{11}\right\}$	
	$\left\{S_{5}\right\}$	$\left\{S_{7}\right\}$
	$\left.\emptyset S_{2}, S_{3}, S_{6}, S_{9}, S_{11}\right\}$	$\left\{S_{7}\right\}$

FROM NFA TO DFA: EXAMPLE

δ	0	1
$\rightarrow \quad\left\{\mathrm{S}_{0}\right\}$	$\left\{S_{1}\right\}$	\emptyset
$\left\{S_{1}\right\}$	\emptyset	$\left\{s_{2}, S_{3}, S_{6}, S_{9}\right\}$
\emptyset	\emptyset	\emptyset
$\left\{s_{2}, S_{3}, S_{6}, S_{9}\right\}$	\{S7 $\}$	$\left\{S_{4}, S_{10}\right\}$
\{ S_{7} \}	$\left\{S_{2}, S_{3}, S_{6}, S_{8}, S_{9}\right\}$	\emptyset
$\left\{S_{4}, S_{10}\right\}$	$\left\{S_{5}\right\}$	$\left\{S_{2}, S_{3}, S_{6}, S_{9}, S_{11}\right\}$
$\left\{s_{2}, S_{3}, S_{6}, S_{8}, S_{9}\right\}$	\{ S_{7} \}	$\left\{S_{4}, S_{10}\right\}$
* $\left\{S_{5}\right\}$	\emptyset	\emptyset
$\left\{S_{2}, S_{3}, S_{6}, S_{9}, S_{11}\right\}$	\{ S_{7} \}	$\left\{S_{4}, S_{10}\right\}$

FROM NFA TO DFA: EXAMPLE

FROM NFA TO DFA: EXPONENTIAL NUMBER OF STATES (1)

Our construction aims to avoid constructing an NFA with an exponential number of states.

This works for most languages (e.g., the ones used in lexical analysis).

FROM NFA TO DFA: EXPONENTIAL NUMBER OF STATES (1)

Our construction aims to avoid constructing an NFA with an exponential number of states.

This works for most languages (e.g., the ones used in lexical analysis).
However, there are languages where a DFA needs exponentially more states than an NFA:

$$
\mathcal{L}(. * 1 .\{n-1\})
$$

FROM NFA TO DFA: EXPONENTIAL NUMBER OF STATES (1)

Our construction aims to avoid constructing an NFA with an exponential number of states.

This works for most languages (e.g., the ones used in lexical analysis).
However, there are languages where a DFA needs exponentially more states than an NFA:

$$
\mathcal{L}(. * 1 .\{n-1\})
$$

The NFA has $n+1$ states:

FROM NFA TO DFA: EXPONENTIAL NUMBER OF STATES (1)

Our construction aims to avoid constructing an NFA with an exponential number of states.

This works for most languages (e.g., the ones used in lexical analysis).
However, there are languages where a DFA needs exponentially more states than an NFA:

$$
\mathcal{L}(. * 1 .\{n-1\})
$$

The NFA has $n+1$ states:

FROM NFA TO DFA: EXPONENTIAL NUMBER OF STATES (2)

Claim

Any DFA that decides $\mathcal{L}=\mathcal{L}(. * 1 .\{n-1\})$ has at least 2^{n} states. $(\Sigma=\{0,1\}$.

FROM NFA TO DFA: EXPONENTIAL NUMBER OF STATES (2)

Claim

Any DFA that decides $\mathcal{L}=\mathcal{L}(. * 1 .\{n-1\})$ has at least 2^{n} states. $(\Sigma=\{0,1\}$.

Proof:

FROM NFA TO DFA: EXPONENTIAL NUMBER OF STATES (2)

Claim

Any DFA that decides $\mathcal{L}=\mathcal{L}(. * 1 .\{n-1\})$ has at least 2^{n} states. $(\Sigma=\{0,1\}$.

Proof:

- Assume there exists a DFA $D=\left(S, \Sigma, \delta, S_{0}, F\right)$ with $\mathcal{L}(D)=\mathcal{L}$ and $|S|<2^{n}$.

FROM NFA TO DFA: EXPONENTIAL NUMBER OF STATES (2)

Claim

Any DFA that decides $\mathcal{L}=\mathcal{L}(. * 1 .\{n-1\})$ has at least 2^{n} states. $(\Sigma=\{0,1\}$.

Proof:

- Assume there exists a DFA $D=\left(S, \Sigma, \delta, S_{0}, F\right)$ with $\mathcal{L}(D)=\mathcal{L}$ and $|S|<2^{n}$.
\Rightarrow There exist two strings $\sigma_{1} \neq \sigma_{2} \in \Sigma^{n}$ such that $\delta^{*}\left(s_{0}, \sigma_{1}\right)=\delta^{*}\left(s_{0}, \sigma_{2}\right)$.

FROM NFA TO DFA: EXPONENTIAL NUMBER OF STATES (2)

Claim

Any DFA that decides $\mathcal{L}=\mathcal{L}(. * 1 .\{n-1\})$ has at least 2^{n} states. $(\Sigma=\{0,1\}$.

Proof:

- Assume there exists a DFA $D=\left(S, \Sigma, \delta, S_{0}, F\right)$ with $\mathcal{L}(D)=\mathcal{L}$ and $|S|<2^{n}$.
\Rightarrow There exist two strings $\sigma_{1} \neq \sigma_{2} \in \Sigma^{n}$ such that $\delta^{*}\left(S_{0}, \sigma_{1}\right)=\delta^{*}\left(S_{0}, \sigma_{2}\right)$.
- Since $\sigma_{1} \neq \sigma_{2}$, w.l.o.g. $\sigma_{1}=$. $\{m\} 0 .\{n-m-1\}$ and $\sigma_{2}=.\{m\} 1 .\{n-m-1\}$.

FROM NFA TO DFA: EXPONENTIAL NUMBER OF STATES (2)

Claim

Any DFA that decides $\mathcal{L}=\mathcal{L}(. * 1 .\{n-1\})$ has at least 2^{n} states. $(\Sigma=\{0,1\}$.

Proof:

- Assume there exists a DFA $D=\left(S, \Sigma, \delta, s_{0}, F\right)$ with $\mathcal{L}(D)=\mathcal{L}$ and $|S|<2^{n}$.
\Rightarrow There exist two strings $\sigma_{1} \neq \sigma_{2} \in \Sigma^{n}$ such that $\delta^{*}\left(S_{0}, \sigma_{1}\right)=\delta^{*}\left(S_{0}, \sigma_{2}\right)$.
- Since $\sigma_{1} \neq \sigma_{2}$, w.l.o.g. $\sigma_{1}=.\{m\} 0 .\{n-m-1\}$ and $\sigma_{2}=.\{m\} 1 .\{n-m-1\}$.
- Since $\delta^{*}\left(s_{0}, \sigma_{1}\right)=\delta^{*}\left(s_{0}, \sigma_{2}\right)$, we also have $\delta^{*}\left(s_{0}, \sigma_{1} 0^{m}\right)=\delta^{*}\left(s_{0}, \sigma_{2} 0^{m}\right)$.

FROM NFA TO DFA: EXPONENTIAL NUMBER OF STATES (2)

Claim

Any DFA that decides $\mathcal{L}=\mathcal{L}(. * 1 .\{n-1\})$ has at least 2^{n} states. $(\Sigma=\{0,1\}$.

Proof:

- Assume there exists a DFA $D=\left(S, \Sigma, \delta, s_{0}, F\right)$ with $\mathcal{L}(D)=\mathcal{L}$ and $|S|<2^{n}$.
\Rightarrow There exist two strings $\sigma_{1} \neq \sigma_{2} \in \Sigma^{n}$ such that $\delta^{*}\left(S_{0}, \sigma_{1}\right)=\delta^{*}\left(S_{0}, \sigma_{2}\right)$.
- Since $\sigma_{1} \neq \sigma_{2}$, w.l.o.g. $\sigma_{1}=.\{m\} 0 .\{n-m-1\}$ and $\sigma_{2}=.\{m\} 1 .\{n-m-1\}$.
- Since $\delta^{*}\left(s_{0}, \sigma_{1}\right)=\delta^{*}\left(s_{0}, \sigma_{2}\right)$, we also have $\delta^{*}\left(s_{0}, \sigma_{1} 0^{m}\right)=\delta^{*}\left(s_{0}, \sigma_{2} 0^{m}\right)$.
\Rightarrow Either D accepts both $\sigma_{1} 0^{m}$ and $\sigma_{2} 0^{m}$ or D rejects both $\sigma_{1} 0^{m}$ and $\sigma_{2} 0^{m}$.

