
Data Stuctures

Textbook Reading

Data Structures Lecture Notes



Overview

“Data structuring”:

E�ectively use data structures to implement non-trivial steps in algorithms

Augmenting data structures:

Add information to existing data structures so they support additional queries

Data structures:

• (a, b)-trees
• Rank-select trees
• Priority search trees
• Range trees

Problems:

• (Orthogonal) line segment intersection reporting and counting
• Range reporting and counting



The Dictionary ADT

A data structure D that stores a set S of key-value pairs and supports three operations:

Insert(D, k, v) Insert the key-value pair (k, v) into S

Delete(D, k) Delete the key-value pair with key k from S

Find(D, k) Report the key-value pair with key k or nil if there is none



Ordered Dictionaries

If the keys come from an ordered set, the following additional operations are often
useful:

RangeFind(D, `, r) Report all key-value pairs in S with keys in the interval [`, r]

Predecessor(D, k) Report the key-value pair in S with largest key no greater than k

Successor(D, k) Report the key-value pair in S with smallest key no less than k

Minimum(D) Report the key-value pair with minimum key in S

Maximum(D) Report the key-value pair with maximum key in S



Examples of Dictionaries

• (Sorted) arrays
• (Sorted) linked lists

Simple dictionaries:

• Hash tables
• Balanced binary search trees (AVL, red-black trees, BB[α], AA, . . . )
• (a, b)-Trees

E�cient dictionaries:



(a, b)-Trees

• All leaves are at the same depth.
• The root has between 2 and b children.
• Any other non-leaf node has between a and b children.

• Leaves store key-value pairs (data items) sorted by keys.
• Internal nodes store only keys.
• For a node v with children w1, w2, . . . , wk, key(v) = min

1≤i≤k
key(wi).
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Height of an (a, b)-Tree
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Size of an (a, b)-Tree
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Size of an (a, b)-Tree
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.
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(a, b)-Tree Representation

Every node stores:

• Key-value pair (leaf) or key (internal node)
• Number of children
• Pointer to its leftmost child
• Pointer to its right sibling

key

right
siblingchild

degree



(a, b)-Tree Representation

Every node stores:

• Key-value pair (leaf) or key (internal node)
• Number of children
• Pointer to its leftmost child
• Pointer to its right sibling

key

right
siblingchild

degree
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Find/Predecessor Operation
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Find/Predecessor Operation
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Find/Predecessor Operation

Find(v, x)/Predecessor(v, x):

• If v is a leaf, then

• Report v’s key-value pair
(Predecessor)

• Report v’s key-value pair if the key
equals x, nil otherwise (Find)

• If v is not a leaf, then

• Locate the child w such that
• w has no right sibling or
• w’s right sibling has a key greater

than x
• Find(w, x)/Predecessor(w, x)
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Find/Predecessor Operation
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• We inspect at most b nodes per level.
• The cost per node is O(1).
⇒ Cost of Find/Predecessor is in O(b loga n) = O(lg n).
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Successor Operation
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Successor Operation
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Since x is possibly itself the answer to a Successor(x) query, we need to locate the
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How do we find the successor if x /∈ T?

We walk up to x’s closest ancestor that
has a right sibling and locate the leftmost
descendant leaf of this sibling.
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node that may hold x first.

How do we find the successor if x /∈ T?

We walk up to x’s closest ancestor that
has a right sibling and locate the leftmost
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Successor Operation
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Since x is possibly itself the answer to a Successor(x) query, we need to locate the
node that may hold x first.

Cost: O(lg n)

How do we find the successor if x /∈ T?

We walk up to x’s closest ancestor that
has a right sibling and locate the leftmost
descendant leaf of this sibling.

How do we walk up? Using a stack.
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Minimum/Maximum Operation
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Minimum/Maximum Operation
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Minimum/Maximum Operation
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Follow the path to the leftmost/rightmost leaf.

