
Sample Solution

Assignment 7

CSCI 3136—Winter 2019

Question 1

The stack frame looks exactly as for normal function calls, with the exception that the optional arguments
are pushed on the stack before the required arguments:

Local variables

Old SP, FP

Return address
Return value
Required args

Optional args

FP

SP

This ensures that the number of optional arguments has no impact on the offset from the frame pointer
of any other part of the stack frame.

Call sequence: The caller pushes

• Optional arguments
• Required arguments

on the stack and reserves space for the return value. It then makes the call, thereby pushing the return
address.

The callee

• Pushes the current FP and SP onto the stack,
• Sets FP = SP, and
• Allocates space for local variables.

The callee can now access local variables, required arguments, and the return value as usual, at fixed
offsets from the FP. Similarly, the first optional argument is stored at a fixed offset from the FP, so it is
easiy to implement C-style iteration over the arguments by initializing a pointer to the first argument
and then advancing this pointer as each argument is read.

When returning, the callee

• Cleans up its local variables,
• Restores the FP and SP from the stack, and
• Returns control to the caller.

1

This happens exactly as for a normal function call because all this information is stored at fixed offsets.
The caller

• Retrieves the return value and
• Restores the SP to the end of the list of optional arguments.

This requires knowledge of the number and types of the optional arguments passed to the call, but the
caller has this information and this information can be generated at compile time for each function call.
Thus, this translates into a single addition to the current SP value.

Question 2

Question 2a

The problem is that the two string representations in this case are infinite. Indeed, both types have the
representation

struct char pointer struct char pointer struct char pointer ...

The notion of equality of infinite strings is poorly defined. Given that these infinite strings are obtained
recursively from a finite description (the set of types in the program), it can be shown that two types are
structurally equivalent if their strings have a sufficiently long common prefix. (Indeed, this is a rough
approximation of the idea behind the solution in part (b).) However, the notion of “sufficiently long”
depends on the program being checked, so this condition is difficult to check by a compiler.

Question 2b

I had an earlier version of this proof that was half as long but not 100% rigorous. I decided to
make it completely rigorous. I hope you learn something from working through this proof. Note,
however, that if you decided to attempt the bonus question, I did not expect you to provide a
proof that achieves even close to this level of rigour.

Our proof strategy is as follows:

1. First we formalize the notion of structural equivalence defined in the assignment by introducing
classification functions φA and φB over the set of all sequences of element selectors. The construc-
tion will ensure that A and B are structurally equivalent if and only if φA = φB, that is, if and only
if φA(σ) = φB(σ) for every sequence σ of element selectors.

2. Then we define two DFA-like automata MA and MB that compute φA and φB, that is, ψMA
(σ) =

φA(σ) andψMB
(σ) = φB(σ) for every sequenceσ of element selectors, whereψMA

(σ) andψMB
(σ)

denote the outputs of MA and MB when given σ as an input.

3. Next we consider the two automata µ(MA) and µ(MB) obtained by applying a simple extension of
the DFA minimization procedure discussed in class to MA and MB. µ(M) refers to the minimized
version of M , for any automaton M . The minimization procedure ensures that ψµ(M) =ψM for
every automaton M .

4. The next (and hardest) step is to prove that µ(MA) = µ(MB) if and only if ψMA
=ψMB

. In other
words, the minimized classification automaton for any classification function φ is unique.

2

5. Finally, we discuss a simple algorithm that determines whether two classification automata are
identical.

The procedure to test the structural equivalence of two types A and B now works as follows: First we
construct the automata MA and MB. Then we minimize them to obtain µ(MA) and µ(MB). Finally, we
test whether µ(MA) = µ(MB) and output the result. This procedure is correct because, by the properties
of the construction outlined above, A and B are structurally equivalent if and only if φA = φB, which
holds if and only if ψMA

=ψMB
, which holds if and only if µ(MA) = µ(MB). It remains to provide the

different parts of this construction.