FROM NFA TO DFA: EXPONENTIAL NUMBER OF STATES (2)

Claim

Any DFA that decides $\mathcal{L}=\mathcal{L}(. * 1 .\{n-1\})$ has at least 2^{n} states. $(\Sigma=\{0,1\}$.

Proof:

- Assume there exists a DFA $D=\left(S, \Sigma, \delta, s_{0}, F\right)$ with $\mathcal{L}(D)=\mathcal{L}$ and $|S|<2^{n}$.
\Rightarrow There exist two strings $\sigma_{1} \neq \sigma_{2} \in \Sigma^{n}$ such that $\delta^{*}\left(S_{0}, \sigma_{1}\right)=\delta^{*}\left(S_{0}, \sigma_{2}\right)$.
- Since $\sigma_{1} \neq \sigma_{2}$, w.l.o.g. $\sigma_{1}=.\{m\} 0 .\{n-m-1\}$ and $\sigma_{2}=.\{m\} 1 .\{n-m-1\}$.
- Since $\delta^{*}\left(S_{0}, \sigma_{1}\right)=\delta^{*}\left(S_{0}, \sigma_{2}\right)$, we also have $\delta^{*}\left(S_{0}, \sigma_{1} 0^{m}\right)=\delta^{*}\left(S_{0}, \sigma_{2} 0^{m}\right)$.
\Rightarrow Either D accepts both $\sigma_{1} 0^{m}$ and $\sigma_{2} 0^{m}$ or D rejects both $\sigma_{1} 0^{m}$ and $\sigma_{2} 0^{m}$.
- However, $\sigma_{1} 0^{m} \notin \mathcal{L}$ and $\sigma_{2} 0^{m} \in \mathcal{L}$.

FROM NFA TO DFA: EXPONENTIAL NUMBER OF STATES (2)

Claim

Any DFA that decides $\mathcal{L}=\mathcal{L}(. * 1 .\{n-1\})$ has at least 2^{n} states. $(\Sigma=\{0,1\}$.

Proof:

- Assume there exists a DFA $D=\left(S, \Sigma, \delta, S_{0}, F\right)$ with $\mathcal{L}(D)=\mathcal{L}$ and $|S|<2^{n}$.
\Rightarrow There exist two strings $\sigma_{1} \neq \sigma_{2} \in \Sigma^{n}$ such that $\delta^{*}\left(S_{0}, \sigma_{1}\right)=\delta^{*}\left(S_{0}, \sigma_{2}\right)$.
- Since $\sigma_{1} \neq \sigma_{2}$, w.l.o.g. $\sigma_{1}=.\{m\} 0 .\{n-m-1\}$ and $\sigma_{2}=.\{m\} 1 .\{n-m-1\}$.
- Since $\delta^{*}\left(S_{0}, \sigma_{1}\right)=\delta^{*}\left(S_{0}, \sigma_{2}\right)$, we also have $\delta^{*}\left(S_{0}, \sigma_{1} 0^{m}\right)=\delta^{*}\left(S_{0}, \sigma_{2} 0^{m}\right)$.
\Rightarrow Either D accepts both $\sigma_{1} 0^{m}$ and $\sigma_{2} 0^{m}$ or D rejects both $\sigma_{1} 0^{m}$ and $\sigma_{2} 0^{m}$.
- However, $\sigma_{1} 0^{m} \notin \mathcal{L}$ and $\sigma_{2} 0^{m} \in \mathcal{L}$.
$\Rightarrow D$ does not decide \mathcal{L}.

FROM REGULAR EXPRESSION TO NFA

FROM REGULAR EXPRESSION TO NFA

Base cases:

FROM REGULAR EXPRESSION TO NFA

Base cases:

\emptyset

FROM REGULAR EXPRESSION TO NFA

Base cases:

\emptyset
start $\longrightarrow \mathrm{S}_{0}$

FROM REGULAR EXPRESSION TO NFA

Base cases:

\emptyset

start $\longrightarrow \mathrm{S}_{0}$

ϵ

FROM REGULAR EXPRESSION TO NFA

Base cases:

\emptyset

start $\longrightarrow \mathrm{S}_{0}$

ϵ
start \longrightarrow so

FROM REGULAR EXPRESSION TO NFA

Base cases:
\emptyset

ϵ start \longrightarrow so
$x \quad(x \in \Sigma)$

FROM REGULAR EXPRESSION TO NFA

Base cases:

\emptyset

ϵ start \longrightarrow So
$x \quad(x \in \Sigma) \quad$ start $\longrightarrow \mathrm{SO}_{0} \xrightarrow{x}$

FROM REGULAR EXPRESSION TO NFA

Base cases:
Inductive steps:
\emptyset
start $\longrightarrow \mathrm{SO}_{0}$
ϵ
start \longrightarrow So
$x \quad(x \in \Sigma) \quad$ start \longrightarrow So

FROM REGULAR EXPRESSION TO NFA

Base cases:

Inductive steps:
\emptyset
start $\longrightarrow \mathrm{S}_{0}$
ϵ

$A \mid B$
$x \quad(x \in \Sigma) \quad$ start $\longrightarrow \mathrm{SO}_{0} \xrightarrow{x}$

FROM REGULAR EXPRESSION TO NFA

Base cases:

Inductive steps:
\emptyset

ϵ

$A \mid B$

$x \quad(x \in \Sigma) \quad$ start \longrightarrow So \xrightarrow{x}

FROM REGULAR EXPRESSION TO NFA

Base cases:

Inductive steps:
\emptyset

ϵ

$$
\text { start } \longrightarrow 5
$$

$x \quad(x \in \Sigma) \quad$ start $\longrightarrow S_{0} \xrightarrow{x}$

FROM REGULAR EXPRESSION TO NFA

Base cases:

Inductive steps:
\emptyset

ϵ

$$
\text { start } \longrightarrow 0
$$

$x \quad(x \in \Sigma) \quad$ start $\longrightarrow S_{0} \xrightarrow{\text { St }}$
$A B$

FROM REGULAR EXPRESSION TO NFA

Base cases:

Inductive steps:
\emptyset

ϵ

$$
\text { start } \longrightarrow 0
$$

$x \quad(x \in \Sigma) \quad$ start \longrightarrow So \xrightarrow{x}

FROM REGULAR EXPRESSION TO NFA

Base cases:

Inductive steps:
\emptyset

ϵ

$$
\text { start } \longrightarrow 0
$$

$x \quad(x \in \Sigma) \quad$ start \longrightarrow So \xrightarrow{x}

FROM REGULAR EXPRESSION TO NFA

Base cases:

Inductive steps:
\emptyset

ϵ

$$
\text { start } \longrightarrow 0
$$

$x \quad(x \in \Sigma) \quad$ start $\longrightarrow S_{0} \xrightarrow{x}$

A*

FROM REGULAR EXPRESSION TO NFA

Base cases:

Inductive steps:
\emptyset

ϵ

$x \quad(x \in \Sigma) \quad$ start $\longrightarrow S_{0} \xrightarrow{x}$

A*

FROM REGULAR EXPRESSION TO NFA

Base cases:

