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Overview

Important tool

• Recurrence relations

Design principle

• Recursively break the problem into smaller subproblems.
• Avoid repeatedly solving the same subproblems by caching their solutions.

Problems

• Weighted interval scheduling
• Sequence alignment
• Optimal binary search trees
• Shortest paths



Weighted Interval Scheduling

Given:

A set of activities competing for time intervals on a certain resource
(E.g., classes to be scheduled competing for a classroom)

Goal:

Schedule non-conflicting activities so that the total time the resource is in use is
maximized.



W. I. S.: A Naïve Solution

• Try all possible subsets.

• Check each subset for conflicts.

• Out of the non-conflicting ones, remember the one with maximal total length.
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W. I. S.: A Naïve Solution

• Try all possible subsets.

• Check each subset for conflicts.

• Out of the non-conflicting ones, remember the one with maximal total length.

Cost: O(2n · n2)
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• Try to make one choice at a time, just as in a greedy algorithm.

• In each step, what are the options we can choose from?

• What can we say about the subproblem we obtain after choosing each option?
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General idea:

• Try to make one choice at a time, just as in a greedy algorithm.

• In each step, what are the options we can choose from?

• What can we say about the subproblem we obtain after choosing each option?

What options do we have?

An interval is in the optimal solution or it isn’t.

Towards a recurrence for the cost of an optimal solution:

If the maximal-length subset of {I1, I2, . . . , In} does not include In, then it must be a
maximal-length subset of {I1, I2, . . . , In–1}.

If the maximal-length subset of {I1, I2, . . . , In} includes In, then it must be O∪ {In}, where
O is a maximal-length subset of all intervals in {I1, I2, . . . , In} that do not overlap In.
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W. I. S.: Cleaning Up the Model

Number the intervals by increasing ending times:

I1 I7I4

I8I5I2

I6I3 I9

For 1 ≤ j ≤ n, let pj = max({0} ∪ {k | 1 ≤ k < j and Ik does not overlap Ij}).

j 1 86 752 3 4 9
pj 0 0 0 1 3 3 5 5 7

If the maximal-length subset of {I1, I2, . . . , In} includes In, then it is Opn , where Opn is a
maximal-length subset of the intervals {I1, I2, . . . , Ipn }.
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W. I. S.: A Recurrence for the Optimal Solution

`(j) =

{
0 j = 0
max(`(j – 1), |Ij| + `(pj)) j > 0

Let |Ij| be the length of interval Ij.

Let `(j) be maximal total length of any subset of non-overlapping intervals in
{I1, I2, . . . , Ij}.

What we’re interested in is `(n)!



W. I. S.: A Recursive Algorithm
FindScheduleLength(I, p, j)

1 if j = 0
2 then return 0
3 else return max(FindScheduleLength(I, p, p[j]) + |I[j]|,

FindScheduleLength(I, p, j – 1))
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FindScheduleLength(I, p, j)

1 if j = 0
2 then return 0
3 else return max(FindScheduleLength(I, p, p[j]) + |I[j]|,

FindScheduleLength(I, p, j – 1))

Running time: O(2n)

`(5)

`(1)

`(3)`(2)`(2)`(1)

`(1) `(1) `(2)`(1)

`(3) `(4)

The recursive algorithm computes
many values repeatedly.

There are only n values to compute!
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Memoization: Store already computed values in a table to avoid recomputing them.

Here, initialize a table ` where `[j] is the length of the optimal schedule for {I1, I2, . . . , Ij}.

Initially, `[j] = –∞ for all j.

FindScheduleLength(I, `, p, j)

1 if j = 0
2 then return 0
3 else if `[j] < 0
4 then `[j] = max(FindScheduleLength(I, p, p[j]) + |I[j]|,

FindScheduleLength(I, p, j – 1))
5 return `[j]

Running time: O(n)
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W. I. S.: Iterative Table Fill-In

FindScheduleLength(I, p)

1 `[0] = 0
2 for j = 1 to n
3 do `[j] = max(`[j – 1], `[p[j]] + |I[j]|)
4 return `[n]

Running time: O(n)

Advantage over memoization:

• No need for recursion.
• Algorithm is often simpler.