Classification Functions for Selector Sequences

Consider the alphabet Σ consisting of all element selectors in the program. Since the program is finite,
Σ is finite. Σ∗ is the set of all strings over Σ, that is, the set of all sequences of element selectors, valid
or not. For a type A and a sequence σ = .s1.s2 . . . of element selectors, we write Aσ to refer to the type
A.s1.s2 . . .

Let T be the set of all built-in types plus two special elements called invalid and compound. We define
a classification function φA(σ) : Σ∗→ T for every type A in the program such that φA(σ) = invalid if σ
is not a valid sequence of element selectors for the type A; φA(σ) = compound if σ is a valid sequence of
element selectors for the type A but Aσ is a compound type; and φA(σ) = t, where t is a built-in type, if
Aσ = t. If A is a built-in type, then the only valid sequence of element selectors is ε and Aε= A.

These classification functions simply formalize the notion of structural equivalence defined in the
assignment since it is easy to see that two types A and B are structurally equivalent if and only if φA = φB,
that is, if and only if φA(σ) = φB(σ) for all σ ∈ Σ∗.

Automata to Compute Classification Functions

The construction here is very similar to the extension of DFA used by scanners to recognize multiple token
types instead of just accepting or rejecting a given input. A classification automaton M = (S, q0,Σ, Γ ,δ,λ)
has a set of states S, a start state q0 ∈ S, an alphabetΣ, a set of classes Γ , a transition function δ : S×Σ→ S,
and a labelling function λ : S→ Γ that assigns a class to each state in S.

Such an automaton computes a classification function ψM where ψM (σ) is the label of the state
reached by M after consuming the input σ. Formally, ψM (σ) = λ(δ∗(q0,σ)) where δ∗(q,σ) is defined
analogously to the definition for a DFA. Note that a DFA is a special case of a classification automaton
where Γ = {accept,reject} and

λ(q) =

¨

accept if q ∈ F

reject if q /∈ F
.

To construct an automaton MA such that ψMA
= φA, we set S to be the set of all types in the program

plus a special state invalid. Since the program has finite length, S is finite. q0 = A. Σ is the set of all
element selectors, which is finite for the same reason. Γ is the set T defined above.

δ(q, s) =

q′ if q is compound, has an element selector s, and q.s has type q′

invalid if q is compound and q has no element selector s

invalid if q is a built-in type or q = invalid

.

λ(q) =

q if q is a built-in type

compound if q is a compound type

invalid if q = invalid

.

3

Finally, we discard all states that are not reachable from q0. It should be obvious that these unreachable
states have no influence on the classification function computed by the automaton but the arguments in
proofs later in this document require all states to be reachable from q0.

The following lemma shows that this construction is correct:

Lemma 1. ψMA
= φA.

Proof. Consider any state q 6= invalid.
If q is a built-in type, then φq(ε) = q and φq(σ) = invalid for all σ 6= ε. We have δ∗(q,ε) = q and

λ(q) = q, so λ(δ∗(q,ε)) = φq(ε). For σ = sσ′, we have

δ∗(q,σ) = δ∗(δ(q, s),σ′) = δ∗(invalid,σ′) = invalid.

Since λ(invalid) = invalid, we once again obtain λ(δ∗(q,σ)) = invalid = φq(σ). This shows that
λ(δ∗(q,σ)) = φq(σ) for every built-in type q and every selector sequence σ ∈ Σ∗.

If q is a compound type, then φq(ε) = compound. Since δ∗(q,ε) = q and λ(q) = compound, we have
φq(ε) = λ(δ∗(q,ε)). For any non-empty selector sequence σ = sσ′, we distinguish two cases:

If s is a selector of q, then

φq(σ) = φq.s(σ
′) = λ(δ∗(q.s,σ′)) = λ(δ∗(δ(q, s),σ′)) = λ(δ∗(q,σ)).

If s is not a selector of q, then φq(σ) = invalid. However, δ(q, s) = invalid in this case, and
δ∗(invalid,σ′) = invalid. Thus,

λ(δ∗(q,σ)) = λ(δ∗(δ(q, s),σ′)) = λ(δ∗(invalid,σ′)) = λ(invalid) = invalid.