Inductive steps:
\emptyset
start $\longrightarrow S_{0}$
ϵ

$$
\text { start } \longrightarrow 5
$$

$x \quad(x \in \Sigma) \quad$ start \longrightarrow So \xrightarrow{x}

FROM REGULAR EXPRESSION TO NFA: EXAMPLE

$(0 \mid \epsilon)(1 \mid 000 *) *(0 \mid \epsilon)$

FROM REGULAR EXPRESSION TO NFA: EXAMPLE

$(0 \mid \epsilon)(1 \mid 000 *) *(0 \mid \epsilon)$

FROM REGULAR EXPRESSION TO NFA: EXAMPLE

$(0 \mid \epsilon)(1 \mid 000 *) *(0 \mid \epsilon)$

FROM REGULAR EXPRESSION TO NFA: EXAMPLE

$(0 \mid \epsilon)(1 \mid 000 *) *(0 \mid \epsilon)$

FROM REGULAR EXPRESSION TO NFA: EXAMPLE

$(0 \mid \epsilon)(1 \mid 000 *) *(0 \mid \epsilon)$

FROM REGULAR EXPRESSION TO NFA: EXAMPLE

$(0 \mid \epsilon)(1 \mid 000 *) *(0 \mid \epsilon)$

FROM REGULAR EXPRESSION TO NFA: EXAMPLE

$(0 \mid \epsilon)(1 \mid 000 *) *(0 \mid \epsilon)$

FROM REGULAR EXPRESSION TO NFA: EXAMPLE

$(0 \mid \epsilon)(1 \mid 000 *) *(0 \mid \epsilon)$

FROM REGULAR EXPRESSION TO NFA: EXAMPLE

$$
(0 \mid \epsilon)(1 \mid 000 *) *(0 \mid \epsilon)
$$

FROM REGULAR EXPRESSION TO NFA: EXAMPLE

$$
(0 \mid \epsilon)(1 \mid 000 *) *(0 \mid \epsilon)
$$

FROM REGULAR EXPRESSION TO NFA: EXAMPLE

$$
(0 \mid \epsilon)(1 \mid 000 *) *(0 \mid \epsilon)
$$

FROM REGULAR EXPRESSION TO NFA: EXAMPLE

$$
(0 \mid \epsilon)(1 \mid 000 *) *(0 \mid \epsilon)
$$

FROM REGULAR EXPRESSION TO NFA: EXAMPLE

$$
(0 \mid \epsilon)(1 \mid 000 *) *(0 \mid \epsilon)
$$

$$
\rightarrow \bigcirc \stackrel{1}{\longrightarrow} \bigcirc
$$

FROM REGULAR EXPRESSION TO NFA: EXAMPLE

$(0 \mid \epsilon)(1 \mid 000 *) *(0 \mid \epsilon)$

FROM REGULAR EXPRESSION TO NFA: EXAMPLE

$(0 \mid \epsilon)(1 \mid 000 *) *(0 \mid \epsilon)$

FROM REGULAR EXPRESSION TO NFA: EXAMPLE

$(0 \mid \epsilon)(1 \mid 000 *) *(0 \mid \epsilon)$

FROM REGULAR EXPRESSION TO NFA: EXAMPLE

$$
(0 \mid \epsilon)(1 \mid 000 *) *(0 \mid \epsilon)
$$

FROM REGULAR EXPRESSION TO NFA: EXAMPLE

$$
(0 \mid \epsilon)(1 \mid 000 *) *(0 \mid \epsilon)
$$

FROM REGULAR EXPRESSION TO NFA: EXAMPLE

$$
(0 \mid \epsilon)(1 \mid 000 *) *(0 \mid \epsilon)
$$

FROM REGULAR EXPRESSION TO NFA: EXAMPLE

$$
(0 \mid \epsilon)(1 \mid 000 *) *(0 \mid \epsilon)
$$

FROM REGULAR EXPRESSION TO NFA: EXAMPLE

$$
(0 \mid \epsilon)(1 \mid 000 *) *(0 \mid \epsilon)
$$

FROM REGULAR EXPRESSION TO NFA: EXAMPLE

$$
(0 \mid \epsilon)(1 \mid 000 *) *(0 \mid \epsilon)
$$

FROM REGULAR EXPRESSION TO NFA: EXAMPLE

$$
(0 \mid \epsilon)(1 \mid 000 *) *(0 \mid \epsilon)
$$

FROM REGULAR EXPRESSION TO NFA: EXAMPLE

$$
(0 \mid \epsilon)(1 \mid 000 *) *(0 \mid \epsilon)
$$

FROM REGULAR EXPRESSION TO NFA: EXAMPLE

$$
(0 \mid \epsilon)(1 \mid 000 *) *(0 \mid \epsilon)
$$

FROM REGULAR EXPRESSION TO NFA: EXAMPLE

$$
(0 \mid \epsilon)(1 \mid 000 *) *(0 \mid \epsilon)
$$

FROM REGULAR EXPRESSION TO NFA: EXAMPLE

$$
(0 \mid \epsilon)(1 \mid 000 *) *(0 \mid \epsilon)
$$

FROM REGULAR EXPRESSION TO NFA: EXAMPLE

$$
(0 \mid \epsilon)(1 \mid 000 *) *(0 \mid \epsilon)
$$

FROM NFA TO REGULAR EXPRESSION (1)

Acceptance of a string by (D/N)FA: Intuition

Concatenating the labels of the edges of a path in a (D/N)FA $N=\left(S, \Sigma, \delta, S_{0}, F\right)$ produces a string, called the label of the path.
N accepts a string σ if there exists a path from s_{0} to an accepting state whose label is σ.

FROM NFA TO REGULAR EXPRESSION (1)

Acceptance of a string by (D/N)FA: Intuition

Concatenating the labels of the edges of a path in a (D/N)FA $N=\left(S, \Sigma, \delta, S_{0}, F\right)$ produces a string, called the label of the path.
N accepts a string σ if there exists a path from s_{0} to an accepting state whose label is σ.

Accepts 01101

FROM NFA TO REGULAR EXPRESSION (1)

Acceptance of a string by (D/N)FA: Intuition

Concatenating the labels of the edges of a path in a (D/N)FA $N=\left(S, \Sigma, \delta, S_{0}, F\right)$ produces a string, called the label of the path.
N accepts a string σ if there exists a path from s_{0} to an accepting state whose label is σ.

Accepts 01101

N accepts a string σ if there exists a path from s_{0} to an accepting state whose label is R and $\sigma \in \mathcal{L}(R)$.

FROM NFA TO REGULAR EXPRESSION (1)

Acceptance of a string by (D/N)FA: Intuition

Concatenating the labels of the edges of a path in a (D/N)FA $N=\left(S, \Sigma, \delta, S_{0}, F\right)$ produces a string, called the label of the path.
N accepts a string σ if there exists a path from s_{0} to an accepting state whose label is σ.

Accepts 01101

Accepts $01101 \in \mathcal{L}((0 \mid 1)(0 \mid 1) 1 .$.

FROM NFA TO REGULAR EXPRESSION (2)

Proof idea:

$$
\begin{gathered}
\mathrm{NFA} \rightarrow \mathrm{RFA}_{1} \rightarrow \mathrm{RFA}_{2} \rightarrow \cdots \rightarrow \mathrm{RFA}_{n} \\
\mathcal{L}(\mathrm{NFA})=\mathcal{L}\left(\mathrm{RFA}_{1}\right)=\mathcal{L}\left(\mathrm{RFA}_{2}\right)=\cdots=\mathcal{L}\left(\mathrm{RFA}_{n}\right)
\end{gathered}
$$

FROM NFA TO REGULAR EXPRESSION (2)

Proof idea:

$$
\begin{gathered}
\mathrm{NFA} \rightarrow \mathrm{RFA}_{1} \rightarrow \mathrm{RFA}_{2} \rightarrow \cdots \rightarrow \mathrm{RFA}_{n} \\
\mathcal{L}(\mathrm{NFA})=\mathcal{L}\left(\mathrm{RFA}_{1}\right)=\mathcal{L}\left(\mathrm{RFA}_{2}\right)=\cdots=\mathcal{L}\left(\mathrm{RFA}_{n}\right)
\end{gathered}
$$

RFAn has two states, an initial state and an accepting state:

FROM NFA TO REGULAR EXPRESSION (2)

Proof idea:

$$
\begin{gathered}
\mathrm{NFA} \rightarrow \mathrm{RFA}_{1} \rightarrow \mathrm{RFA}_{2} \rightarrow \cdots \rightarrow \mathrm{RFA}_{n} \\
\mathcal{L}(\mathrm{NFA})=\mathcal{L}\left(\mathrm{RFA}_{1}\right)=\mathcal{L}\left(\mathrm{RFA}_{2}\right)=\cdots=\mathcal{L}\left(\mathrm{RFA}_{n}\right)
\end{gathered}
$$

RFA A_{n} has two states, an initial state and an accepting state:

$$
\mathcal{L}(\text { NFA })=\mathcal{L}\left(\text { RFA }_{n}\right)=\mathcal{L}\left(\left(R_{1} \mid R_{2} R_{4} * R_{3}\right) * R_{2} R_{4} *\right)
$$

FROM NFA TO REGULAR EXPRESSION (3)

NFA \rightarrow RFA $_{1}:$

- $\mathcal{L}($ NFA $)=\mathcal{L}\left(\right.$ RFA $\left._{1}\right)$
- RFA A_{1} has one initial and one accepting state.

FROM NFA TO REGULAR EXPRESSION (3)

NFA \rightarrow RFA $_{1}:$

- $\mathcal{L}($ NFA $)=\mathcal{L}\left(\right.$ RFA $\left._{1}\right)$
- RFA A_{1} has one initial and one accepting state.

