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NP-complete problems:

• Satisfiability
• Vertex cover
• Hamiltonian cycle
• Subset sum
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(Probably) intractable problems:

• Satisfiability
• Vertex cover
• Hamiltonian cycle
• Subset sum
• . . .

A problem is considered computationally tractable if it has a polynomial-time solution.

If no such solution exists, the problem is considered computationally intractable.
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Decision Problems & Optimization Problems

A decision problem asks a yes/no question:

• Is this input sequence sorted?
• Does there exist a path from v to w in G?
• Does G contain a cycle?
• Are there two points in S that have distance less than d from each other?
• . . .

To turn an optimization problem into a decision problem, we provide a threshold for
the cost/weight/. . . of the solution.

Every optimization problem has a corresponding decision problem:

• Does G have a spanning tree of weight at most w?
• Is there a path from v to w in G of length at most `?
• Are there k non-overlapping intervals in S?
• . . .



Decision Is No Harder Than Optimization

Lemma. If an optimization problem can be solved in polynomial time, then so can its
decision version.

Yes/no answers usually aren’t that useful in practice.

However, if we can provide evidence that the decision version of an optimization
problem is intractable, then so is the optimization problem itself, by the following
lemma:



Decision Is No Harder Than Optimization

Lemma. If an optimization problem can be solved in polynomial time, then so can its
decision version.

Decision algorithm:

• Solve the optimization problem.
• Compare the value of its solution to the given threshold.

Yes/no answers usually aren’t that useful in practice.

However, if we can provide evidence that the decision version of an optimization
problem is intractable, then so is the optimization problem itself, by the following
lemma:
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Decision Problems & Formal Languages

A (formal) language over an alphabet Σ is a set of strings formed using le�ers from Σ:
L ⊆ Σ∗.

Formal languages and decision problems are “the same thing”.

Consider the transformations

• Problem P → language L→ problem P′

• Language L → problem P → language L′

Then P = P′ and L = L′.

Language → decision problem:

• Given a language L, decide whether a
given string x ∈ Σ∗ belongs to L.

Decision problem → language:

• Define a binary encoding of the input
instances of the decision problem.
• Every instance is now a string over the
alphabet Σ = {0, 1}.
• Let L be the set of all such strings that
encode yes-instances of the decision
problem.



The Complexity Class P

Given a string x ∈ Σ∗, a decision algorithm D is said to accept x if it answers yes
given input x; it rejects x if it answers no given input x.



The Complexity Class P

Given a string x ∈ Σ∗, a decision algorithm D is said to accept x if it answers yes
given input x; it rejects x if it answers no given input x.

Algorithm D is said to decide a language L ⊆ Σ∗ if it accepts all strings in L and
rejects all other strings.

In other words, the output of D is the answer to the question “Does x belong to L?”



The Complexity Class P

Given a string x ∈ Σ∗, a decision algorithm D is said to accept x if it answers yes
given input x; it rejects x if it answers no given input x.

Algorithm D is said to decide a language L ⊆ Σ∗ if it accepts all strings in L and
rejects all other strings.

In other words, the output of D is the answer to the question “Does x belong to L?”

The complexity class P is the set of all languages that can be decided in polynomial
time.

Formally, a language L belongs to P if and only if there exists an algorithm D that
decides L and the running time of D on any input x ∈ Σ∗ is in O(|x|c) for some
constant c.



The Complexity Class P

Given a string x ∈ Σ∗, a decision algorithm D is said to accept x if it answers yes
given input x; it rejects x if it answers no given input x.

Algorithm D is said to decide a language L ⊆ Σ∗ if it accepts all strings in L and
rejects all other strings.

In other words, the output of D is the answer to the question “Does x belong to L?”

The complexity class P is the set of all languages that can be decided in polynomial
time.

Formally, a language L belongs to P if and only if there exists an algorithm D that
decides L and the running time of D on any input x ∈ Σ∗ is in O(|x|c) for some
constant c.

Informally, P is the set of all tractable decision problems, since

• We observed that decision problems and formal languages are the same thing and
• We consider a problem tractable if it can be solved in polynomial time.
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Consider an algorithm V that decides a language L′ ⊆ Σ∗ × Σ∗, that is, its input is a
pair (x, y) such that x, y ∈ Σ∗.