This shows that φq(σ) = λ(δ∗(q,σ)) for every compound type q and every selector sequence σ ∈ Σ∗.
To finish the proof, we observe that, by definition,

ψMA
(σ) = λ(δ∗(q0,σ)) = λ(δ∗(A,σ)) = φA(σ).

Minimizing a Classification Automaton

We use the same minimization procedure for DFA that we used in class, with one difference: Instead of
starting with only two equivalence classes consisting of accepting and non-accepting states, respectively,
we start with |Γ | equivalence classes {Cγ | γ ∈ Γ } defined as Cγ = {q ∈ S | λ(q) = γ}. This is the same
extension to the minimization procedure we used when minimizing the DFA of a scanner, which may
have different types of accepting states. Again, the standard minimiziation procedure is just a special
case of this more general minimization procedure after defining

λ(q) =

¨

accept if q ∈ F

reject if q /∈ F
.

We describe this procedure in detail here and prove that it preserves the classification function
computed by the automaton, since we need this in proofs later in this document.

As stated above, the procedure starts with a set of equivalence classes C = {Cγ | γ ∈ Γ }, where
Cγ = {q ∈ S | λ(q) = γ}. As long as there exists an equivalence class C ∈ C, two states q, q′ ∈ C , and
a letter s ∈ Σ such that δ(q, s) ∈ C ′ and δ(q′, s) ∈ C ′′, where C ′ 6= C ′′, we partition C into subclasses
C1, . . . , Ck such that

• For any class Ci and any two states q, q′ ∈ Ci , δ(q, s) and δ(q′, s) belong to the same class in C.

4

• For two classes Ci 6= C j and any two states q ∈ Ci and q′ ∈ C j , δ(q, s) and δ(q′, s) belong to different
classes in C.

Then we replace C with C1, . . . , Ck in C.
The procedure terminates once there exists, for all s ∈ Σ and every equivalence class C ∈ C, an

equivalence class C ′ ∈ C such that δ(q, s) ∈ C ′ for all q ∈ C . We define µ(M) = (C, C0,Σ, Γ ,δµ,λµ),
where q0 ∈ C0, δµ(C , s) = C ′ such that δ(q, s) ∈ C ′ for all q ∈ C , and λµ(C) = λ(q) for all q ∈ C . Once
the algorithm terminates, there exists a class C ′ ∈ C for every pair (C , s) ∈ C×Σ such that δ(q, s) ∈ C ′

for all q ∈ C . Thus, δµ is well defined. Similarly, every class C ∈ C satisfies C ⊆ Cγ for some γ ∈ Γ . Thus,
λ(q) = λ(q′) for all q, q′ ∈ C , that is, λµ is well defined.

First we prove that minimization preserves the computed classification function.

Lemma 2. ψµ(M) =ψM .

Proof. We prove by induction on |σ| that every class C ∈ C satisfies δ∗(q,σ) ∈ δ∗µ(C ,σ) for all q ∈ C and
every string σ ∈ Σ∗. Thus, since λµ(C) = λ(q) for every class C ∈ C and all q ∈ C , we have

ψµ(M)(σ) = λµ(δ
∗
µ(C0,σ)) = λ(δ∗(q0,σ)) =ψM (σ)

for all σ ∈ Σ∗, that is, ψµ(M) =ψM .
For |σ|= 0, we have σ = ε. Thus, δ∗(q,σ) = q ∈ C for all q ∈ C .
For |σ| > 0, we have σ = sσ′ for some s ∈ Σ and σ′ ∈ Σ∗. By the termination condition of the

algorithm, we have {δ(q, s) | q ∈ C} ⊆ C ′ for some C ′ ∈ C. By the induction hypothesis, we have
δ∗(q′,σ′) ⊆ δ∗µ(C

′,σ′) for all q′ ∈ C ′. Since δ(q, s) ∈ C ′ for all q ∈ C ′, we have δµ(C , s) = C ′ and, thus,

δ∗(q,σ) = δ∗(q, sσ′) = δ∗(δ(q, s),σ′) ⊆ δ∗µ(C
′,σ′) = δ∗µ(δµ(C , s),σ′) = δ∗µ(C , sσ′) = δ∗µ(C ,σ).