FROM NFA TO REGULAR EXPRESSION (3)

NFA \rightarrow RFA $_{1}:$

- $\mathcal{L}($ NFA $)=\mathcal{L}\left(\right.$ RFA $\left._{1}\right)$
- RFA A_{1} has one initial and one accepting state.

FROM NFA TO REGULAR EXPRESSION (4)

$\mathrm{RFA}_{k} \rightarrow$ RFA $_{k+1}:$

- $\mathcal{L}\left(\right.$ RFA $\left._{k}\right)=\mathcal{L}\left(\right.$ RFA $\left._{k+1}\right)$
- RFA A_{k+1} has one state less than RFA $_{k}$.

FROM NFA TO REGULAR EXPRESSION (4)

$\mathrm{RFA}_{k} \rightarrow$ RFA $_{k+1}:$

- $\mathcal{L}\left(\right.$ RFA $\left._{k}\right)=\mathcal{L}\left(\right.$ RFA $\left._{k+1}\right)$
- RFA A_{k+1} has one state less than RFA $_{k}$.

FROM NFA TO REGULAR EXPRESSION (4)

$\mathrm{RFA}_{k} \rightarrow$ RFA $_{k+1}:$

- $\mathcal{L}\left(\right.$ RFA $\left._{k}\right)=\mathcal{L}\left(\right.$ RFA $\left._{k+1}\right)$
- RFA A_{k+1} has one state less than RFA $_{k}$.

FROM NFA TO REGULAR EXPRESSION (4)

$\mathrm{RFA}_{k} \rightarrow$ RFA $_{k+1}:$

- $\mathcal{L}\left(\right.$ RFA $\left._{k}\right)=\mathcal{L}\left(\right.$ RFA $\left._{k+1}\right)$
- RFA A_{k+1} has one state less than RFA $_{k}$.

Note: This may create loops because some states may simultaneously be in- and out-neighbours of s.

FROM NFA TO REGULAR EXPRESSION: EXAMPLE

$\mathcal{L}((0 \mid \epsilon)(1 \mid 000 *) *(0 \mid \epsilon))$: All strings that do not contain 101 as a substring

FROM NFA TO REGULAR EXPRESSION: EXAMPLE

$\mathcal{L}((0 \mid \epsilon)(1 \mid 000 *) *(0 \mid \epsilon))$: All strings that do not contain 101 as a substring

FROM NFA TO REGULAR EXPRESSION: EXAMPLE

$\mathcal{L}((0 \mid \epsilon)(1 \mid 000 *) *(0 \mid \epsilon))$: All strings that do not contain 101 as a substring

FROM NFA TO REGULAR EXPRESSION: EXAMPLE

$\mathcal{L}((0 \mid \epsilon)(1 \mid 000 *) *(0 \mid \epsilon))$: All strings that do not contain 101 as a substring

FROM NFA TO REGULAR EXPRESSION: EXAMPLE

$\mathcal{L}((0 \mid \epsilon)(1 \mid 000 *) *(0 \mid \epsilon))$: All strings that do not contain 101 as a substring

FROM NFA TO REGULAR EXPRESSION: EXAMPLE

$$
\mathcal{L}((0 \mid \epsilon)(1 \mid 000 *) *(0 \mid \epsilon)): \text { All strings that do not contain } 101 \text { as a substring }
$$

FROM NFA TO REGULAR EXPRESSION: EXAMPLE

$\mathcal{L}((0 \mid \epsilon)(1 \mid 000 *) *(0 \mid \epsilon))$: All strings that do not contain 101 as a substring

Regular expression: $(11 * 00 \mid 0) *(11 *(\epsilon \mid 0) \mid \epsilon)$

ROAD MAP

- Regular languages
- Regular expressions
- Deterministic finite automata (DFA)
- Non-deterministic finite automata (NFA)
- Expressive power of DFA and NFA
- Equivalence of regular expressions, DFA, and NFA

Building a scanner

- Regular expression NFA -DFA
- Minimizing the DFA

Limitations of regular languages

ROAD MAP

- Regular languages
- Regular expressions
- Deterministic finite automata (DFA)
- Non-deterministic finite automata (NFA)
- Expressive power of DFA and NFA
- Equivalence of regular expressions, DFA, and NFA
- Building a scanner
- Regular expression \rightarrow NFA \rightarrow DFA
- Minimizing the DFA

Limitations of regular languages

SCANNING (1)

Scanner

A scanner produces a token (token type, value) stream from a character stream.

SCANNING (1)

Scanner

A scanner produces a token (token type, value) stream from a character stream.

Modes of operation

- Complete pass produces token stream, which is then passed to the parser.
- Parser calls scanner to request next token

In either case, the scanner greedily recognizes the longest possible token.

SCANNING (2)

Scanner implementation

- Hand-written, ad-hoc: Usually when speed is a concern.
- From regular expression using scanner generator: More convenient. Result:
- Case statements representing transitions of the DFA.
- Table representing the DFA's transition function plus driver code to implement the DFA.

BUILDING A SCANNER

Workflow

Regular expression \rightarrow NFA \rightarrow DFA \rightarrow minimized DFA

BUILDING A SCANNER

Workflow

Regular expression \rightarrow NFA \rightarrow DFA \rightarrow minimized DFA

Extensions to pure DFA:

BUILDING A SCANNER

Workflow

Regular expression \rightarrow NFA \rightarrow DFA \rightarrow minimized DFA

Extensions to pure DFA:

- Not enough to accept a token; need to know which token was accepted and its value:
- One accepting state per token type
- Return string read along the path to the accepting state

BUILDING A SCANNER

Workflow

Regular expression \rightarrow NFA \rightarrow DFA \rightarrow minimized DFA

Extensions to pure DFA:

- Not enough to accept a token; need to know which token was accepted and its value:
- One accepting state per token type
- Return string read along the path to the accepting state
- Keywords are not identifiers:
- Look up identifier in keyword table (e.g., hash table) to see whether it is in fact a keyword

BUILDING A SCANNER

Workflow

Regular expression \rightarrow NFA \rightarrow DFA \rightarrow minimized DFA

Extensions to pure DFA:

- Not enough to accept a token; need to know which token was accepted and its value:
- One accepting state per token type
- Return string read along the path to the accepting state
- Keywords are not identifiers:
- Look up identifier in keyword table (e.g., hash table) to see whether it is in fact a keyword
- "Look ahead" to distinguish tokens with common prefix (e.g., 100 vs 100.5):
- Try to find the longest possible match by continuing to scan from an accepting state.
- Backtrack to last accepting state when "stuck".

EXTENDED EXAMPLE: AN INCOMPLETE SCANNER FOR PASCAL (1)

Regular expressions for the different tokens:
Iparen:

rparen:
)

lbrac: $$
rbrac:
$$

comma: dot:
dotdot:
lt:
$<$
le: <=
ident:
[A-Za-z][A-Za-z0-9_]*
int:
real:
[+-]?[0-9] +

$$
[+-] ?[0-9]+(\backslash \cdot[0-9]+) ?([\mathrm{Ee}][+-] ?[0-9]+) ?
$$

EXTENDED EXAMPLE: AN INCOMPLETE SCANNER FOR PASCAL (2)

Construction of the DFA:

EXTENDED EXAMPLE: AN INCOMPLETE SCANNER FOR PASCAL (2)

Construction of the DFA:

- Turn each regular expression into an NFA, label each accepting state with the token represented by this expression.

EXTENDED EXAMPLE: AN INCOMPLETE SCANNER FOR PASCAL (2)

Construction of the DFA:

- Turn each regular expression into an NFA, label each accepting state with the token represented by this expression.
- Add an NFA that consumes spaces and comments.

EXTENDED EXAMPLE: AN INCOMPLETE SCANNER FOR PASCAL (2)

Construction of the DFA:

- Turn each regular expression into an NFA, label each accepting state with the token represented by this expression.
- Add an NFA that consumes spaces and comments.
- Join the NFA using ϵ-edges from a new start state to their start states.

EXTENDED EXAMPLE: AN INCOMPLETE SCANNER FOR PASCAL (2)

Construction of the DFA:

- Turn each regular expression into an NFA, label each accepting state with the token represented by this expression.
- Add an NFA that consumes spaces and comments.
- Join the NFA using ϵ-edges from a new start state to their start states.
- Add ϵ-transitions from the accepting states of the spaces/comments NFA to the start state.