Disadvantage over memoization:

• Need to worry about the order in which the table entries are computed:

• All entries needed to compute the current entry need to be computed first.

• Memoization computes table entries as needed.



W. I. S.: Computing the Set of Intervals

FindSchedule(I, p)

1 `[0] = 0
2 S[0] = [ ]
3 for j = 1 to n
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W. I. S.: Computing the Set of Intervals

FindSchedule(I, p)

1 `[0] = 0
2 S[0] = [ ]
3 for j = 1 to n
4 do if `[j – 1] > `[p[j]] + |I[j]|
5 then `[j] = `[j – 1]
6 S[j] = S[j – 1]
7 else `[j] = `[p[j]] + |I[j]|
8 S[j] = [I[j]] ++ S[p[j]]
9 return S[n]

This computes the sequence of intervals ordered from last to first.

This list is of course easy to reverse in linear time.

Running time: O(n)
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W. I. S.: The Missing Details

What’s missing?

• Sort the intervals by their ending times.
• Compute the predecessor array p.

Solution:

• Sorting is easily done in O(n lg n) time.
• To compute p[j], perform binary search with I[j]’s starting time on the sorted array
of ending times.

Theorem: The weighted interval scheduling problem can be solved in O(n lg n) time.
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The Dynamic Programming Technique

The technique:

• Develop a recurrence expressing the optimal solution for a given problem instance
in terms of optimal solutions for smaller problem instances:

• Evaluate this recurrence
• Recursively using memoization or
• Using iterative table fill-in.

For this to work, the problem must exhibit the optimal substructure property: The
optimal solution to a problem instance must be composed of optimal solutions to
smaller problem instances.

A speed-up over the naïve recursive algorithm is achieved if the problem exhibits
overlapping subproblems: The same subproblem occurs over and over again in the
recursive evaluation of the recurrence.



Developing a Dynamic Programming Algorithm

Step 1: Think top-down:

• Consider an optimal solution (without worrying about how to compute it).
• Identify how the optimal solution of any problem instance decomposes into optimal
solutions to smaller problem instances.
• Write down a recurrence based on this analysis.

Step 2: Formulate the algorithm, which computes the solution bo�om-up:

• Since an optimal solution depends on optimal solutions to smaller problem
instances, we need to compute those first.
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Sequence Alignment

Given the search term “Dalhusy Computer Science”, Google suggests the correction
“Dalhousie Computer Science”.

What’s a good similarity criterion?

They use a clever algorithm to match your mistyped query against the phrases they
have in their database.

“Dalhousie” is the closest match to “Dalhusy” they find.

Can Google read your mind? No!



Sequence Alignment

Problem: Given two strings X = x1x2 · · · xm and Y = y1y2 · · · yn, extend them to two
strings X′ = x′1x

′
2 · · · x′t and Y′ = y′1y

′
2 · · · y′t of the same length by inserting gaps so

that the following dissimilarity measure D(X′, Y′) is minimized:

D(X′, Y′) =
t∑
i=1

d(x′i , y
′
i )

d(x, y) =

{
δ x = or y = (gap penalty)
µx,y otherwise (mismatch penalty)
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Sequence Alignment

Another (more important?) application:
DNA sequence alignment to measure the similarity between di�erent DNA samples.

Example:
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′
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that the following dissimilarity measure D(X′, Y′) is minimized:

D(X′, Y′) =
t∑
i=1

d(x′i , y
′
i )

d(x, y) =

{
δ x = or y = (gap penalty)
µx,y otherwise (mismatch penalty)



Sequence Alignment: Problem Analysis

Assume (x′1x
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2 · · · x′t , y′1y′2 · · · , y′t ) is an optimal alignment for (x1x2 · · · xm, y1y2 · · · yn).