Cost: O(b loga n) = O(lg n)
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Insert Operation

Insert(80)
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Insert Operation

Insert(80)

• Use a Predecessor(x) query to find the greatest leaf no greater than x.
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Insert Operation

Insert(80)

• Use a Predecessor(x) query to find the greatest leaf no greater than x.
• Make x a right sibling of this leaf.
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Insert Operation

Insert(80)

Is the result still an (a, b)-tree?

• Use a Predecessor(x) query to find the greatest leaf no greater than x.
• Make x a right sibling of this leaf.
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Insert Operation

Is the result still an (a, b)-tree? Not necessarily!

Insert(80)

• Use a Predecessor(x) query to find the greatest leaf no greater than x.
• Make x a right sibling of this leaf.
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Insert Operation

Is the result still an (a, b)-tree? Not necessarily!

How do we rebalance?

Insert(80)

• Use a Predecessor(x) query to find the greatest leaf no greater than x.
• Make x a right sibling of this leaf.
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Node Spli�ing
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Node Spli�ing
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Node Spli�ing
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If the parent now has degree b + 1, split the parent recursively.
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Node Spli�ing

34 36 3715 231 7 11 41 42 43 44 51 7166 979290

34 41151

1 34

43 66 90

1

Split a node of degree b + 1 into two nodes of degrees
⌊
b+1
2

⌋
and

⌈
b+1
2

⌉
.

• We have a =
⌊
2a
2

⌋
≤
⌊
b+1
2

⌋
≤
⌈
b+1
2

⌉
≤ b

2 + 1 ≤ b.

If the parent now has degree b + 1, split the parent recursively.

Cost per node split: O(b) = O(1)
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Node Spli�ing
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If the parent now has degree b + 1, split the parent recursively.

Cost per node split: O(b) = O(1)

At most one node split per level.
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Node Spli�ing
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Split a node of degree b + 1 into two nodes of degrees
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• We have a =
⌊
2a
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⌊
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⌋
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2

⌉
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2 + 1 ≤ b.

If the parent now has degree b + 1, split the parent recursively.

Cost per node split: O(b) = O(1)

At most one node split per level.

Insertion cost: O(lg n)
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Spli�ing the Root

What do we do when we split the root?
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What do we do when we split the root?
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Spli�ing the Root

What do we do when we split the root?

Note: This is exactly why we have to allow the root to have degree less than a.
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Delete Operation

34 36 3715 231 7 11 41 42 43 44 51 7166 979290

34 41151

1 34

43 66 90

1

76 77

76 78

8178 80

43 76

Delete(66)



Delete Operation
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Delete Operation
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Delete(66)

• Find the leaf storing x.

• Delete it.
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Delete Operation
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Delete(66)

• Find the leaf storing x.

• Delete it.
• (Update the keys of its ancestors.)
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Delete Operation
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Delete(66)

• Find the leaf storing x.

• Delete it.
• (Update the keys of its ancestors.)

• Rebalance. How?
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Node Fusion
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Node Fusion

Fuse a node of degree a – 1 with one of its neighbours.
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Node Fusion

Fuse a node of degree a – 1 with one of its neighbours.

If the parent now has degree a – 1, recurse.
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Node Fusion

Fuse a node of degree a – 1 with one of its neighbours.

If the parent now has degree a – 1, recurse.

Cost per node fusion: O(b) = O(1)
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Node Fusion

Fuse a node of degree a – 1 with one of its neighbours.

If the parent now has degree a – 1, recurse.

Cost per node fusion: O(b) = O(1)

At most one node fusion per level.
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Node Fusion

Fuse a node of degree a – 1 with one of its neighbours.

If the parent now has degree a – 1, recurse.

Cost per node fusion: O(b) = O(1)

At most one node fusion per level.

Deletion cost: O(lg n)
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Node Fusion

Fuse a node of degree a – 1 with one of its neighbours.

If the parent now has degree a – 1, recurse.

Cost per node fusion: O(b) = O(1)

At most one node fusion per level.

