
Assignment 8

Sample solutions

CSCI 3110 — Summer 2018

Throughout, this solution, I will use h to refer to horizontal segments and v to refer to vertical segments.
The y coordinate of a horizontal segment h is h.y; the x-coordinates of its endpoints are h.x1 and h.x2.
Similarly, v.x , v.y1, and v.y2 refer to the x coordinate and the two y-coordinates of the endpoints of the
vertical segment v.

(a) Two segments h and v intersect if and only if h.x1 ≤ v.x ≤ h.x2 and v.y1 ≤ h.y ≤ v.y2. Since the
question states that h.x1 ≤ v.x ≤ h.x2 for every horizontal segments h and every vertical segment
v, we only need to identify all pairs (h, v) such that v.y1 ≤ h.y ≤ v.y2. Let us refer to the segments
in V as v1, . . . , vn1

and to the segments in H as h1, . . . , hn2
, where n1 + n2 = n.

The algorithm. The algorithm maintains two indices i and j such that vi is the “current segment”
in V and h j is the “current segment” in H. Initially, i = 1 and j = 1. As long as i ≤ n1, we do the
following:

1. While j ≤ n2 and h j .y < vi .y1, increase j by one. After this, we either have j > n2 or
h j .y ≥ vi .y1.

2. Set k = j. While k ≤ n2 and hk.y ≤ vi .y2, increase k by one. After this, we either have k > n2
or hk.y > vi .y2.

3. If j ≤ n2, output the pairs (vi , h j), . . . , (vi , hk−1) as intersecting pairs of segments.

4. Increase i by one.

Correctness. To prove the correctness of the algorithm, we need to argue that the algorithm
outputs a pair (va, hb) if and only if va and hb intersect. First assume that (va, hb) intersect. Then
va.y1 ≤ hb.y ≤ va.y2. If at the beginning of the ath iteration of the loop through V , we have
j ≤ b, then step 1 does not increase j above b because hb.y ≥ va.y1. As pointed out, we have
h j .y ≥ va.y1 at the end of step 1. Step 2 now finds the smallest value k ≥ j such that either
k > n2 or hk.y > va.y2. Since hb.y ≤ va.y2, we have k > b. Now Step 3 outputs all pairs
(va, h j), . . . , (va, hk−1) as intersecting. Since j ≤ b < k, this includes the pair (va, hb).

Is it possible that j > b at the beginning of the ath iteration? If so, then there exists an index i < a
such j ≤ b at the beginning of this iteration and j > b at the end of this iteration. This implies
that hb.y < vi .y1, a contradition because the segments in V are sorted by their bottom endpoints,
that is, vi .y1 < va.y1 but va.y1 ≤ hb.y .

Now assume that (va, hb) do not intersect. Then either hb.y < va.y1 or hb.y > va.y2. If hb.y <
va.y1, Step 1 of the ath iteration of the outer loop ensures that j > b. If hb.y > va.y2, then
hb.y > va.y1. As argued in the case when (va, hb) intersect, this implies that j ≤ b at the beginning
of the ath iteration of the loop through V . Since Step 2 increases k only until hk.y > va.y2, this

1



implies that k ≤ b. Thus, we either have b < j or b ≥ k; in either case, (va, hb) is not part of the
list of intersections reported for va.

Analysis. For each iteration of the loop through V , step 4 takes constant time while step 1 takes
constant time plus constant time for every increase of j. Since j never decreases and cannot exceed
n2, this shows that total cost of steps 1 and 4 is O(n1 + n2) = O(n). In the ith iteration of the loop
through V , the cost of steps 2 and 3 is O(1+ ki), where ki is the number of reported intersections.
Summing this over all iterations, the cost of steps 2 and 3 is O(n+ k). Thus, the algorithm takes
O(n+ k) time in total.

(b) Given the slab S = [x`, xr]× (−∞,+∞) and y-sorted lists V and H of all vertical and horizontal
segments with at least one endpoint in S, we find all intersections between segments in V and H
as follows:

First, we collect the x-coordinates of all endpoints of segments in H and V , ignoring endpoints
that do not lie in S. This clearly takes linear time. Using the linear-time selection algorithm, we
can find the median xm of these coordinates and define two new slabs S` = [x`, xm]× (−∞,+∞)
and Sr = [xm, xr]× (−∞,+∞). By scanning H and V , we can construct lists H`, V`, Hr , and Vr ,
where V` and Vr contain the vertical segments in V contained in S` and Sr , respectively, and H`
and Hr contain the horizontal segments in H with at least one endpoint in S` and Sr , respectively.
Note that a segment in H may end up in both H` and Hr if the segment has one endpoint in S`
and one endpoint in Sr .