What choices do we have for the final pair (x′t , y
′
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Assume there’s a be�er alignment (x′′1 x
′′
2 · · · x′′s , y′′1 y′′2 · · · y′′s ) with dissimilarity

s∑
i=1

d(x′′i , y
′′
i ) <

t–1∑
i=1

d(x′i , y
′
i ).

Then (x′′1 x
′′
2 · · · x′′s x′t , y′′1 y′′2 · · · y′′s y′t ) is an aligment for (x1x2 · · · xm, y1y2 · · · yn) with

dissimilarity
s∑
i=1

d(x′′i , y
′′
i ) + d(x

′
t , y
′
t ) <

t–1∑
i=1

d(x′i , y
′
i ) + d(x

′
t , y
′
t ) =

t∑
i=1

d(x′i , y
′
i ),
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Sequence Alignment: The Recurrence

Recurrence:

D(i, j) =


δ · j i = 0
δ · i j = 0
min(D(i – 1, j – 1) + µxi ,yj , D(i, j – 1) + δ, D(i – 1, j) + δ) otherwise

Let D(i, j) be the dissimilarity of the strings x1x2 · · · xi and y1y2 · · · yj.

We are interested in D(m, n).



Sequence Alignment: The Algorithm

SequenceAlignment(X, Y,µ, δ)

1 D[0, 0] = 0
2 A[0, 0] = [ ]
3 for i = 1 to m
4 do D[i, 0] = D[i – 1, 0] + δ
5 A[i, 0] = [(X[i], )] ++ A[i – 1, 0]
6 for j = 1 to n
7 do D[0, j] = D[0, j – 1] + δ
8 A[0, j] = [( , Y[j])] ++ A[0, j – 1]
9 for i = 1 to m
10 do for j = 1 to n
11 do D[i, j] = D[i – 1, j – 1] + µ[X[i], Y[j]]
12 A[i, j] = [(X[i], Y[j])] ++ A[i – 1, j – 1]
13 if D[i, j] > D[i – 1, j] + δ
14 then D[i, j] = D[i – 1, j] + δ
15 A[i, j] = [(X[i], )] ++ A[i – 1, j]
16 if D[i, j] > D[i, j – 1] + δ
17 then D[i, j] = D[i, j – 1] + δ
18 A[i, j] = [( , Y[j])] ++ A[i, j – 1]
19 return A[m, n]
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SequenceAlignment(X, Y,µ, δ)

1 D[0, 0] = 0
2 A[0, 0] = [ ]
3 for i = 1 to m
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10 do for j = 1 to n
11 do D[i, j] = D[i – 1, j – 1] + µ[X[i], Y[j]]
12 A[i, j] = [(X[i], Y[j])] ++ A[i – 1, j – 1]
13 if D[i, j] > D[i – 1, j] + δ
14 then D[i, j] = D[i – 1, j] + δ
15 A[i, j] = [(X[i], )] ++ A[i – 1, j]
16 if D[i, j] > D[i, j – 1] + δ
17 then D[i, j] = D[i, j – 1] + δ
18 A[i, j] = [( , Y[j])] ++ A[i, j – 1]
19 return A[m, n]

Running time: O(mn)



Sequence Alignment: The Algorithm

SequenceAlignment(X, Y,µ, δ)

1 D[0, 0] = 0
2 A[0, 0] = [ ]
3 for i = 1 to m
4 do D[i, 0] = D[i – 1, 0] + δ
5 A[i, 0] = [(X[i], )] ++ A[i – 1, 0]
6 for j = 1 to n
7 do D[0, j] = D[0, j – 1] + δ
8 A[0, j] = [( , Y[j])] ++ A[0, j – 1]
9 for i = 1 to m
10 do for j = 1 to n
11 do D[i, j] = D[i – 1, j – 1] + µ[X[i], Y[j]]
12 A[i, j] = [(X[i], Y[j])] ++ A[i – 1, j – 1]
13 if D[i, j] > D[i – 1, j] + δ
14 then D[i, j] = D[i – 1, j] + δ
15 A[i, j] = [(X[i], )] ++ A[i – 1, j]
16 if D[i, j] > D[i, j – 1] + δ
17 then D[i, j] = D[i, j – 1] + δ
18 A[i, j] = [( , Y[j])] ++ A[i, j – 1]
19 return A[m, n]

Running time: O(mn)

Again, the sequence alignment is
reported back-to-front and can be
reversed in O(m + n) time.
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Let x1 < x2 < · · · < xn be the elements to be stored in the tree.