Deletion cost: O(lg n)
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Can we always do this?



Fusing Children of the Root

What do we do if the root’s degree becomes 1?
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Fusing Children of the Root

What do we do if the root’s degree becomes 1?

We remove the root.
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Node Sharing

What if a node v and its sibling together have more than b children?



Node Sharing

What if a node v and its sibling together have more than b children?

We fuse and then split (essentially borrowing children from v’s sibling).
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Node Sharing

What if a node v and its sibling together have more than b children?

We fuse and then split (essentially borrowing children from v’s sibling).



Node Sharing

We have
⌊
b+1
2

⌋
≥
⌊
2a
2

⌋
= a

and
⌈
b+a–1
2

⌉
≤
⌈
2b
2

⌉
= b.

What if a node v and its sibling together have more than b children?

We fuse and then split (essentially borrowing children from v’s sibling).



Node Sharing

After a fusion followed by a split, the tree is a valid (a, b)-tree again:

• We just argued that the two nodes we created have degrees between a and b.
• The degree of their parent has not changed.

We have
⌊
b+1
2

⌋
≥
⌊
2a
2

⌋
= a

and
⌈
b+a–1
2

⌉
≤
⌈
2b
2

⌉
= b.

What if a node v and its sibling together have more than b children?

We fuse and then split (essentially borrowing children from v’s sibling).



RangeFind Operation
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RangeFind Operation
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RangeFind Operation
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RangeFind Operation
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RangeFind(`, r):

Perform a depth-first traversal of the tree:

• At every internal node, recursively visit every child

• Whose key is no greater than r and
• Whose right sibling does not exist or has a key no less than `.

• At every leaf, report the element x it stores if ` ≤ x ≤ r.
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RangeFind Operation
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RangeFind Operation

Lemma: A RangeFind(`, r) operation reports all elements between ` and r and only
those.
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RangeFind Operation

Lemma: A RangeFind(`, r) operation takes O(lg n + k) time, where k is the number of
elements reported.

• Every inspected node has a parent we visit⇒ we inspect at most b times as many
nodes as we visit.
• We visit O(lg n) green nodes.
• The cyan nodes form (a, b)-trees with in total at most k leaves.
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Pu�ing Data Structures to Good Use

We have already seen examples where data structures help algorithms to maintain
important state information e�ciently:

Graph exploration maintains the unexplored vertices adjacent to explored ones in a
queue, stack or priority queue. The choice of structure influences the structure of the
computed tree or forest.

Kruskal’s algorithm uses a union-find data structure to maintain the set of trees in the
current forest.

Hu�man’s algorithm uses a priority queue to decide which subtrees to merge in each
step of building the tree.



Line Segment Intersection

Given a set of line segments in the plane, report all their intersection points.
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Orthogonal Line Segment Intersection

Special case: Find all intersection between
• n vertical segments v1, v2, . . . , vn and
• n horizontal segments h1, h2, . . . , hn.
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Output Sensitivity

How many intersections are there in the worst case?

⇒ The trivial algorithm of testing every pair of segments is optimal in the worst case.

Can we still do be�er?

• Yes: We try to spend as li�le time as possible unless the output is big.
• This is called output sensitivity.



Plane Sweeping

Idea:

• Sweep a horizontal sweep line upward across the plane.
• Maintain a sweep line structure representing interactions between sweep line and
geometric objects.



Event Points

Discretization of plane sweep technique:

• Update sweep line structure only at certain event points.
• Solve problem by asking queries on sweep line structure at other event points.
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Orthogonal Line Segment Intersection: Final Algorithm

Sweep line structure: (a, b)-tree T storing all vertical segments intersecting the
sweep line, sorted from left to right.

Event points:

• Horizontal segment hj:

• T contains exactly the segments spanning the y-coordinate of hj.
⇒ Find all segments intersecting hj using a RangeFind operation.

• Bo�om endpoint of vertical segment vi:

• Sweep line starts to intersect vi.
⇒ Insert vi into T.