EXTENDED EXAMPLE: AN INCOMPLETE SCANNER FOR PASCAL (2)

Construction of the DFA:

- Turn each regular expression into an NFA, label each accepting state with the token represented by this expression.
- Add an NFA that consumes spaces and comments.
- Join the NFA using ϵ-edges from a new start state to their start states.
- Add ϵ-transitions from the accepting states of the spaces/comments NFA to the start state.
- Turn the NFA into a DFA:
- If the tokens are unambiguous, each accepting state of the DFA, viewed as a set, includes accepting states from only one of the regular expression NFA.
- Label the DFA accepting state with this token.

EXTENDED EXAMPLE: AN INCOMPLETE SCANNER FOR PASCAL (2)

Construction of the DFA:

- Turn each regular expression into an NFA, label each accepting state with the token represented by this expression.
- Add an NFA that consumes spaces and comments.
- Join the NFA using ϵ-edges from a new start state to their start states.
- Add ϵ-transitions from the accepting states of the spaces/comments NFA to the start state.
- Turn the NFA into a DFA:
- If the tokens are unambiguous, each accepting state of the DFA, viewed as a set, includes accepting states from only one of the regular expression NFA.
- Label the DFA accepting state with this token.
- Minimize the DFA.

EXTENDED EXAMPLE: AN INCOMPLETE SCANNER FOR PASCAL (3)

EXTENDED EXAMPLE: AN INCOMPLETE SCANNER FOR PASCAL (4)

Driver code:

- Whenever the scan reaches an accepting state of the spaces/comments NFA, set a start marker.
- Whenever the scan reaches an accepting state of any other NFA, set an end marker and remember the token.
- Whenever the scan reaches state \emptyset,
- Go back to the end marker.
- Report the remembered token.
- Turn the text between start and end marker into a representation of the scanned token (integer, identifier string, ...).
- Set the start marker to be equal to the end marker.

MINIMIZING THE DFA (1)

Goal
 Given a DFA D, produce a DFA D' with the minimum number of states and such that $\mathcal{L}(D)=\mathcal{L}\left(D^{\prime}\right)$.

MINIMIZING THE DFA (1)

Goal

Given a DFA D, produce a DFA D' with the minimum number of states and such that $\mathcal{L}(D)=\mathcal{L}\left(D^{\prime}\right)$.

Idea

Group states of D into classes of equivalent states (accepting/ non-accepting, same transitions).

MINIMIZING THE DFA (1)

Goal

Given a DFA D, produce a DFA D' with the minimum number of states and such that $\mathcal{L}(D)=\mathcal{L}\left(D^{\prime}\right)$.

Idea

Group states of D into classes of equivalent states (accepting/ non-accepting, same transitions).

Procedure

MINIMIZING THE DFA (1)

Goal

Given a DFA D, produce a DFA D' with the minimum number of states and such that $\mathcal{L}(D)=\mathcal{L}\left(D^{\prime}\right)$.

Idea

Group states of D into classes of equivalent states (accepting/ non-accepting, same transitions).

Procedure

- Start with two equivalence classes: accepting and non-accepting

MINIMIZING THE DFA (1)

Goal

Given a DFA D, produce a DFA D' with the minimum number of states and such that $\mathcal{L}(D)=\mathcal{L}\left(D^{\prime}\right)$.

Idea

Group states of D into classes of equivalent states (accepting/ non-accepting, same transitions).

Procedure

- Start with two equivalence classes: accepting and non-accepting
- Find an equivalence class C and a letter a such that, upon reading a, the states in C transition to $k>1$ equivalence classes $C_{1}^{\prime}, C_{2}^{\prime}, \ldots, C_{k}^{\prime}$. Partition C into subclasses $C_{1}, C_{2}, \ldots, C_{k}$ such that, upon reading a, the states in C_{i} transition to states in C_{i}^{\prime}.

MINIMIZING THE DFA (1)

Goal

Given a DFA D, produce a DFA D' with the minimum number of states and such that $\mathcal{L}(D)=\mathcal{L}\left(D^{\prime}\right)$.

Idea

Group states of D into classes of equivalent states (accepting/ non-accepting, same transitions).

Procedure

- Start with two equivalence classes: accepting and non-accepting
- Find an equivalence class C and a letter a such that, upon reading a, the states in C transition to $k>1$ equivalence classes $C_{1}^{\prime}, C_{2}^{\prime}, \ldots, C_{k}^{\prime}$. Partition C into subclasses $C_{1}, C_{2}, \ldots, C_{k}$ such that, upon reading a, the states in C_{i} transition to states in C_{i}^{\prime}.
- Repeat until no such "partitionable" equivalence class C can be found.

MINIMIZING THE DFA (1)

Goal

Given a DFA D, produce a DFA D' with the minimum number of states and such that $\mathcal{L}(D)=\mathcal{L}\left(D^{\prime}\right)$.

Idea

Group states of D into classes of equivalent states (accepting/ non-accepting, same transitions).

Procedure

- Start with two equivalence classes: accepting and non-accepting
- Find an equivalence class C and a letter a such that, upon reading a, the states in C transition to $k>1$ equivalence classes $C_{1}^{\prime}, C_{2}^{\prime}, \ldots, C_{k}^{\prime}$. Partition C into subclasses $C_{1}, C_{2}, \ldots, C_{k}$ such that, upon reading a, the states in C_{i} transition to states in C_{i}^{\prime}.
- Repeat until no such "partitionable" equivalence class C can be found.
- The final set of equivalence classes is the set of states of the minimized DFA.

MINIMIZING THE DFA: EXAMPLE

MINIMIZING THE DFA: EXAMPLE

MINIMIZING THE DFA: EXAMPLE

MINIMIZING THE DFA: EXAMPLE

MINIMIZING THE DFA: EXAMPLE

MINIMIZING THE DFA: EXAMPLE

MINIMIZING THE DFA: EXAMPLE

MINIMIZING THE DFA: EXAMPLE

MINIMIZING THE DFA (2)

The described procedure ensures that $\mathcal{L}(D)=\mathcal{L}\left(D^{\prime}\right)$ but does not distinguish between different types of accepting states (corresponding to tokens).

To distinguish between different types of accepting states, start with one equivalence class per type of accepting state.

ROAD MAP

- Regular languages
- Regular expressions
- Deterministic finite automata (DFA)
- Non-deterministic finite automata (NFA)
- Expressive power of DFA and NFA
- Equivalence of regular expressions, DFA, and NFA
- Building a scanner
- Regular expression \rightarrow NFA \rightarrow DFA
- Minimizing the DFA

Limitations of regular languages

ROAD MAP

- Regular languages
- Regular expressions
- Deterministic finite automata (DFA)
- Non-deterministic finite automata (NFA)
- Expressive power of DFA and NFA
- Equivalence of regular expressions, DFA, and NFA
- Building a scanner
- Regular expression \rightarrow NFA \rightarrow DFA
- Minimizing the DFA
- Limitations of regular languages

HOW GENERAL ARE REGULAR LANGUAGES?

If R and S are regular languages, then so are

HOW GENERAL ARE REGULAR LANGUAGES?

If R and S are regular languages, then so are

- $R S, R \cup S, R^{*}$

HOW GENERAL ARE REGULAR LANGUAGES?

If R and S are regular languages, then so are

- $R S, R \cup S, R^{*}$

By definition

HOW GENERAL ARE REGULAR LANGUAGES?

If R and S are regular languages, then so are

- $R S, R \cup S, R^{*}$
- $\Sigma^{*} \backslash R$ (the complement of R)

By definition

HOW GENERAL ARE REGULAR LANGUAGES?

If R and S are regular languages, then so are

- $R S, R \cup S, R^{*}$

By definition

- $\Sigma^{*} \backslash R$ (the complement of R)

Build a DFA for $\Sigma^{*} \backslash R$ from a DFA for R by making accepting states non-accepting and vice versa.

HOW GENERAL ARE REGULAR LANGUAGES?

If R and S are regular languages, then so are

- $R S, R \cup S, R^{*}$

By definition

- $\Sigma^{*} \backslash R$ (the complement of R)

Build a DFA for $\Sigma^{*} \backslash R$ from a DFA for R by making accepting states non-accepting and vice versa.

- $\overleftarrow{R}=\{\overleftarrow{\sigma} \mid \sigma \in R\}$, where $\overleftarrow{\sigma}$ is σ written backwards

HOW GENERAL ARE REGULAR LANGUAGES?