The next lemma will be useful in proving that the minimized classification automaton for a given
classification function is unique.

Lemma 3. Every pair of equivalence classes C 6= C ′ in C has a string σC ,C ′ such that λµ(δ∗µ(C ,σC ,C ′)) 6=
λµ(δ∗µ(C

′,σC ,C ′)).

Proof. We prove by induction on the number of splits of equivalence classes performed by the algorithm
that there exists a string σC ,C ′ for every pair of equivalence classes C 6= C ′ such that λ(δ∗(q,σC ,C ′)) 6=
λ(δ∗(q′,σC ,C ′)) for all q ∈ C and q′ ∈ C ′. Since λµ(δ∗µ(C ,σC ,C ′)) = λ(δ∗(q,σC ,C ′)) for all q ∈ C and
λµ(δ∗µ(C

′,σC ,C ′)) = λ(δ∗(q′,σC ,C ′)) for all q′ ∈ C ′, the lemma follows.
Initially, we have C= {Cγ | γ ∈ Γ }. For any two states q ∈ Cγ and q′ ∈ Cγ′ , where γ 6= γ′, we have

λ(δ∗(q,ε)) = λ(q) = γ 6= γ′ = λ(q′) = λ(δ∗(q′,ε)).

Thus, we can choose σCγ,Cγ′ = ε.
So assume we have a collection C of equivalence classes that satisfy the lemma and the algorithm

splits a class C ∈ C into subclasses C1, . . . , Ck. Then the resulting collection of equivalence classes is
C′ = C \ {C} ∪ {C1, . . . , Ck}. Consider two classes C ′ 6= C ′′ in C′.

If {C ′, C ′′} ∩ {C1, . . . , Ck} = ;, then C ′, C ′′ ∈ C. Thus, there exists a string σC ′,C ′′ that satisfies
λ(δ∗(q′,σC ′,C ′′)) 6= λ(δ∗(q′′,σC ′,C ′′)) for all q′ ∈ C ′ and q′′ ∈ C ′′.

If C ′ ∈ C and C ′′ = Ci for some 1≤ i ≤ k, then C ′′ ⊆ C , so every state q′′ ∈ C ′′ satisfies q′′ ∈ C . Thus,
for every state q′ ∈ C ′, we have λ(δ∗(q′,σC ′,C)) 6= λ(δ∗(q′′,σC ′,C)), that is, we can set σC ′,C ′′ = σC ′,C .

Finally, if C ′ = Ci and C ′′ = C j for some 1≤ i < j ≤ k, then there exist two classes C ′i 6= C ′j in C and
a letter s ∈ Σ such that δ(q, s) ∈ C ′i and δ(q′, s) ∈ C ′j for all q ∈ Ci and q′ ∈ C j . Thus,

λ(δ∗(q, sσC ′i ,C
′
j
)) = λ(δ∗(δ(q, s),σC ′i ,C

′
j
)) 6= λ(δ∗(δ(q′, s),σC ′i ,C

′
j
)) = λ(δ∗(q′, sσC ′i ,C

′
j
))

for all q ∈ Ci and q′ ∈ C j . Therefore, we can choose σCi ,C j
= sσC ′i ,C

′
j
.

5

The Minimized Classification Automaton is Unique

We consider two classification automata M1 = (S1, q1,Σ, Γ ,δ1,λ1) and M2 = (S2, q2,Σ, Γ ,δ2,λ2) to be
the same, written M1 ≡ M2, if there exists a bijection β : S1→ S2 such that

(i) β(q1) = q2 (M1 and M2 have “the same start state”),
(ii) β(δ1(q, s)) = δ2(β(q), s) for all q ∈ S1 and s ∈ Σ (M1 and M2 have “the same transition function”),

and
(iii) λ2(β(q)) = λ1(q) (the states of M1 and M2 have “the same labels”).

Lemma 4. M1 and M2 are two classification automata with ψM1
=ψM2

if and only if µ(M1)≡ µ(M2).