Let P = {p1, p2, . . . , pn} be the probabilities of
searching for these elements.

For a binary search tree T, let dT(xi) denote the
depth of element xi in T.
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Optimal Binary Search Trees
Balanced binary search trees (red-black trees, AVL trees, . . . ) guarantee O(lg n) time
to find an element.

Let x1 < x2 < · · · < xn be the elements to be stored in the tree.

Let P = {p1, p2, . . . , pn} be the probabilities of
searching for these elements.

For a binary search tree T, let dT(xi) denote the
depth of element xi in T.

The cost of searching for element xi is in O(dT(xi)).

The expected cost of a random query is in O(CP(T)),
where

CP(T) =
n∑
i=1

pidT(xi).

An optimal binary search tree is a binary search
tree T that minimizes CP(T).
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Balancing Is Not Necessarily Optimal
Assume n = 2k – 1 and pi = 2–i for all 1 ≤ i ≤ n – 1 and pn = 2–n+1.

Balanced tree:

x1 is at depth lg n.

⇒ Expected cost ≥ lg n
2

.

Long path:

Depth of xi is i.

⇒ Expected cost

=
n∑
i=1

i
2i

+
n
2n

<
∞∑
i=1

i
2i

+
n
2n

=
1/2

(1 – 1/2)2
+

n
2n

= 2 +
n
2n

< 3
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Optimal Binary Search Trees: Problem Analysis

Let pi,j =
∑j

h=i ph.

CP(T) = p`,r + CP(T`) + CP(Tr)

⇒ T` and Tr are optimal search trees for x`, x`+1, . . . , xm–1 and xm+1, xm+2, . . . , xr,
respectively.

We need to figure out which element to store at the root!

The structure of a binary search tree:

Assume we want to store elements x`, x`+1, . . . , xr.

xm

xm+1, xm+2, . . . , xrx`, x`+1, . . . , xm–1

T` Tr
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Optimal Binary Search Trees: The Recurrence

C(`, r) =

{
0 r < `
p`,r + min`≤m≤r(C`,m–1 + Cm+1,r) otherwise

Let C(`, r) be the cost of an optimal binary search tree for x`, x`+1, . . . , xr.

We are interested in C(1, n).



Optimal Binary Search Trees: The Algorithm
OptimalBinarySearchTree(X, P)

1 for i = 1 to n
2 do P′[i, i] = P[i]
3 for j = i + 1 to n
4 do P′[i, j] = P′[i, j – 1] + P[j]
5 for i = 1 to n + 1
6 do C[i, i – 1] = 0
7 T[i, i – 1] = ∅
8 for ` = 0 to n – 1
9 do for i = 1 to n – `
10 do C[i, i + `] =∞
11 for j = i to i + `
12 do if C[i, i + `] > C[i, j – 1] + C[j + 1, i + `]
13 then C[i, i + `] = C[i, j – 1] + C[j + 1, i + `]
14 T[i, i + `] = new node storing X[j]
15 T[i, i + `].left = T[i, j – 1]
16 T[i, i + `].right = T[j + 1, i + `]
17 C[i, i + `] = C[i, i + `] + P′[i, i + `]
18 return T[1, n]



Optimal Binary Search Trees: The Algorithm
OptimalBinarySearchTree(X, P)

1 for i = 1 to n
2 do P′[i, i] = P[i]
3 for j = i + 1 to n
4 do P′[i, j] = P′[i, j – 1] + P[j]
5 for i = 1 to n + 1
6 do C[i, i – 1] = 0
7 T[i, i – 1] = ∅
8 for ` = 0 to n – 1
9 do for i = 1 to n – `
10 do C[i, i + `] =∞
11 for j = i to i + `
12 do if C[i, i + `] > C[i, j – 1] + C[j + 1, i + `]
13 then C[i, i + `] = C[i, j – 1] + C[j + 1, i + `]
14 T[i, i + `] = new node storing X[j]
15 T[i, i + `].left = T[i, j – 1]
16 T[i, i + `].right = T[j + 1, i + `]
17 C[i, i + `] = C[i, i + `] + P′[i, i + `]
18 return T[1, n]