• Top endpoint of vertical segment vi:

• Sweep line stops intersecting vi.
⇒ Delete vi from T.
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Orthogonal Line Segment Intersection: Analysis

Theorem: The orthogonal line segment intersection problem can be solved in
O(n lg n + k) time.

Event points:

• n bo�om endpoints of vertical segments ⇒ n insertions into T
• n top endpoints of vertical segments ⇒ n deletions from T
• n horizontal segments ⇒ n RangeFind queries on T

• Cost per insertion or deletion = O(lg n)
• Cost per RangeFind operation = O(lg n + kj), where kj = number of segments
intersecting hj

Total cost:

O(n lg n) +
n∑
j=1

O(kj) = O(n lg n + k)
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General Line Segment Intersection

Questions:

• Whats’ the sweep line status?
All segments intersecting the sweep line.
• How do we order the segments?
By the x-coordinates of their intersections with the sweep line.
• Where does the sweep line status change?
At segment endpoints and intersection points!
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The Event Schedule

Apparent problem: We want to compute intersection points, but they are part of the
event schedule.

Consequence: We cannot generate all event points ahead of time.

Solution:

• Maintain set of event points sorted by y-coordinates in a priority queue Q (event
schedule).
• Initially, Q contains all segment endpoints.
• As we detect intersections, we insert them into Q.



Detecting Intersections: First A�empt

Observation: If two segments s1 and s2 intersect, the sweep line must intersect them
simultaneously.



Detecting Intersections: First A�empt

Observation: If two segments s1 and s2 intersect, the sweep line must intersect them
simultaneously.

Idea:

• As in the orthogonal case, insert and delete segments into and from T when the
sweep line passes their endpoints.
• When inserting a segment into T, test for intersections with all segments already
in T.



Too Many Tests

Problem: We may still perform a quadratic number of intersection tests only to
discover that there are no intersections.
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Observation: Two segments s1 and s2 that intersect are adjacent in T immediately
before they intersect.
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Detecting Intersection Points Lazily

Observation: Two segments s1 and s2 that intersect are adjacent in T immediately
before they intersect.

y-coordinate of last event
point before intersection



Event Points

Bo�om endpoint:

• Insert s into T and test for
intersections with its two
neighbours.

• If there are intersections, insert
them into the event schedule.

• If s1 and s2 intersect after the
current y-coordinate, remove the
intersection from the event
schedule. s1

s2
s

Remove from
event scheduleInsert into

event schedule

Event point



Event Points

Top endpoint:

• Delete s from T.

• Test for intersections between the
two segments that become
adjacent.

• If they intersect after the current
y-coordinate, insert the
intersection into the event
schedule.

s1
s2

s

Event point

Insert into
event schedule



Event Points

Intersection point:

• Report the intersection.

• Swap the order of the two
intersecting segments.

• Remove intersections with their
old neighbours from the event
schedule.

• Test for intersections with their
new neighbours and insert them
into the event schedule if they are
above the current y-coordinate.

s1 s2

Event point

Insert into
event schedule

Remove from
event schedule



General Line Segment Intersection: Analysis

Theorem: The general line segment intersection problem can be solved in
O((n + k) lg n).

2n + k event points:

• n bo�om endpoints
• n top endpoints
• k intersection points

• Each event point incurs O(1) updates and queries of sweep line structure and
event schedule.

⇒ Cost per event point = O(lg n)



Dynamic Rank and Select

Delete(S,8)
Insert(S, 18)

Rank(S, 29) = 7
Select(S, 5) = 18

Rank(S, 29) = 7
Select(S, 5) = 27

Rank(S, 29) = 7
Select(S, 5) = 12

8

527

1

12

334

527

1

12

334

527

1

12

334

18

Problem: Maintain a set S of numbers under insertions and deletions and support the
following two types of queries:

Rank(S, x) Count the number of elements in S less than x, plus 1.