Proof. Let µ(M1) = (S1, q1,Σ, Γ ,δ1,λ1) and µ(M2) = (S2, q2,Σ, Γ ,δ2,λ2). We proved thatψM1
=ψµ(M1)

and ψM2
=ψµ(M2). Thus, it suffices to prove that ψµ(M1) =ψµ(M2) if and only if µ(M1)≡ µ(M2).

First assume that µ(M1)≡ µ(M2) and let β be the required bijection that proves this. Then observe
that (ii) implies that β(δ∗1(q,σ)) = δ∗2(β(q),σ) for all q ∈ S1 andσ ∈ Σ∗. This can be shown by induction
on |σ|. If σ = ε, then β(δ∗1(q,ε)) = β(q) = δ∗2(β(q),ε). If σ = sσ′, then

β(δ∗1(q,σ)) = β(δ∗1(q, sσ′))

= β(δ∗1(δ1(q, s),σ′))

= δ∗2(β(δ1(q, s)),σ′) (by the induction hypothesis)

= δ∗2(δ2(β(q), s),σ′) (by (ii))

= δ∗2(β(q), sσ′)

= δ∗2(β(q),σ).

This implies that

ψµ(M1)(σ) = λ1(δ
∗
1(q1,σ))

(iii)
= λ2(β(δ

∗
1(q1,σ))) = λ2(δ

∗
2(β(q1),σ))

(i)
= λ2(δ

∗
2(q2,σ)) =ψµ(M2)(σ).

Since this holds for all σ ∈ Σ∗, this shows that ψµ(M1) =ψµ(M2).
To prove that µ(M1)≡ µ(M2) if ψµ(M1) =ψµ(M2), we construct two injective mappings β1 : S1→ S2

and β2 : S2→ S1. Thus, β1 is a bijection between S1 and S2. Then we prove that β1 satisfies conditions
(i)–(iii).

Recall that we consider only automata where all states are reachable from the start state. (I leave it
as an exercise to verify that, if all states of an automaton M are reachable from M ’s start state, then the
same is true for µ(M).) Thus, there exists a string σq for all q ∈ S1 such that δ∗1(q1,σq) = q. Clearly,
σq 6= σq′ if q 6= q′. We define a string τq′ for all q′ ∈ S2 analogously. Then we define β1(q) = δ2(q2,σq)
for all q ∈ S1 and β2(q′) = δ1(q1,τq′) for all q′ ∈ S2.

We prove that β1 is injective. An analogous argument shows that β2 is injective. So assume for the
sake of contradiction that there exist two states q 6= q′ in S1 such that β1(q) = β1(q′). Then let σq,q′ ∈ Σ∗

such that λ1(δ∗1(q,σq,q′)) 6= λ1(δ∗1(q
′,σq′q′)). By Lemma 3, such a string σq′q′ exists. Then

ψµ(M1)(σqσq,q′) = λ1(δ
∗
1(q1,σqσq,q′)) = λ1(δ

∗
1(δ

∗
1(q1,σq),σq,q′)) = λ1(δ

∗
1(q,σq,q′))

6= λ1(δ
∗
1(q
′,σq,q′)) = λ1(δ

∗
1(δ

∗
1(q1,σq′),σq,q′)) = λ1(δ

∗
1(q1,σq′σq,q′))

=ψµ(M1)(σq′σq,q′).

On the other hand, by the definition of β1, we have δ∗2(q2,σq) = β1(q) = β1(q′) = δ∗2(q2,σq′). Thus,

ψµ(M2)(σqσq,q′) = λ2(δ
∗
2(q2,σqσq,q′)) = λ2(δ

∗
2(δ

∗
2(q2,σq),σq,q′))

= λ2(δ
∗
2(δ

∗
2(q2,σq′),σq,q′)) = λ2(δ

∗
2(q2,σq′σq,q′)) =ψµ(M2)(σq′σq,q′).