If two segments h ∈ H and v ∈ V intersect, assume w.l.o.g. that v ∈ V`. If h ∈ H`, we can find
the intersection by calling the algorithm recursively on the input (S`, V`, H`). We call this a type-I
intersection. If h /∈ H`, then h has no endpoint in S`. Since it intersects v, it must intersect S`,
which is possible only if h.x1 < x` and h.x2 > xm. We call this a type-II intersection.

This analysis immediately leads to the following divide-and-conquer algorithm: In addition to
the lists H`, Hr , V`, Vr described above, we also produce lists H ′

`
and H ′r containing all segments

h ∈ H such that h.x1 < x` and h.x2 > xm or h.x1 < xm and h.x2 > xr , respectively. Every type-I
intersection is between segments in H` and V` or between segments in Hr and Vr . We call our
algorithm recursively on (S`, H`, V`) and on (Sr , Hr , Vr) to find these intersections. Every type-II
intersection is between segments in H ′

`
and V` or between segments in H ′r and Vr . For these

intersections, since each segment h ∈ H ′
`

satisfies h.x1 < x` and h.x2 > xm and every segment
v ∈ V` satisfies x` ≤ v.x ≤ xm, the pair of lists H ′

`
and V` satisfies the conditions of part (a), so

we can use the algorithm form part (a) to find these intersections in linear time. Similarly, the
intersections between segments in H ′r and Vr can be found using the algorithm from part (a). (This
requires that these lists are sorted by the y-coordinates of segment endpoints. I’ll discuss in part
(c) how this is easily done in linear time.)

How long does this algorithm take? For this analysis, it will be useful to use n to refer to the
number of segment endpoints in S rather than the total number of segments in H ∪ V . Since every
segment in H ∪ V has one or two endpoints in S, this changes n by at most a factor of 2.

Apart from the recursive calls on (S`, H`, V`) and (Sr , Hr , Vr), the algorithm spends linear time to
find the median x-coordinate xm and to partition H and V into H`, Hr , H ′

`
, H ′r , V`, Vr . Assuming

we can do this while keeping these lists y-sorted, finding the intersections between segments in
(H ′
`
, V`) and (H ′r , Vr) takes O(n+ k′) time, where k′ is the number of intersections this reports.

Finally, observe that, if n is the number of segment endpoints in S, then S` and Sr both contain n/2

2



segment endpoints. Thus, if T(n, k) is the time the algorithm takes on an input with n segment
endpoints and k intersections, we obtain the recurrence

T (n, k) = T
�n

2
, k`
�

+ T
�n

2
, kr

�

+O(n+ k′),

where k` and kr are the numbers of intersections between segments in (H`, V`) and (Hr , Vr),
respectively. We have k = k` + kr + k′. It is now easy to show that T(n, k) = O(n lg n+ k). For
2≤ n< 4, we have only a constant input and output size, so the algorithm takes constant time,
which is upper bounded by c(n lg n+ k) for a sufficiently large constant c. For n≥ 4, we have

T (n, k)≤ T
�n

2
, k`
�

+ T
�n

2
, kr

�

+ a(n+ k′)

≤ c
�n

2
log

n
2
+ k`
�

+ c
�n

2
log

n
2
+ kr

�

+ a(n+ k′)

= cn(lg n− 1) + an+ c(k` + kr) + ak′

≤ cn lg n+ ck

as long as c ≥ a.

(c) Now for filling in some missing minor details:

The initial slab that contains all segment endpoints can be chosen as (−∞,+∞)× (−∞,+∞).
If you are uncomfortable working with infinity (which you would be if you were to implement this
algorithm, you can instead scan the list of horizontal and vertical segments to find the x-coordinates
x` and xr of the leftmost and rightmost segment endpoints and choose [x`, xr]× (−∞,+∞) as
the initial slab.

Before making the first recursive call, we need to ensure the segments in H are sorted by their
y-coordinates and the segments in V are sorted by the y-coordinates of their bottom endpoints.
This is easily done in O(n lg n) time using any optimal sorting algorithm. Thus, the cost of the
algorithm remains O(n lg n+ k).

Given the input lists H and V of an invocation on some slab S in y-sorted order, we produce
H`, Hr , H ′

`
, H ′r , V`, Vr by inspecting each segment in H or V and placing it into the appropriate

subset of these lists. If we scan the segments in H and V in order and append each segment to
H`, Hr , H ′

`
, H ′r , V`, Vr as appropriate, this ensures that these lists are once again in y-sorted order,

ready for the next recursive call or for the application of the algorithm from part (a).

The analysis of the running time of the algorithm was provided already as part of the answer to
part (b).

3