Select(S, k) Report the kth smallest element in S.
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Orthogonal Line Segment Intersection Counting
Problem: Instead of reporting all intersections between horizontal and vertical
segments, only count how many there are.

We can do this in O(n lg n + k) time (how?), but the O(k) is no longer justified: the
output size is constant.

Instead of asking a RangeFind query for every horizontal segment, ask two Rank
queries.

Lemma: If Insert, Delete, and Rank operations can be supported in O(lg n) time, the
orthogonal line segment intersection counting problem can be solved in O(n lg n) time.

Rank(`) = 2

Rank(r) = 5

h

h intersects
Rank(r) – Rank(`) = 3
vertical segments.



Rank and Select Queries on (a, b)-Trees

Observation: The rank of an element x is one more than the number of leaves to the
left of the path to the leaf corresponding to x.

81 979290

34 41151

1 34 43

43 66 76 90

7877

Rank(77)

761 11 15 23 34 36 37 41 42 43 44 51 667 71

1
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Augmenting Data Structures is a Balancing Act

All the work happens
during queries.

All the work happens
during updates.

Can we make updates compute some information that is cheap to compute and still
helps speed up queries?

Option 1: Just use a plain (a, b)-tree

• Fast updates: O(lg n)
• Slow queries: Potentially O(n) using RangeFind

Option 2: Store each leaf’s rank explicitly

• Fast queries: O(lg n)
• Slow updates: Inserting a new minimum element causes all ranks to change.



A Rank-Select Tree

In addition to the standard information, each node stores the number of leaves in its
subtree.
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Rank Queries

Lemma: Rank queries can be answered in O(lg n) time using a Rank-Select tree.

Rank(77) = 5 + 5 + 3 + 2 + 1 + 1 = 17
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Select Queries

Lemma: Select queries can be answered in O(lg n) time using a Rank-Select tree.

Rank(77) = 5 + 5 + 3 + 2 + 1 + 1 = 17
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Insertions
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After the insertion of a new leaf v, which leaf counts need to be updated?



Insertions
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After the insertion of a new leaf v, which leaf counts need to be updated?

Those of of v’s ancestors must be increased by one.
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Deletions
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After the deletion of a leaf v, which leaf counts need to be updated?



Deletions
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After the deletion of a leaf v, which leaf counts need to be updated?

Those of of v’s ancestors must be decreased by one.
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Node Splits

v1 v2



Node Splits

v1 v2

The leaf counts of v1 and v2 are the sums of the leaf counts of their children.

All other leaf counts remain unchanged.



Node Splits

v1 v2

The leaf counts of v1 and v2 are the sums of the leaf counts of their children.

All other leaf counts remain unchanged.

Lemma: A node split takes O(1) time including the time to recompute leaf counts.



Node Splits

v1 v2

The leaf counts of v1 and v2 are the sums of the leaf counts of their children.

All other leaf counts remain unchanged.

Lemma: A node split takes O(1) time including the time to recompute leaf counts.

Corollary: An insertion into a Rank-Select tree takes O(lg n) time.



Node Fusions
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Node Fusions

The leaf count of the fused node v is the sum of the leaf counts of its children.

All other leaf counts remain unchanged.

v



Node Fusions

Lemma: A node fusion takes O(1) time including the time to recompute leaf counts.

The leaf count of the fused node v is the sum of the leaf counts of its children.

All other leaf counts remain unchanged.

v



Node Fusions

Lemma: A node fusion takes O(1) time including the time to recompute leaf counts.

Corollary: A deletion from a Rank-Select tree takes O(lg n) time.

The leaf count of the fused node v is the sum of the leaf counts of its children.

All other leaf counts remain unchanged.

v



Rank-Select Tree: Summary

Theorem: A Rank-Select tree supports Insert, Delete, Rank, and Select operations in
O(lg n) time.