6

This is a contradiction because ψµ(M1) =ψµ(M2).
Since β1 and β2 are both injective, we have |S1| = |S2|. Thus, since β1 is injective, it is a bijection

from S1 to S2. Next we show that β1 satisfies properties (i)–(iii).
Property (i) is obvious: σq1

= ε. Thus, β1(q1) = δ∗2(q2,ε) = q2, as required.
To prove (ii), assume for the sake of contradiction that there exists a pair (q, s) ∈ S1 ×Σ such that

β1(δ1(q, s)) 6= δ2(β1(q), s). Then let q′ = δ1(q, s), q′′ = δ2(β1(q), s) = δ2(δ∗2(q2,σq), s) = δ∗2(q2,σqs),
and q′′′ = β1(q′) = δ∗2(q2,σq′). Since q′′ 6= q′′′, there exists a string τq′′,q′′′ such that λ2(δ∗2(q

′′,τq′′,q′′′)) 6=
λ2(δ∗2(q

′′′,τq′′,q′′′)). Thus,

ψµ(M2)(σqsτq′′,q′′′) = λ2(δ
∗
2(q2,σqsτq′′,q′′′)) = λ2(δ

∗
2(q
′′,τq′′,q′′′))

6= λ2(δ
∗
2(q
′′′,τq′′,q′′′)) = λ2(δ

∗
2(q2,σq′τq′′,q′′′)) =ψµ(M2)(σq′τq′′,q′′′).

On the other hand, since q′ = δ1(q, s), we have

ψµ(M1)(σqsτq′′,q′′′) = λ1(δ
∗
1(q1,σqsτq′′,q′′′)) = λ1(δ

∗
1(q
′,τq′′,q′′′))

= λ1(δ
∗
1(q1,σq′τq′′,q′′′)) =ψµ(M1)(σq′τq′′,q′′′),

a contradiction because ψµ(M1) =ψµ(M2).
Finally, to prove that β1 satisfies property (iii), assume there exists a state q ∈ S1 such that λ1(q) 6=

λ2(β1(q)). Then

ψµ(M1)(σq) = λ1(δ
∗
1(q1,σq)) = λ1(q) 6= λ2(β1(q)) = λ2(δ

∗
2(q2,σq)) =ψµ(M2)(σq),

again a contradiction because ψµ(M1) =ψµ(M2).

Deciding Whether Two Automata are the Same

Given two automata M1 = (S1, q1,Σ, Γ ,δ1,λ1) and M2 = (S2, q2,Σ, Γ ,δ2,λ2), we have M1 6≡ M2 if
|S1| 6= |S2|. Thus, this is the first condition we test. If |S1| = |S2|, we attempt to construct a bijection β as
above and then test whether it has the desired properties. Specifically, if n= |S1|= |S2|, we construct
two bijections ν1 : S1→ [n] and ν2 : S2→ [n] numbering the states in S1 and S2. The inverses of these
two bijections are ν−1

1 and ν−1
2 . The construction will ensure that M1 ≡ M2 if and only if δ′1 = δ

′
2 and

λ′1 = λ
′
2, where δ′i(x , s) = νi(δi(ν−1

i (x), s)) and λ′i(x) = λi(ν−1
i (x)) for all i ∈ {1, 2}, x ∈ [n], and s ∈ Σ.

To construct the numbering νi for i ∈ {1,2}, we run a lexicographic DFS in Mi starting from qi.
“Lexicographic” means that the search explores the out-edges of each state by increasing labels according
to some arbitrary but fixed ordering defined on Σ. νi now numbers the states in Si in the order they are
discovered by this search. In particular, ν1(q1) = 1= ν2(q2).

Lemma 5. M1 ≡ M2 if and only if |S1|= |S2|, δ′1 = δ
′
2, and λ′1 = λ

′
2.

Proof. As already observed, M1 6≡ M2 if |S1| 6= |S2|. So assume from here on that |S1| = |S2|. First assume
that δ′1 = δ

′
2 and λ′1 = λ

′
2. We define a bijection β : S1 → S2 as β = ν−1

2 ν1. This is indeed a bijection
because ν1 and ν2 are both bijections.

Since ν1(q1) = 1 = ν2(q2), we have β(q1) = ν−2
2 (ν1(q1)) = q2, so β satisfies condition (i). It remains

7

to prove that β satisfies conditions (ii) and (iii).