Lemma: An optimal binary search tree for n elements can be computed in O(n3) time.
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Dijkstra’s algorithm may fail in the presence of negative-weight edges:

Dijkstra

6

2

0

7

2 4

7 –3

Correct

4

2

0

7

2 4

7 –3

We need an algorithm that can deal with negative-length edges.



Single-Source Shortest Paths: Problem Analysis

Lemma: If P = 〈u0, v1, . . . , uk〉 is a shortest path from u0 = s to uk = v, then
P′ = (u0, u1, . . . , uk–1) is a shortest path from u0 to uk–1.
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Single-Source Shortest Paths: Problem Analysis

Lemma: If P = 〈u0, v1, . . . , uk〉 is a shortest path from u0 = s to uk = v, then
P′ = (u0, u1, . . . , uk–1) is a shortest path from u0 to uk–1.

Observation: P′ has one less edge than P.

P

Shortest path from u0 to uk–1

s = u0

uk–1
v = uk



Single-Source Shortest Paths: The Recurrence
Let di(s, v) be the length of the shortest path Pi(s, v) from s to v that has at most i
edges.



Single-Source Shortest Paths: The Recurrence
Let di(s, v) be the length of the shortest path Pi(s, v) from s to v that has at most i
edges.

di(s, v) =∞ if there is no path with at most i edges from s to v.



Single-Source Shortest Paths: The Recurrence
Let di(s, v) be the length of the shortest path Pi(s, v) from s to v that has at most i
edges.

di(s, v) =∞ if there is no path with at most i edges from s to v.

d(s, v) = dn–1(s, v)



Single-Source Shortest Paths: The Recurrence

Recurrence:

If i = 0, then there exists a path from s to v with at most i edges only if v = s:

d0(s, v) =

{
0 v = s
∞ otherwise

Let di(s, v) be the length of the shortest path Pi(s, v) from s to v that has at most i
edges.

di(s, v) =∞ if there is no path with at most i edges from s to v.

d(s, v) = dn–1(s, v)



Single-Source Shortest Paths: The Recurrence

Recurrence:

If i = 0, then there exists a path from s to v with at most i edges only if v = s:

d0(s, v) =

{
0 v = s
∞ otherwise

If i > 0, then

Let di(s, v) be the length of the shortest path Pi(s, v) from s to v that has at most i
edges.

di(s, v) =∞ if there is no path with at most i edges from s to v.

d(s, v) = dn–1(s, v)



Single-Source Shortest Paths: The Recurrence

Recurrence:

If i = 0, then there exists a path from s to v with at most i edges only if v = s:

d0(s, v) =

{
0 v = s
∞ otherwise

If i > 0, then

• Pi(s, v) has at most i – 1 edges or

Let di(s, v) be the length of the shortest path Pi(s, v) from s to v that has at most i
edges.

di(s, v) =∞ if there is no path with at most i edges from s to v.

d(s, v) = dn–1(s, v)



Single-Source Shortest Paths: The Recurrence

Recurrence:

If i = 0, then there exists a path from s to v with at most i edges only if v = s:

d0(s, v) =

{
0 v = s
∞ otherwise

If i > 0, then

• Pi(s, v) has at most i – 1 edges or

• Pi(s, v) has i edges.

Let di(s, v) be the length of the shortest path Pi(s, v) from s to v that has at most i
edges.

di(s, v) =∞ if there is no path with at most i edges from s to v.

d(s, v) = dn–1(s, v)



Single-Source Shortest Paths: The Recurrence

Recurrence:

If i = 0, then there exists a path from s to v with at most i edges only if v = s:

d0(s, v) =

{
0 v = s
∞ otherwise

If i > 0, then

• Pi(s, v) has at most i – 1 edges or

⇒ Pi(s, v) = Pi–1(s, v)

• Pi(s, v) has i edges.