Three-Sided Range Reporting

Problem: Maintain a set S of points in the plane under insertions and deletions and
support three-sided range reporting queries:

Given a query range R = [`, r]× [b,∞), report all points in S that belong to R.
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Problem: Maintain a set S of points in the plane under insertions and deletions and
support three-sided range reporting queries:

Given a query range R = [`, r]× [b,∞), report all points in S that belong to R.



Three-Sided Range Reporting and (a, b)-Trees
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Three-Sided Range Reporting and (a, b)-Trees

A RangeFind operation allows us
to find all the points in the
x-range of the query in O(lg n + k)
time.
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Three-Sided Range Reporting and (a, b)-Trees

Alas, only few of them may be
part of the final output.

A RangeFind operation allows us
to find all the points in the
x-range of the query in O(lg n + k)
time.
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Heap Ordering and Searching With a Lower Bound
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A Tree That’s a Search Tree (on x) and a Heap (on y)

Priority search tree:

• Build a search tree on the
x-coordinates.

• Propagate points up the tree
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A Tree That’s a Search Tree (on x) and a Heap (on y)

Priority search tree:

• Build a search tree on the
x-coordinates.

• Propagate points up the tree
to turn it into a max-heap.

Note: We can still search for any
point. It’s now stored somewhere
along the path to its
corresponding leaf.
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Three-Sided Range Reporting Queries

For every node on the two
bounding paths (green), check
whether its point needs to be
reported.
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For every node on the two
bounding paths (green), check
whether its point needs to be
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These points may be in the
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The points between the two
bounding paths are all in the
x-range.
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Three-Sided Range Reporting Queries

For every node on the two
bounding paths (green), check
whether its point needs to be
reported.

These points may be in the
range, outside the y-range or
outside the x-range.

The points between the two
bounding paths are all in the
x-range.

Use the O(1 + k) procedure for
heaps to report the points
above the bo�om y-coordinate.
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Three-Sided Range Reporting Queries

O(lg n) green nodes
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Three-Sided Range Reporting Queries

O(lg n) green nodes

O(b lg n) = O(lg n) children of
green nodes
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Three-Sided Range Reporting Queries

O(lg n) green nodes

O(b lg n) = O(lg n) children of
green nodes

For each child v between the
two green paths, we spend
O(1 + kv) time, where kv is the
number of points in its subtree
we report.
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Three-Sided Range Reporting Queries

O(lg n) green nodes

O(b lg n) = O(lg n) children of
green nodes

For each child v between the
two green paths, we spend
O(1 + kv) time, where kv is the
number of points in its subtree
we report.

Total cost:

O(lg n) +
∑

v O(kv) = O(lg n + k)
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Insertions

Insert new point p as into a
standard (a, b)-tree.
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Insertions

Insert new point p as into a
standard (a, b)-tree.

Heapify up as in a binary heap
to restore heap order.
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Insertions
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Insertions

Insert new point p as into a
standard (a, b)-tree.

Heapify up as in a binary heap
to restore heap order.

Locate the lowest ancestor
whose parent does not store a
point lower than p.p2 p7 p8
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Insertions

Insert new point p as into a
standard (a, b)-tree.

Heapify up as in a binary heap
to restore heap order.

Locate the lowest ancestor
whose parent does not store a
point lower than p.

While p 6= nil:
• Replace point q at current
node with p.
• p = q
• Move to child of current
node that is an ancestor of
p’s leaf.
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Insertions

Insert new point p as into a
standard (a, b)-tree.

Heapify up as in a binary heap
to restore heap order.

Locate the lowest ancestor
whose parent does not store a
point lower than p.

While p 6= nil:
• Replace point q at current
node with p.
• p = q
• Move to child of current
node that is an ancestor of
p’s leaf.
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Insertions

Insert new point p as into a
standard (a, b)-tree.

Heapify up as in a binary heap
to restore heap order.

Locate the lowest ancestor
whose parent does not store a
point lower than p.