Algorithm V is said to verify a language L if

• for every x ∈ L, there exists a y ∈ Σ∗ such that (x, y) ∈ L′ and
• for every x /∈ L, there is no y ∈ Σ∗ such that (x, y) ∈ L′.
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Verification

Consider an algorithm V that decides a language L′ ⊆ Σ∗ × Σ∗, that is, its input is a
pair (x, y) such that x, y ∈ Σ∗.

Algorithm V is said to verify a language L if

• for every x ∈ L, there exists a y ∈ Σ∗ such that (x, y) ∈ L′ and
• for every x /∈ L, there is no y ∈ Σ∗ such that (x, y) ∈ L′.

Thus, given an input (x, y) consisting of an element x ∈ L and an appropriate “proof”
y ∈ Σ∗ that shows that x ∈ L, V answers yes.

For a string x /∈ L, we can provide whatever “proof” y of its membership in L we want;
V will reject every such pair (x, y).

Thus, we can think of V as a “proof checker” that verifies whether any given proof of
x’s membership in L is in fact correct.

V does not decide whether x ∈ L. V may answer no even if x ∈ L if the provided
proof of its membership in L is incorrect.
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Verifying is Easier Than Deciding

Verifying a language may be easier than deciding it.

Given a sequence S = 〈x1, x2, . . . , xn〉 of numbers, the element uniqueness problem
asks us to decide whether there exist indices i 6= j such that xi = xj.

Let L be the language of all sequences where two such indices exist.

It can be shown that, using comparisons only, it takes Ω(n lg n) time in the worst case
to decide whether a given sequence S belongs to L.

Verifying L can be done in constant time!

• Let L′ = {(S, (i, j)) | xi = xj, i 6= j}

• Given some pair (S, (i, j)), we can decide in constant time whether (S, (i, j)) ∈ L′ by
comparing xi and xj.

• This algorithm verifies L because x ∈ L if and only if there exists a pair (i, j) such
that (S, (i, j)) ∈ L′.



The Complexity Class NP

The complexity class NP is the set of all languages that can be verified in polynomial
time.

Formally, a language L belongs to NP if and only if there exists a language L′ ∈ P and
a constant c such that x ∈ L if and only if (x, y) ∈ L′ for some y ∈ Σ∗, |y| ≤ |x|c.
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P versus NP

Lemma: P ⊆ NP. (Every language that can be decided in polynomial time can be
verified in polynomial time.)

yes/no

/dev/null

x

y

D
(Is x ∈ L?)

Is P = NP or is P ⊂ NP?

Nobody knows the answer, but . . .

Given that we know verifying some languages is easier than deciding them, it is likely
that P ⊂ NP.

We will show that there exist languages that cannot be decided (decision problems
that cannot be solved) in polynomial time unless P = NP!
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NP-Hardness and NP-Completeness

A language L is NP-hard if L ∈ P implies that P = NP.

A language L is NP-complete if

• L ∈ NP and
• L is NP-hard.

Intuitively, NP-complete languages are the hardest languages in NP.

Assume P 6= NP.

Maybe NP-hard but never NP-complete

NP-complete if NP-hard

Neither NP-hard nor NP-complete P NP



Polynomial-Time Reductions

An algorithm R reduces a language L1 ⊆ Σ∗ to a language L2 ⊆ Σ∗ if, for all x ∈ Σ∗,

x ∈ L1 ⇔ R(x) ∈ L2.

R is a polynomial-time reduction if its running time is polynomial in |x|.

R(x)x R
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R(x)x R y D
(Is y ∈ L2?)
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Proving NP-Hardness Using Polynomial-Time Reductions

Lemma: If there exists a polynomial-time reduction R from a language L1 to a
language L2 ∈ P, then L1 ∈ P.

x ∈ L1 ⇔ D′(x) = yes

D′

x ∈ L1 ⇔ R(x) ∈ L2 R(x) ∈ L2 ⇔ D(R(x)) = yes

x R yes/noR(x) D
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Lemma: If there exists a polynomial-time reduction R from a language L1 to a
language L2 ∈ P, then L1 ∈ P.