If R and S are regular languages, then so are

- $R S, R \cup S, R^{*}$

By definition

- $\Sigma^{*} \backslash R$ (the complement of R)

Build a DFA for $\Sigma^{*} \backslash R$ from a DFA for R by making accepting states non-accepting and vice versa.

- $\overleftarrow{R}=\{\overleftarrow{\sigma} \mid \sigma \in R\}$, where $\overleftarrow{\sigma}$ is σ written backwards

A regular expression for R "written backwards" is a regular expression for \overleftarrow{R}

HOW GENERAL ARE REGULAR LANGUAGES?

If R and S are regular languages, then so are

- $R S, R \cup S, R^{*}$

By definition

- $R \cap S$
- $\Sigma^{*} \backslash R$ (the complement of R)

Build a DFA for $\Sigma^{*} \backslash R$ from a DFA for R by making accepting states non-accepting and vice versa.

- $\overleftarrow{R}=\{\overleftarrow{\sigma} \mid \sigma \in R\}$, where $\overleftarrow{\sigma}$ is σ written backwards

A regular expression for R "written backwards" is a regular expression for \overleftarrow{R}

HOW GENERAL ARE REGULAR LANGUAGES?

If R and S are regular languages, then so are

- $R S, R \cup S, R^{*}$

By definition

- $R \cap S$

$$
R \cap S=\Sigma^{*} \backslash\left(\left(\Sigma^{*} \backslash R\right) \cup\left(\Sigma^{*} \backslash S\right)\right)
$$

- $\Sigma^{*} \backslash R$ (the complement of R)

Build a DFA for $\Sigma^{*} \backslash R$ from a DFA for R by making accepting states non-accepting and vice versa.

- $\overleftarrow{R}=\{\overleftarrow{\sigma} \mid \sigma \in R\}$, where $\overleftarrow{\sigma}$ is σ written backwards

A regular expression for R "written backwards" is a regular expression for \overleftarrow{R}

HOW GENERAL ARE REGULAR LANGUAGES?

If R and S are regular languages, then so are

- $R S, R \cup S, R^{*}$

By definition

- $R \cap S$

$$
R \cap S=\Sigma^{*} \backslash\left(\left(\Sigma^{*} \backslash R\right) \cup\left(\Sigma^{*} \backslash S\right)\right)
$$

- $R \backslash S$
- $\Sigma^{*} \backslash R$ (the complement of R)

Build a DFA for $\Sigma^{*} \backslash R$ from a DFA for R by making accepting states non-accepting and vice versa.

- $\overleftarrow{R}=\{\overleftarrow{\sigma} \mid \sigma \in R\}$, where $\overleftarrow{\sigma}$ is σ written backwards

A regular expression for R "written backwards" is a regular expression for \overleftarrow{R}

HOW GENERAL ARE REGULAR LANGUAGES?

If R and S are regular languages, then so are

- $R S, R \cup S, R^{*}$

By definition

- $R \cap S$

$$
R \cap S=\Sigma^{*} \backslash\left(\left(\Sigma^{*} \backslash R\right) \cup\left(\Sigma^{*} \backslash S\right)\right)
$$

- $R \backslash S$

$$
R \backslash S=R \cap\left(\Sigma^{*} \backslash S\right)
$$

- $\Sigma^{*} \backslash R$ (the complement of R)

Build a DFA for $\Sigma^{*} \backslash R$ from a DFA for R by making accepting states non-accepting and vice versa.

- $\overleftarrow{R}=\{\overleftarrow{\sigma} \mid \sigma \in R\}$, where $\overleftarrow{\sigma}$ is σ written backwards

A regular expression for R "written backwards" is a regular expression for \overleftarrow{R}

NOT ALL LANGUAGES ARE REGULAR

Pumping Lemma

For every regular language \mathcal{L}, there exists a constant $n_{\mathcal{L}}$ such that every $\sigma \in \mathcal{L}$ with $|\sigma| \geq n_{\mathcal{L}}$ can be written as $\sigma=\alpha \beta \gamma$ with

- $|\alpha \beta| \leq n_{\mathcal{L}}$,
- $|\beta|>0$, and
- $\alpha \beta^{k} \gamma \in \mathcal{L}$ for all $k \geq 0$.

NOT ALL LANGUAGES ARE REGULAR

Pumping Lemma

For every regular language \mathcal{L}, there exists a constant $n_{\mathcal{L}}$ such that every $\sigma \in \mathcal{L}$ with $|\sigma| \geq n_{\mathcal{L}}$ can be written as $\sigma=\alpha \beta \gamma$ with

- $|\alpha \beta| \leq n_{\mathcal{L}}$,
- $|\beta|>0$, and
- $\alpha \beta^{k} \gamma \in \mathcal{L}$ for all $k \geq 0$.
\Rightarrow The language $\mathcal{L}=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$
is not regular!

NOT ALL LANGUAGES ARE REGULAR

Pumping Lemma

For every regular language \mathcal{L}, there exists a constant $n_{\mathcal{L}}$ such that \Rightarrow The language $\mathcal{L}=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ is not regular!

- Assume \mathcal{L} is regular and let $n_{\mathcal{L}}$ be as in the Pumping Lemma.
- $|\alpha \beta| \leq n_{\mathcal{L}}$,
- $|\beta|>0$, and
- $\alpha \beta^{k} \gamma \in \mathcal{L}$ for all $k \geq 0$.

NOT ALL LANGUAGES ARE REGULAR

Pumping Lemma

For every regular language \mathcal{L}, there exists a constant $n_{\mathcal{L}}$ such that every $\sigma \in \mathcal{L}$ with $|\sigma| \geq n_{\mathcal{L}}$ can be written as $\sigma=\alpha \beta \gamma$ with
\Rightarrow The language $\mathcal{L}=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ is not regular!

- Assume \mathcal{L} is regular and let $n_{\mathcal{L}}$ be as in the Pumping Lemma.
- Let $\sigma=0^{n_{\mathcal{L}}} 1^{n_{\mathcal{L}}} \in \mathcal{L}$.
- $|\alpha \beta| \leq n_{\mathcal{L}}$,
- $|\beta|>0$, and
- $\alpha \beta^{k} \gamma \in \mathcal{L}$ for all $k \geq 0$.

NOT ALL LANGUAGES ARE REGULAR

Pumping Lemma

For every regular language \mathcal{L}, there exists a constant $n_{\mathcal{L}}$ such that every $\sigma \in \mathcal{L}$ with $|\sigma| \geq n_{\mathcal{L}}$ can be written as $\sigma=\alpha \beta \gamma$ with

- $|\alpha \beta| \leq n_{\mathcal{L}}$,
- $|\beta|>0$, and
- $\alpha \beta^{k} \gamma \in \mathcal{L}$ for all $k \geq 0$.
\Rightarrow The language $\mathcal{L}=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$
is not regular!
- Assume \mathcal{L} is regular and let $n_{\mathcal{L}}$ be as in the Pumping Lemma.
- Let $\sigma=0^{n_{\mathcal{L}}} 1^{n_{\mathcal{L}}} \in \mathcal{L}$.
- Then $\sigma=\alpha \beta \gamma$ with $|\alpha \beta| \leq n_{\mathcal{L}}$ and $|\beta|>0$ and $\alpha \beta \beta \gamma \in \mathcal{L}$.

NOT ALL LANGUAGES ARE REGULAR

Pumping Lemma

For every regular language \mathcal{L}, there exists a constant $n_{\mathcal{L}}$ such that every $\sigma \in \mathcal{L}$ with $|\sigma| \geq n_{\mathcal{L}}$ can be written as $\sigma=\alpha \beta \gamma$ with

- $|\alpha \beta| \leq n_{\mathcal{L}}$,
- $|\beta|>0$, and
- $\alpha \beta^{k} \gamma \in \mathcal{L}$ for all $k \geq 0$.
\Rightarrow The language $\mathcal{L}=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ is not regular!
- Assume \mathcal{L} is regular and let $n_{\mathcal{L}}$ be as in the Pumping Lemma.
- Let $\sigma=0^{n_{\mathcal{L}}} 1^{n_{\mathcal{L}}} \in \mathcal{L}$.
- Then $\sigma=\alpha \beta \gamma$ with $|\alpha \beta| \leq n_{\mathcal{L}}$ and $|\beta|>0$ and $\alpha \beta \beta \gamma \in \mathcal{L}$.
- Since $|\alpha \beta| \leq n_{\mathcal{L}}$, we have $\alpha=0^{k}$ and $\beta=0^{m}$, where $m=|\beta|>0$.