β(δ1(q, s)) = ν−1
2 (ν1(δ1(q, s))) (because β = ν−1

2 ν1)(ii)

= ν−1
2 (ν1(δ1(ν

−1
1 (ν1(q)), s))) (because ν−1

1 ν1 = id)

= ν−1
2 (δ

′
1(ν1(q), s)) (because δ′1(x , s) = ν1(δ1(ν

−1
1 (x), s)))

= ν−1
2 (δ

′
2(ν1(q), s)) (because δ′1 = δ

′
2)

= ν−1
2 (ν2(δ2(ν

−1
2 (ν1(q)), s))) (because δ′2(x , s) = ν2(δ2(ν

−1
2 (x), s)))

= δ2(β(q), s). (because ν−1
2 ν2 = id and ν−1

2 ν1 = β)

λ2(β(q)) = λ2(ν
−1
2 (ν1(q))) (because β = ν−1

2 ν1)(iii)

= λ′2(ν1(q)) (because λ′2(x) = λ2(ν
−1
2 (x)))

= λ′1(ν1(q)) (because λ′1 = λ
′
2)

= λ1(ν
−1
1 (ν1(q))) (because λ′1(x) = λ1(ν

−1
1 (x)))

= λ1(q). (because ν−1
1 ν1 = id)

Next assume there exists a bijection β that satisfies conditions (i)–(iii). For every state q ∈ S1, let σq
be the characteristic string of q defined as the lexicographically least string such that δ∗1(q1,σq) = q. We
sort the states in S1 by their characteristic strings and define ν′1(q) to be the position of q in this ordering.
Define ν′2(q) analogously for the states in S2 and let ν′′2 (q) = ν

′
1(β

−1(q)) for all q ∈ S2. We prove in the
following two lemmas that ν1 = ν′1 and ν2 = ν′2 = ν

′′
2 . For now, assume this is true. Then we have

δ′1(x , s) = ν1(δ1(ν
−1
1 (x), s)) (by the definition of δ′1)

= ν2(β(δ1(ν
−1
1 (x), s))) (because ν2 = ν

′′
2 = ν

′
1β
−1 = ν1β

−1

and thus ν2β = ν1β
−1β = ν1.)

= ν2(δ2(β(ν
−1
1 (x)), s)) (because β(δ1(q, s)) = δ2(β(q), s))

= ν2(δ2(ν
−1
2 (x), s)) (because ν2 = ν1β

−1 and thus ν−1
2 = (ν1β

−1)−1 = βν−1
1)

= δ′2(x , s). (by the definition of δ′2)

Thus, δ′1 = δ
′
2.

Similarly,

λ′2(x) = λ2(ν
−1
2 (x)) (by the definition of λ′2)

= λ2(β(ν
−1
1 (x))) (because ν2 = ν1β

−1 and thus ν−1
2 = (ν1β

−1)−1 = βν−1
1)

= λ1(ν
−1
1 (x)) (because λ1(q) = λ2(β(q)) for all q ∈ S1)

= λ′1(x). (by the definition of λ′1)

Lemma 6. ν1 = ν′1 and ν2 = ν′2.

Proof. We prove that ν1 = ν′1. The proof that ν2 = ν′2 is analogous.
First we define some notation. For a given string σ = s1 · · · s|σ| ∈ Σ∗, we use π(σ) to denote the “path

followed by σ”. Formally, π(σ) = 〈p0, . . . , p|σ|〉, where p0 = q1 and, for 1≤ j ≤ |σ|, p j = δi(p j−1, s j).
Conversely, for a path π in Mi, we use σ(π) to refer to the “string labelling π”, that is, if π =

〈p0, . . . , p|π|〉 (we use |π| to denote the number of edges in π), then σ(π) = s1 · · · s|π| such that
δi(p j−1, s j) = p j for all 1≤ j ≤ |π|.

8

The definitions of πi(q,σ) and σ(π) are, in a sense, inverses of each other because σ(π(σ)) = σ
and, if the start vertex of π is q1, then π(σ(π)) = π.