Let di(s, v) be the length of the shortest path Pi(s, v) from s to v that has at most i
edges.

di(s, v) =∞ if there is no path with at most i edges from s to v.

d(s, v) = dn–1(s, v)
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Single-Source Shortest Paths: The Recurrence

Recurrence:

If i = 0, then there exists a path from s to v with at most i edges only if v = s:

d0(s, v) =

{
0 v = s
∞ otherwise

If i > 0, then

• Pi(s, v) has at most i – 1 edges or

⇒ Pi(s, v) = Pi–1(s, v)

• Pi(s, v) has i edges.

⇒ Pi(s, v) = Pi–1(s, u) ◦ 〈(u, v)〉 for some in-neighbour u of v.

Let di(s, v) be the length of the shortest path Pi(s, v) from s to v that has at most i
edges.

di(s, v) =∞ if there is no path with at most i edges from s to v.

d(s, v) = dn–1(s, v)

u
v

s

Pi–1(s, v)

Pi–1(s, u)



Single-Source Shortest Paths: The Recurrence

Recurrence:

If i = 0, then there exists a path from s to v with at most i edges only if v = s:

d0(s, v) =

{
0 v = s
∞ otherwise

If i > 0, then

Let di(s, v) be the length of the shortest path Pi(s, v) from s to v that has at most i
edges.

di(s, v) =∞ if there is no path with at most i edges from s to v.

d(s, v) = dn–1(s, v)

di(s, v) = min(di–1(s, v), min{di–1(s, u) + w(u, v) | (u, v) ∈ E})



Single-Source Shortest Paths: The Bellman-Ford Algorithm

BellmanFord(G, s)

1 for every vertex v ∈ G
2 do d[v] =∞
3 P[v] = ∅
4 d[s] = 0
5 P[s] = [s]
6 for i = 1 to n – 1
7 do for every vertex v ∈ G
8 do for every in-edge e of v
9 do if d[e.tail] + e.weight < d[v]
10 then d[v] = d[e.tail] + e.weight
11 P[v] = [v] ++ P[e.tail]
12 return (d, P)



Single-Source Shortest Paths: The Bellman-Ford Algorithm

BellmanFord(G, s)

1 for every vertex v ∈ G
2 do d[v] =∞
3 P[v] = ∅
4 d[s] = 0
5 P[s] = [s]
6 for i = 1 to n – 1
7 do for every vertex v ∈ G
8 do for every in-edge e of v
9 do if d[e.tail] + e.weight < d[v]
10 then d[v] = d[e.tail] + e.weight
11 P[v] = [v] ++ P[e.tail]
12 return (d, P)

Lemma: The single-source shortest paths problem can be solved in O(nm) time on
any weighted graph, provided there are no negative cycles.
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All-Pairs Shortest Paths

Goal: Compute the distance d(u, v) (and the corresponding shortest path), for every
pair of vertices u, v ∈ G.

First idea: Run single-source shortest paths from every vertex u ∈ G.

Complexity:

• O(n2m) using Bellman-Ford
• O(n2 lg n + nm) for non-negative edge weights using Dijkstra

Improved algorithms:

• Floyd-Warshall: O(n3)

• Johnson: O(n2 lg n + nm) (really cool!)

• Run Bellman-Ford from an arbitrary vertex s in O(nm) time.
• Change edge weights so they are all non-negative but shortest paths don’t

change!
• Run Dijkstra n times.
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Number the vertices 1, 2, . . . , n.

Let di(u, v) be the length of the shortest path Pi(u, v) that visits only vertices in
{1, 2, . . . , i} ∪ {u, v}.

d(u, v) = dn(u, v)

If i = 0, P0(u, v) cannot visit any vertices other than u and v:

d0(u, v) =

{
w(u, v) (u, v) ∈ E
∞ otherwise

If i /∈ Pi(u, v), then Pi(u, v) = Pi–1(u, v).