NOT ALL LANGUAGES ARE REGULAR

Pumping Lemma

For every regular language \mathcal{L}, there exists a constant $n_{\mathcal{L}}$ such that every $\sigma \in \mathcal{L}$ with $|\sigma| \geq n_{\mathcal{L}}$ can be written as $\sigma=\alpha \beta \gamma$ with
\Rightarrow The language $\mathcal{L}=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$ is not regular!

- Assume \mathcal{L} is regular and let $n_{\mathcal{L}}$ be as in the Pumping Lemma.
- Let $\sigma=0^{n_{\mathcal{L}}} 1^{n_{\mathcal{L}}} \in \mathcal{L}$.
- Then $\sigma=\alpha \beta \gamma$ with $|\alpha \beta| \leq n_{\mathcal{L}}$ and $|\beta|>0$ and $\alpha \beta \beta \gamma \in \mathcal{L}$.
- Since $|\alpha \beta| \leq n_{\mathcal{L}}$, we have $\alpha=0^{k}$ and $\beta=0^{m}$, where $m=|\beta|>0$.
- Thus, $\alpha \beta \beta \gamma=0^{m+n_{\mathcal{L}}} 1^{n_{\mathcal{L}}} \notin \mathcal{L}$, a contradiction.

PROOF OF THE PUMPING LEMMA

Pumping Lemma

For every regular language \mathcal{L}, there exists a constant $n_{\mathcal{L}}$ such that every $\sigma \in \mathcal{L}$ with $|\sigma| \geq n_{\mathcal{L}}$ can be written as $\sigma=\alpha \beta \gamma$ with

- $|\alpha \beta| \leq n_{\mathcal{L}}$,
- $|\beta|>0$, and
- $\alpha \beta^{k} \gamma \in \mathcal{L}$ for all $k \geq 0$.

PROOF OF THE PUMPING LEMMA

Pumping Lemma

For every regular language \mathcal{L}, there exists a constant $n_{\mathcal{L}}$ such that every $\sigma \in \mathcal{L}$ with $|\sigma| \geq n_{\mathcal{L}}$ can be written as $\sigma=\alpha \beta \gamma$ with

- $|\alpha \beta| \leq n_{\mathcal{L}}$,
- $|\beta|>0$, and
- $\alpha \beta^{k} \gamma \in \mathcal{L}$ for all $k \geq 0$.

PROOF OF THE PUMPING LEMMA

Pumping Lemma

For every regular language \mathcal{L}, there exists a constant $n_{\mathcal{L}}$ such that every $\sigma \in \mathcal{L}$ with $|\sigma| \geq n_{\mathcal{L}}$ can be written as $\sigma=\alpha \beta \gamma$ with

- $|\alpha \beta| \leq n_{\mathcal{L}}$,
- $|\beta|>0$, and
- $\alpha \beta^{k} \gamma \in \mathcal{L}$ for all $k \geq 0$.

PROOF OF THE PUMPING LEMMA

Pumping Lemma

For every regular language \mathcal{L}, there exists a constant $n_{\mathcal{L}}$ such that every $\sigma \in \mathcal{L}$ with $|\sigma| \geq n_{\mathcal{L}}$ can be written as $\sigma=\alpha \beta \gamma$ with

- $|\alpha \beta| \leq n_{\mathcal{L}}$,
- $|\beta|>0$, and
- $\alpha \beta^{k} \gamma \in \mathcal{L}$ for all $k \geq 0$.

Let $D=\left(S, \Sigma, \delta, S_{0}, F\right)$ be a DFA such that $\mathcal{L}=\mathcal{L}(D)$.
Let $n_{\mathcal{L}}=|S|+1$.

PROOF OF THE PUMPING LEMMA

Pumping Lemma

For every regular language \mathcal{L}, there exists a constant $n_{\mathcal{L}}$ such that every $\sigma \in \mathcal{L}$ with $|\sigma| \geq n_{\mathcal{L}}$ can be written as $\sigma=\alpha \beta \gamma$ with

- $|\alpha \beta| \leq n_{\mathcal{L}}$,
- $|\beta|>0$, and
- $\alpha \beta^{k} \gamma \in \mathcal{L}$ for all $k \geq 0$.

Let $D=\left(S, \Sigma, \delta, S_{0}, F\right)$ be a DFA such that $\mathcal{L}=\mathcal{L}(D)$.
Let $n_{\mathcal{L}}=|S|+1$.

PROOF OF THE PUMPING LEMMA

Pumping Lemma

For every regular language \mathcal{L}, there exists a constant $n_{\mathcal{L}}$ such that every $\sigma \in \mathcal{L}$ with $|\sigma| \geq n_{\mathcal{L}}$ can be written as $\sigma=\alpha \beta \gamma$ with

- $|\alpha \beta| \leq n_{\mathcal{L}}$,
- $|\beta|>0$, and
- $\alpha \beta^{k} \gamma \in \mathcal{L}$ for all $k \geq 0$.

Let $D=\left(S, \Sigma, \delta, S_{0}, F\right)$ be a DFA such that $\mathcal{L}=\mathcal{L}(D)$.
Let $n_{\mathcal{L}}=|S|+1$.

PROOF OF THE PUMPING LEMMA

Pumping Lemma

For every regular language \mathcal{L}, there exists a constant $n_{\mathcal{L}}$ such that every $\sigma \in \mathcal{L}$ with $|\sigma| \geq n_{\mathcal{L}}$ can be written as $\sigma=\alpha \beta \gamma$ with

- $|\alpha \beta| \leq n_{\mathcal{L}}$,
- $|\beta|>0$, and
- $\alpha \beta^{k} \gamma \in \mathcal{L}$ for all $k \geq 0$.

Let $D=\left(S, \Sigma, \delta, S_{0}, F\right)$ be a DFA such that $\mathcal{L}=\mathcal{L}(D)$.
Let $n_{\mathcal{L}}=|S|+1$.

PUMPING LEMMA: MORE APPLICATIONS

Pumping Lemma

For every regular language \mathcal{L}, there exists a constant $n_{\mathcal{L}}$ such that every $\sigma \in \mathcal{L}$ with $|\sigma| \geq n_{\mathcal{L}}$ can be written as $\sigma=\alpha \beta \gamma$ with

- $|\alpha \beta| \leq n_{\mathcal{L}}$,
- $|\beta|>0$, and
- $\alpha \beta^{k} \gamma \in \mathcal{L}$ for all $k \geq 0$.

PUMPING LEMMA: MORE APPLICATIONS

Pumping Lemma

 - $\mathcal{L}=\left\{\left({ }^{m}\right)^{m} \mid m \geq 0\right\}$ is not regular.For every regular language \mathcal{L}, there exists a constant $n_{\mathcal{L}}$ such that every $\sigma \in \mathcal{L}$ with $|\sigma| \geq n_{\mathcal{L}}$ can be written as $\sigma=\alpha \beta \gamma$ with

- $|\alpha \beta| \leq n_{\mathcal{L}}$,
- $|\beta|>0$, and
- $\alpha \beta^{k} \gamma \in \mathcal{L}$ for all $k \geq 0$.

PUMPING LEMMA: MORE APPLICATIONS

Pumping Lemma

For every regular language \mathcal{L}, there exists a constant $n_{\mathcal{L}}$ such that every $\sigma \in \mathcal{L}$ with $|\sigma| \geq n_{\mathcal{L}}$ can be written as $\sigma=\alpha \beta \gamma$ with

- $|\alpha \beta| \leq n_{\mathcal{L}}$,
- $|\beta|>0$, and
- $\alpha \beta^{k} \gamma \in \mathcal{L}$ for all $k \geq 0$.

PUMPING LEMMA: MORE APPLICATIONS

Pumping Lemma

For every regular language \mathcal{L}, there exists a constant $n_{\mathcal{L}}$ such that every $\sigma \in \mathcal{L}$ with $|\sigma| \geq n_{\mathcal{L}}$ can be written as $\sigma=\alpha \beta \gamma$ with

- $|\alpha \beta| \leq n_{\mathcal{L}}$,
- $|\beta|>0$, and
- $\alpha \beta^{k} \gamma \in \mathcal{L}$ for all $k \geq 0$.
- $\mathcal{L}=\left\{\left({ }^{m}\right)^{m} \mid m \geq 0\right\}$ is not regular. Same structure as $\mathcal{L}^{\prime}=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$.
- $\mathcal{L}=\left\{a^{p} \mid p\right.$ is a prime number $\}$ is not regular.