Now assume that ν1 6= ν′1. Then there exists a state q ∈ S such that ν1(q) 6= ν′1(q). We choose this
state q so that ν′1(q) is minimized. Let q′ be the state such that ν1(q′) = ν′1(q) 6= ν

′
1(q
′). Then q 6= q′ and,

by the choice of q, ν′1(q
′)> ν′1(q). Since every vertex q′′ with ν′1(q

′′)< ν′1(q) satisfies ν1(q′′) = ν′1(q
′′),

by the choice of q, we also have ν1(q)> ν′1(q).
If q = q1, then ν1(q) = 1 and σq = ε < σq′ for all q′ 6= q. Thus, ν′1(q) = 1. Since we assume that

ν1(q) 6= ν′1(q), this shows that q 6= q1 and, thus, σq 6= ε. Therefore, |π(σq)| ≥ 1 and q has a predecessor
p in π(σq). Let σq = σ′ps. Then δ∗1(q1,σ′p) = p and thus, by the choice of σp, we have σp ≤ σ′p.
Conversely, δ∗1(q1,σps) = q. Thus, by the choice of σq, we have σ′ps = σq ≤ σps, that is, σ′p ≤ σp. This
shows that σp = σ′p and σq = σps. This in turn implies that σp < σq and, thus, ν′1(p)< ν

′
1(q). By the

choice of q, we thus have ν1(p) = ν′1(p) and, therefore, ν1(p) = ν′1(p)< ν
′
1(q) = ν1(q′)< ν1(q), that is,

the lexicographic DFS of M1 discovers q after p, and q′ between p and q.
In particular, due to the existence of the edge (p, q), this implies that q is a descendant of p in the tree

T constructed by the lexicographic DFS and, since DFS numbers all descendant nodes of p consecutively,
q′ is also a descendant of p in T .

If q is a child of p, then let π be the path from p to q′ in T . Since q′ is visited before q, (p, q) is not the
first edge in π. Since we use lexicographic DFS, the first edge (p, q′′) in π has a smaller label than (p, q).
In particular, σq′ ≤ σpσ(π)< σpσ(〈p, q〉) = σq. This implies that ν′1(q

′)< ν′1(q), a contradiction.
If q is not a child of p, then let π′ be the path from p to q in T . The first edge (p, q′′′) on this path

must have a label less than that of (p, q) because otherwise the edge (p, q) would be explored first and
q would become a child of p. Thus, σpσ(π′) < σpσ(〈p, q〉) = σq. Since δ∗1(q1,σpσ(π′)) = q, this
contradicts the choice of σq.

This proves that ν1 = ν′1.

Lemma 7. ν′2 = ν
′′
2 .

Proof. First we prove that σq = τβ(q) for all q ∈ S1, where τq′ is the characteristic string of the state
q′ ∈ S2. Recall that (ii) implies that β(δ∗1(q,σ)) = δ∗2(β(q),σ) for all q ∈ S1 and σ ∈ Σ∗. This was
shown as part of the proof of Lemma 4. Since β(q1) = q2, by (i), this implies that δ∗1(q1,σ) = q if and
only if δ∗2(q2,σ) = β(q). Therefore, σq and τβ(q) are chosen from the same set of candidate strings and,
thus, σq = τβ(q).

For two states q′1, q′2 ∈ S2, we have ν′′2 (q
′
1)< ν

′′
2 (q
′
2) if and only if ν′1(β

−1(q′1))< ν
′
1(β

−1(q′2)), by the
definition of ν′′2 . Since σβ−1(q′1)

= τq′1
and σβ−1(q′2)

= τq′2
, this holds if and only if ν′2(q

′
1)< ν

′
2(q
′
2). Since

both ν′2 and ν′′2 are bijections from S2 to [n], ν′2(q
′
1) < ν

′
2(q
′
2)⇔ ν′′2 (q

′
1) < ν

′′
2 (q
′′
2) for all q′1, q′2 ∈ S2

implies that ν′2(q
′) = ν′′2 (q

′) for all q′ ∈ S2, that is, ν′2 = ν
′′
2 .

9