If i ∈ Pi(u, v), then Pi(u, v) = Pi–1(u, i) ◦ Pi–1(i, v).

If i > 0, then Pi(u, v) includes vertex i or it doesn’t.

i
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Number the vertices 1, 2, . . . , n.

Let di(u, v) be the length of the shortest path Pi(u, v) that visits only vertices in
{1, 2, . . . , i} ∪ {u, v}.

d(u, v) = dn(u, v)

If i = 0, P0(u, v) cannot visit any vertices other than u and v:

d0(u, v) =

{
w(u, v) (u, v) ∈ E
∞ otherwise

If i /∈ Pi(u, v), then Pi(u, v) = Pi–1(u, v).

If i ∈ Pi(u, v), then Pi(u, v) = Pi–1(u, i) ◦ Pi–1(i, v).

di(u, v) = min(di–1(u, v), di–1(u, i) + di–1(i, v))

If i > 0, then Pi(u, v) includes vertex i or it doesn’t.



All-Pairs Shortest Paths: The Floyd-Warshall Algorithm
FloydWarshall(G)

1 for every pair of vertices u, v ∈ G
2 do d[u, v] =∞
3 p[u, v] = Nothing
4 for every vertex v ∈ G
5 do d[v, v] = 0
6 p[v, v] = v
7 for every edge e ∈ G
8 do d[e.tail, e.head] = e.weight
9 p[e.tail, e.head] = e.tail
10 for i = 1 to n
11 do for every pair of vertices u, v ∈ G such that i /∈ {u, v}
12 do if d[u, v] > d[u, i] + d[i, v]
13 then d[u, v] = d[u, i] + d[i, v]
14 p[u, v] = p[i, v]
15 return (d, p)
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ReportPath(p, u, v)

1 if p[u, v] = Nothing
2 then return Nothing
3 P = [v]
4 while v 6= u
5 do v = p[u, v]
6 P.prepend(v)
7 return P



All-Pairs Shortest Paths: The Floyd-Warshall Algorithm
FloydWarshall(G)

1 for every pair of vertices u, v ∈ G
2 do d[u, v] =∞
3 p[u, v] = Nothing
4 for every vertex v ∈ G
5 do d[v, v] = 0
6 p[v, v] = v
7 for every edge e ∈ G
8 do d[e.tail, e.head] = e.weight
9 p[e.tail, e.head] = e.tail
10 for i = 1 to n
11 do for every pair of vertices u, v ∈ G such that i /∈ {u, v}
12 do if d[u, v] > d[u, i] + d[i, v]
13 then d[u, v] = d[u, i] + d[i, v]
14 p[u, v] = p[i, v]
15 return (d, p)

Lemma: The all-pairs shortest paths problem can be solved in O(n3) time, provided
there are no negative cycles.

ReportPath(p, u, v)

1 if p[u, v] = Nothing
2 then return Nothing
3 P = [v]
4 while v 6= u
5 do v = p[u, v]
6 P.prepend(v)
7 return P
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The optimal solution for a given input instance contains within it optimal
solutions to smaller input instances.
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Summary

Both greedy algorithms and dynamic programming are applicable when the problem
has optimal substructure:

The optimal solution for a given input instance contains within it optimal
solutions to smaller input instances.

Greedy algorithms are applicable when an optimal solution can be obtained by making
a locally optimal choice and then solving the resulting subproblem.

Dynamic programming exhaustively explores all possible choices and chooses the one
that gives the best solution.

Dynamic programming yields a faster solution than the naïve recursive algorithm when
there are lots of overlapping subproblems.



Summary

The design of a dynamic programming algorithm proceeds in two phases:

1. Analyze the structure of an optimal solution to develop a recurrence for the cost of
an optimal solution.

2. Develop an algorithm that uses the recurrence to compute an optimal solution

• Recursively using memoization or

• Iteratively by populating a table with the costs of the solutions to all possible
subproblems.

Both types of algorithms compute optimal solutions bo�om-up.