While p 6= nil:
• Replace point q at current
node with p.
• p = q
• Move to child of current
node that is an ancestor of
p’s leaf.
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Inserting p takes O(lg n) time.
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is to be stored takes O(lg n)
time.



Insertions

p2 p7 p8

p11

p13

p1

p2

p3
p4

p5

p6

p7

p8

p9

p10

p11

p12

p13

p4

p3

p1 p5 p6

p12

p10

p9

Inserting p takes O(lg n) time.

Locating the ancestor where p
is to be stored takes O(lg n)
time.

Evicting points and pushing
them down the tree amounts to
traversing a single top-down
path. This also takes O(lg n)
time.
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Inserting p takes O(lg n) time.

Locating the ancestor where p
is to be stored takes O(lg n)
time.

Evicting points and pushing
them down the tree amounts to
traversing a single top-down
path. This also takes O(lg n)
time.

Total cost:

O(lg n) (excluding node splits)
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Backfilling the “hole” this
creates amounts to traversing a
single top-down path. This also
takes O(lg n) time.
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Deleting p’s leaf takes O(lg n)
time.

So does locating the node
storing p and deleting p from it.

Backfilling the “hole” this
creates amounts to traversing a
single top-down path. This also
takes O(lg n) time.

Total cost:

O(lg n) (excluding node fusions)
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Where do we store p?

At the node that is the
ancestor of p’s leaf.
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Node Splits

Where do we store p?

What do we store at the
other node we created?

At the node that is the
ancestor of p’s leaf.
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Node Splits

Where do we store p?

What do we store at the
other node we created?

We backfill as after a
deletion.

At the node that is the
ancestor of p’s leaf.
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Node Splits

Lemma: A node split takes O(lg n) time.

Where do we store p?

What do we store at the
other node we created?

We backfill as after a
deletion.

At the node that is the
ancestor of p’s leaf.

p q

p



Node Splits

Lemma: A node split takes O(lg n) time.

Corollary: An insertion into a Priority Search Tree takes O(lg2 n) time.

Where do we store p?

What do we store at the
other node we created?

We backfill as after a
deletion.

At the node that is the
ancestor of p’s leaf.

p q
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we store at the merged
node?p? q?
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Which of the two points do
we store at the merged
node?

The one with higher
y-coordinate.

p q?
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p
q

Which of the two points do
we store at the merged
node?

Where do we store the
other point?

The one with higher
y-coordinate.

p q?



Node Fusions

p
q

Which of the two points do
we store at the merged
node?

Where do we store the
other point?

We push it down the tree as
after an insertion.

The one with higher
y-coordinate.

p

q



Node Fusions

Lemma: A node fusion takes O(lg n) time.

p
q

Which of the two points do
we store at the merged
node?

Where do we store the
other point?

We push it down the tree as
after an insertion.

The one with higher
y-coordinate.

p

q



Node Fusions

Lemma: A node fusion takes O(lg n) time.

Corollary: A deletion from a Priority Search Tree takes O(lg2 n) time.
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q

Which of the two points do
we store at the merged
node?

Where do we store the
other point?

We push it down the tree as
after an insertion.

The one with higher
y-coordinate.

p
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Priority Search Tree: Summary

Theorem: A Priority Search Tree supports Insert and Delete operations in O(lg2 n)
time and three-sided range queries in O(lg n + k) time.

Note: One can show that there are only O(n/(b/2 – a)) node splits and fusions over
any sequence of n (a, b)-tree updates. Hence, the amortized cost per Insert and Delete
operation is in O(lg n).

Note: In a red-black tree, every Insert and Delete operation causes only O(1) rotations.
Rotations are the equivalent of node splits and fusions. Hence, a priority search tree
based on a red-black tree supports Insert and Delete operations in O(lg n) time in the
worst case.
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What do we need to store to make queries fast?

Can we maintain this information e�ciently under updates?
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Augmenting (a, b)-Trees: The Template

What do we need to store to make queries fast?

Can we maintain this information e�ciently under updates?