PUMPING LEMMA: MORE APPLICATIONS

Pumping Lemma

For every regular language \mathcal{L}, there exists a constant $n_{\mathcal{L}}$ such that every $\sigma \in \mathcal{L}$ with $|\sigma| \geq n_{\mathcal{L}}$ can be written as $\sigma=\alpha \beta \gamma$ with

- $|\alpha \beta| \leq n_{\mathcal{L}}$,
- $|\beta|>0$, and
- $\alpha \beta^{k} \gamma \in \mathcal{L}$ for all $k \geq 0$.

Same structure as $\mathcal{L}^{\prime}=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$.

- $\mathcal{L}=\left\{a^{p} \mid p\right.$ is a prime number $\}$ is not regular.
- Assume \mathcal{L} is regular.

PUMPING LEMMA: MORE APPLICATIONS

Pumping Lemma

For every regular language \mathcal{L}, there exists a constant $n_{\mathcal{L}}$ such that every $\sigma \in \mathcal{L}$ with $|\sigma| \geq n_{\mathcal{L}}$ can be written as $\sigma=\alpha \beta \gamma$ with

- $|\alpha \beta| \leq n_{\mathcal{L}}$,
- $|\beta|>0$, and
- $\alpha \beta^{k} \gamma \in \mathcal{L}$ for all $k \geq 0$.

Same structure as $\mathcal{L}^{\prime}=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$.

- $\mathcal{L}=\left\{a^{p} \mid p\right.$ is a prime number $\}$ is not regular.
- Assume \mathcal{L} is regular.
- Choose prime number $p \geq n_{\mathcal{L}}+2$ $\Rightarrow \sigma=a^{p} \in \mathcal{L}$.

PUMPING LEMMA: MORE APPLICATIONS

Pumping Lemma

For every regular language \mathcal{L}, there exists a constant $n_{\mathcal{L}}$ such that every $\sigma \in \mathcal{L}$ with $|\sigma| \geq n_{\mathcal{L}}$ can be written as $\sigma=\alpha \beta \gamma$ with

- $|\alpha \beta| \leq n_{\mathcal{L}}$,
- $|\beta|>0$, and
- $\alpha \beta^{k} \gamma \in \mathcal{L}$ for all $k \geq 0$.
- $\mathcal{L}=\left\{\left({ }^{m}\right)^{m} \mid m \geq 0\right\}$ is not regular. Same structure as $\mathcal{L}^{\prime}=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$.
- $\mathcal{L}=\left\{a^{p} \mid p\right.$ is a prime number $\}$ is not regular.
- Assume \mathcal{L} is regular.
- Choose prime number $p \geq n_{\mathcal{L}}+2$

$$
\Rightarrow \sigma=a^{p} \in \mathcal{L}
$$

- $\sigma=\alpha \beta \gamma$, where $\alpha=a^{a}, \beta=a^{b}$, $a+b \leq n_{\mathcal{L}}$ and $b>0$.

PUMPING LEMMA: MORE APPLICATIONS

Pumping Lemma

For every regular language \mathcal{L}, there exists a constant $n_{\mathcal{L}}$ such that every $\sigma \in \mathcal{L}$ with $|\sigma| \geq n_{\mathcal{L}}$ can be written as $\sigma=\alpha \beta \gamma$ with

- $|\alpha \beta| \leq n_{\mathcal{L}}$,
- $|\beta|>0$, and
- $\alpha \beta^{k} \gamma \in \mathcal{L}$ for all $k \geq 0$.

$$
\cdot \mathcal{L}=\left\{\left({ }^{m}\right)^{m} \mid m \geq 0\right\} \text { is not regular. }
$$

Same structure as $\mathcal{L}^{\prime}=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$.

- $\mathcal{L}=\left\{a^{p} \mid p\right.$ is a prime number $\}$ is not regular.
- Assume \mathcal{L} is regular.
- Choose prime number $p \geq n_{\mathcal{L}}+2$

$$
\Rightarrow \sigma=a^{p} \in \mathcal{L}
$$

- $\sigma=\alpha \beta \gamma$, where $\alpha=a^{a}, \beta=a^{b}$, $a+b \leq n_{\mathcal{L}}$ and $b>0$.
- $\alpha \beta^{c} \gamma \in \mathcal{L}$, where $c=|\alpha \gamma|=p-b \geq 2$.

PUMPING LEMMA: MORE APPLICATIONS

Pumping Lemma

For every regular language \mathcal{L}, there exists a constant $n_{\mathcal{L}}$ such that every $\sigma \in \mathcal{L}$ with $|\sigma| \geq n_{\mathcal{L}}$ can be written as $\sigma=\alpha \beta \gamma$ with

- $|\alpha \beta| \leq n_{\mathcal{L}}$,
- $|\beta|>0$, and
- $\alpha \beta^{k} \gamma \in \mathcal{L}$ for all $k \geq 0$.

$$
\cdot \mathcal{L}=\left\{\left({ }^{m}\right)^{m} \mid m \geq 0\right\} \text { is not regular. }
$$

Same structure as $\mathcal{L}^{\prime}=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$.

- $\mathcal{L}=\left\{a^{p} \mid p\right.$ is a prime number $\}$ is not regular.
- Assume \mathcal{L} is regular.
- Choose prime number $p \geq n_{\mathcal{L}}+2$

$$
\Rightarrow \sigma=a^{p} \in \mathcal{L}
$$

- $\sigma=\alpha \beta \gamma$, where $\alpha=a^{a}, \beta=a^{b}$, $a+b \leq n_{\mathcal{L}}$ and $b>0$.
- $\alpha \beta^{c} \gamma \in \mathcal{L}$, where $c=|\alpha \gamma|=p-b \geq 2$.
- However, $\left|\alpha \beta^{c} \gamma\right|=(b+1) c$, which is not prime because $b+1 \geq 2$ and $c \geq 2$. Contradiction.

SUMMARY

- Parsing is complex \Rightarrow Apply to a token stream rather than a character stream.

SUMMARY

- Parsing is complex \Rightarrow Apply to a token stream rather than a character stream.
- Lexical analysis turns character stream into more compact token stream.

SUMMARY

- Parsing is complex \Rightarrow Apply to a token stream rather than a character stream.
- Lexical analysis turns character stream into more compact token stream.
- Regular languages are general enough to capture the structure of tokens but not general enough to capture the structure of programming languages.

SUMMARY

- Parsing is complex \Rightarrow Apply to a token stream rather than a character stream.
- Lexical analysis turns character stream into more compact token stream.
- Regular languages are general enough to capture the structure of tokens but not general enough to capture the structure of programming languages.
- There exist languages that are not regular.

SUMMARY

- Parsing is complex \Rightarrow Apply to a token stream rather than a character stream.
- Lexical analysis turns character stream into more compact token stream.
- Regular languages are general enough to capture the structure of tokens but not general enough to capture the structure of programming languages.
- There exist languages that are not regular.
- Regular languages are described using regular expressions and recognized using DFA.

SUMMARY

- Parsing is complex \Rightarrow Apply to a token stream rather than a character stream.
- Lexical analysis turns character stream into more compact token stream.
- Regular languages are general enough to capture the structure of tokens but not general enough to capture the structure of programming languages.
- There exist languages that are not regular.
- Regular languages are described using regular expressions and recognized using DFA.
- DFA are very simple machines that can be implemented very efficiently.

SUMMARY

- Parsing is complex \Rightarrow Apply to a token stream rather than a character stream.
- Lexical analysis turns character stream into more compact token stream.
- Regular languages are general enough to capture the structure of tokens but not general enough to capture the structure of programming languages.
- There exist languages that are not regular.
- Regular languages are described using regular expressions and recognized using DFA.
- DFA are very simple machines that can be implemented very efficiently.
- NFA are mainly a tool for translating regular expressions to DFA.

SUMMARY

- Parsing is complex \Rightarrow Apply to a token stream rather than a character stream.
- Lexical analysis turns character stream into more compact token stream.
- Regular languages are general enough to capture the structure of tokens but not general enough to capture the structure of programming languages.
- There exist languages that are not regular.
- Regular languages are described using regular expressions and recognized using DFA.
- DFA are very simple machines that can be implemented very efficiently.
- NFA are mainly a tool for translating regular expressions to DFA.
- Lexical analysis requires some simple extensions to DFA because we need to know which token wa accepted and we need to support greediness/backtracking.