TR(|x|) ≤ c|x|a, for some a, c.
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Proving NP-Hardness Using Polynomial-Time Reductions

Lemma: If there exists a polynomial-time reduction R from a language L1 to a
language L2 ∈ P, then L1 ∈ P.

TR(|x|) ≤ c|x|a, for some a, c.

⇒ |R(x)| ≤ c|x|a, for some a, c.

⇒ TD(|R(x)|) ≤ c′|R(x)|a
′ ≤ c′(c|x|a)a

′
, for some a′, c′.

⇒ TD′ (|x|) = TR(|x|) + TD(|R(x)|) ≤ c|x|a + c′(c|x|a)a
′ ∈ O(|x|aa

′
).

x ∈ L1 ⇔ D′(x) = yes

D′

x ∈ L1 ⇔ R(x) ∈ L2 R(x) ∈ L2 ⇔ D(R(x)) = yes

x R yes/noR(x) D
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Proving NP-Hardness Using Polynomial-Time Reductions

Corollary: If there exists a polynomial-time reduction from an NP-hard language L1 to
a language L2, then L2 is also NP-hard.

L2 is NP-hard.

L2 ∈ P L1 ∈ P P = NP
NP-hardness of L1Polynomial-time reduction



Where Do We Get Our First NP-Hard Problem From?

To prove that a language L is NP-hard, we need an NP-hard language L′ that we can
reduce to L in polynomial time.

How do we prove a language L is NP-hard when we haven’t shown any other
language to be NP-hard yet?

Enter Satisfiability, the mother of all NP-hard problems . . .
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Satisfiability (SAT)

A Boolean formula:

F = (x1 ∨ (x2 ∧ x̄3)) ∧ (̄x1 ∨ x4)

The satisfiability problem (SAT): Given a Boolean formula F, decide whether F is
satisfiable.

• x1, x2, x3, x4 are Boolean variables, which can be true or false.

• x1, x̄1, x2, x̄3, x4 are literals (a Boolean variable or its negation).

• A truth assignment assigns a value true or false to each variable in F.

• A truth assigment satisfies F if it makes F true. Example:

• x1 = x2 = x3 = x4 = true satisfies F.

• x1 = x2 = x3 = x4 = false does not.

• F is satisfiable if it has a satisfying truth assignment.



3-SAT

3-SAT: Decide whether a given formula in 3-CNF is satisfiable.

A formula is in conjunctive normal form (CNF) if it is a conjunction of disjuctions.

F = (x1 ∨ x2 ∨ x̄3) ∧ (̄x2 ∨ x3) ∧ (̄x1 ∨ x̄2 ∨ x̄3)

The disjunctions are also called clauses.

F = (x1 ∨ x2 ∨ x̄3) ∧ (̄x2 ∨ x3 ∨ x4) ∧ (̄x1 ∨ x̄2 ∨ x̄3)

A formula is in 3-CNF if each of its clauses consists of three literals.
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Things We Don’t Have Time To Prove

Any polynomial-time verification algorithm for a language L can be turned into a
polynomial-time reduction from L to SAT.

Any Boolean formula F can be turned, in polynomial time, into a Boolean formula F′ in
3-CNF, of size |F′| ∈ O(|F|), and such that F is satisfiable if and only if F′ is.

Thus, 3-SAT is NP-hard.

Thus, SAT ∈ P⇒ L ∈ P for all L ∈ NP, that is, P = NP.

In other words, SAT is NP-hard.



Examples of Polynomial-Time Reductions

3-SAT

Hamiltonian cycle

Subset sumVertex cover
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Vertex Cover

A vertex cover of a graph G = (V, E) is a subset S ⊆ V such that every edge in E has
at least one endpoint in S.

Optimization problem: Given a graph G, find the smallest possible vertex cover of G.

Decision problem: Given a graph G and an integer k, decide whether G has a vertex
cover of size k.
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Reduction from 3-SAT:

• Given any formula F, we build a graph GF that has a small vertex cover if and only
if F is satisfiable.

• GF will be built from subgraphs, called widgets, that guarantee certain properties
of GF.

• It will be obvious that this construction can be carried out in polynomial time.