Insertions:
• Add a new leaf
• Up to lg n node splits

Deletions:
• Remove a leaf
• Up to lg n node splits and fusions

The only building blocks we need to worry about for updates:
• Fast leaf additions
• Fast leaf deletions
• (Very) fast node splits
• (Very) fast node fusions
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Goal: Build a static data structure over a point set S in Rd that allows us to report all
the points in S that fall in a given (d-dimensional) query rectangle.

Queries should be fast.

The data structure should be small.

The data structure should be fast to build.
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1-Dimensional Range Reporting ((a, b)-Tree)
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1-Dimensional Range Reporting ((a, b)-Tree)
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1-Dimensional Range Reporting
is just a standard RangeFind
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1-Dimensional Range Reporting ((a, b)-Tree)
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1-Dimensional Range Reporting
is just a standard RangeFind
query.

Query cost: O(lg n + k)

Data structure size: O(n)

Construction cost: O(n lg n)

• Using n Insert operations

• Sort the points and then
build the tree bo�om-up in
O(n) time!



2-Dimensional Range Reporting (2-d Range Tree)
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2-Dimensional Range Reporting (2-d Range Tree)
The leftmost and rightmost leaf
in the x-range are easy to
locate and check in O(lg n)
time.

What determines whether any
point between them is in the
query range?

Every node stores an (a, b)-tree
over the points in its subtree,
sorted by their y-coordinates.
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2-Dimensional Range Reporting (2-d Range Tree)
The leftmost and rightmost leaf
in the x-range are easy to
locate and check in O(lg n)
time.

What determines whether any
point between them is in the
query range?

Every node stores an (a, b)-tree
over the points in its subtree,
sorted by their y-coordinates.
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2-Dimensional Range Reporting (2-d Range Tree)
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Data structure size: O(n lg n)

• Every point is stored in
O(lg n) secondary trees



2-Dimensional Range Reporting (2-d Range Tree)

p1 p2 p3 p11 p12 p13

p1

p2

p3
p4

p5

p6

p7

p8

p9

p10

p11

p12

p13

Query cost: O(lg2 n + k)

• O(lg n) RangeFind queries
of cost O(lg n + k′)

p4 p10p5 p6 p7 p8 p9

Data structure size: O(n lg n)

• Every point is stored in
O(lg n) secondary trees

Construction cost: O(n lg n)

• Sort points by
x-coordinates.
• Build y-sorted point list for
each node using bo�om-up
merging.
• Build each secondary tree
in linear time.



d-Dimensional Range Reporting (d-d Range Tree)
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Query cost: O(lgd n + k)

• O(lg n) (d – 1)-dimensional
range queries of cost
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d-Dimensional Range Reporting (d-d Range Tree)
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Query cost: O(lgd n + k)

• O(lg n) (d – 1)-dimensional
range queries of cost
O(lgd–1 n + k′)

Data structure size and
construction cost: O(n lgd–1 n)

• Secondary
(d – 1)-dimensional range
trees store O(n lg n) points
in total.

• A (d – 1)-dimensional range
tree storing m points has
size O(m lgd–2 m) and takes
O(m lgd–2 m) time to build.



Range Trees: Summary

Theorem: A d-dimensional range tree uses O(n lgd–1 n) space, can be constructed in
O(n lgd–1 n) time, and supports d-dimensional range queries in O(lgd n + k) time.

Notes:

• Using weight-balanced (a, b)-trees, updates can be supported in O(lgd n) amortized
time.

• Using a really cool technique called fractional cascading, the query cost can be
reduced to O(lgd–1 n + k) time.



Summary

Data structures are very powerful tools for designing e�cient algorithms.

To build a new data structure, we often don’t have to start from scratch.

Augmenting data structures:

• Store additional information in the tree (Rank/Select)

• Change the rules where data items are stored (Priority Search Tree)

• Store entire data structures at the node of a tree (Range Tree)

• Build recursive data structures (Range Tree)


