Sample Solution - Assignment 6
SCI 3136

Question 1 To explain the answer more easily, here is a copy of the code with some lines numbered.

(define x 8)
(1)
(2)
(define (f z)
(display (+ z y)))
(3)
(define (g f)
let ((y 5))
(4)
(5)
(define (h)
(let ((X 80))
(6)
(g f)))
(h)
(a) Static binding. In this case, y is a free variable in line 3. The smallest enclosing lexical scope with a variable y is the top level (line 2). Thus, y is 3 in line 3. z is whatever argument is passed to f in line 5 . Since x is a free variable in g, we once again look for the smallest enclosing scope that defines x. This is once again the top level (line 1). Thus, x is 8 in line 5, thenar is, z is 8 in line 3 and line 3 prints $8+3=11$.
(b) Dynamic and deep binding. The first time f is passed as a parameters to a feuchion is in line 7. At this point, the dynamically most recent binding of y (the only free variable in f) is the top-level definition in line 2. Thee, y is bound 103 in f. The function call ($f x$) in line 5 uses the most recent binding for x during the program execution. This is the local definition in line 6 . Thus, f's parameto z is bound to 80 and line 3 prints $80+3=83$.
(c) Dynamic and shallow binding. f is called in line 5. The most recent binding for y is in line 4 . Thees, f's tree variable y is bound to 5 . The most recent binding for x in line 5 is once again the binding in line 6, 50 fs^{\prime} parameter z is 80 again. Line 3 prints $80+5=85$.

Question 2
Consider some function f calling another fanchiong. Since we use static scoping, g must be defined in for in some enclosing scope. Let us call f's body scope 0, the imeurdiankly enclosing scope stope 1, and so on. K hops along f's static chain get us to the stack frame conesponding to scopeck. If g is defined in the kith scope, then this frame is the target of g's stan link. Thus, in the same way that the compiler counts enclosing scopes to determine the number of hops along f's static chain keressary to reach a variable accessed from f, it can also comet enclosing scopes until finding
g and the number of these scopes is the number of hops along f's static chain that get us \%o the target frame of gs stannic link.

Question 3
There is no contradiction. Associativity determines the shape of the expression bee: $1+2+3$ has the expression bee

not

Analogously to the existence of many derivations comesponding to a parse rive, the nodes of an expression tree can be evaluated in any order as long as ancestors are evaluated after descendants.