Variable widget for variable xi:

• Two vertices xi and x̄i
• One edge (xi, x̄i)

Clause widget for clause Cj:

• Three literal vertices λj,1, λj,2, and λj,3
• Three edges (λj,1, λj,2), (λj,2, λj,3), and (λj,3, λj,1) λj,1 λj,2 λj,3

xi x̄i
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n = number of variables m = number of clauses

Observation: Any vertex cover of GF of size n + 2m contains one vertex per variable
widget and two vertices per clause widget.

Lemma: F is satisfiable if and only if GF has a vertex cover of size n + 2m.
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Let VC = {(G, k) | G has a vertex cover of size k}.

To prove that VC ∈ NP, we have to prove that there exists a language VC′ ∈ P such
that (G, k) ∈ VC if and only if (G, k, y) ∈ VC′ for some y with |y| ∈ O(|(G, k)|c).
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Vertex Cover is NP-Complete

Since Vertex Cover is NP-hard, we only have to verify that it is in NP:

Let VC′ = {(G, k, C) | C is a vertex cover of G of size k}.

VC′ ∈ P:

• We can test in polynomial time whether every vertex in C belongs to G.

• We can test in polynomial time whether |C| = k.

• We can test in polynomial time whether every edge of G has at least one endpoint
in C.

Let VC = {(G, k) | G has a vertex cover of size k}.

To prove that VC ∈ NP, we have to prove that there exists a language VC′ ∈ P such
that (G, k) ∈ VC if and only if (G, k, y) ∈ VC′ for some y with |y| ∈ O(|(G, k)|c).
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Hamiltonian Cycle

A Hamiltonian cycle of a graph G is a simple cycle that contains all vertices of G and
whose edges are edges of G.

A graph G is Hamiltonian if it has a Hamiltonian cycle.

not HamiltonianHamiltonian
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Hamiltonian Cycle is NP-Complete

Exercise: Verify that Hamiltonian Cycle is in NP.

To prove: Hamiltonian Cycle is NP-hard.

Hamiltonian Cycle Problem: Decide whether a given graph G is Hamiltonian.

Reduction from Vertex Cover: Given a vertex cover instance (G, k), we build a
graph G′ that has a Hamiltonian cycle if and only if G has a vertex cover of size k.

Again, it is trivial to verify that the construction takes polynomial time.
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We build G′ from edge widgets.
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Lemma: The graph G′ has a Hamiltonian cycle if and only if G has a vertex cover of
size k.
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Vertex cover
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Subset Sum

Given:

• A set S = {x1, x2, . . . , xn} of distinct numbers
• A parameter t

Question:

Is there a subset S′ ⊆ S such that
∑
x∈S′

x = t?



Subset Sum

Example:
S = {1, 2, 8, 13}

S has a subset S′ whose elements sum to 22, namely S′ = {1, 8, 13}, but there is no
subset whose elements sum to 12.

Given:

• A set S = {x1, x2, . . . , xn} of distinct numbers
• A parameter t

Question:

Is there a subset S′ ⊆ S such that
∑
x∈S′

x = t?
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11 · · · 1︸ ︷︷ ︸
n variable digits

44 · · · 4︸ ︷︷ ︸
m clause digits

Reduction from 3-SAT:

Given a formula F in 3-CNF, we construct a set SF of 2n + 2m numbers with n + m

digits in base-10 notation and a number t =
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10i+m +
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i=0
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Subset Sum is NP-Complete

Exercise: Verify that Subset Sum is in NP.

To prove: Subset Sum is NP-hard.

There will be a subset S′ ⊆ SF such that
∑
x∈S′

x = t if and only if F is satisfiable.

11 · · · 1︸ ︷︷ ︸
n variable digits

44 · · · 4︸ ︷︷ ︸
m clause digits

Reduction from 3-SAT:

Given a formula F in 3-CNF, we construct a set SF of 2n + 2m numbers with n + m

digits in base-10 notation and a number t =
n–1∑
i=0

10i+m +
m–1∑
i=0

4 · 10i:
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Subset Sum is NP-Complete

x1 = x2 = x3 = x4 = true
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Summary

Many important problems are NP-hard or NP-complete.

Examples:

• Satisfiability
• Vertex cover
• Subset sum
• Hamiltonian cycle
• Clique
• Independent set
• . . .

These problems are unlikely to be solvable in polynomial time.

Techniques to cope with NP-hardness:

• Parameterized algorithms
• Approximation algorithms
• Heuristics


