Sample Solution

Assignment 7

CSCI 3110 — Fall 2018

We use the following adaptation of Quick Sort. Let p be the pivot chosen to partition the input. We
partition S into three sets: L:={x €S |x <p},M:={xeS|x=p},andR:={x €S| x> p}. If Hg
denotes the set of heavy hitters of S, then

H; UHy M| < k

Hg)
H;, UHRU{p} |M|=k

We can find H; and Hy by recursively calling the algorithm on L and R. The size of M can of course be
determined in linear time. Moreover, if we choose the pivot p to be the median of S, which we can do in
linear time using the linear-time selection algorithm, then |L| < |S|/2 and |R| < |S|/2. So the cost of the
case when we do make recursive calls is T(n) < 2T(n/2) + O(n). What’s the base case? Well, if |S| < k,
we can immediately report Hg = () because there is no element in S that occurs at least k times. The cost
of this is in O(1). So this gives the following algorithm:

HeavyHitters(S)
if |S| < k
then return ()
else p :=FindMedian(S)
(L, M,R) := Partition(S, p)
H; := HeavyHitters(L)
Hp := HeavyHitters(R)
if |M| <k
then return H; U Hy
else return H; UHR U {p}

FindMedian is the standard linear-time selection algorithm. Partition is a straightforward adaptation of

the standard two-way partition algorithm, but let’s present it here for completeness:

Partition(S, p)
(L,M,R):=(0,0,0)
for every x € S
do if x <pthenL:=LU{x}
else if x = p then M := M U {x}
else R:=RU{x}
return (L, M,R)

As already observed above, FindMedian, Partition, and determining the size of |[M| take O(n) time, and

L] < |S|/2 and |R| < |S|/2. So the running time of the algorihm is given by the recurrence

2T(n/2)+0(n) n=>k

T(n) < ,
0(1) n<k

which can be rewritten as
() < 2T(n/2)+dn n>k
n<k
for an appropriate constant d > 0.

This is easily shown to be in O(nlg(n/k)): We claim that T(n) < cnlg(n/k) for some ¢ > 0.

For 1 < n < 4k, we have T(n) < cn, for a large enough constant c. Indeed, if n <k, T(n) <d <cn
forc > d. If k < n < 2k, the algorithm makes two recursive calls on less than k elements each, so the cost
is T(n) <dn+2d < 3dn < cn for ¢ > 3d. If 2k < n < 4k, the algorithm makes two recursive calls on
less than 2k elements, so the cost is T(n) < dn+2-(3dn/2) =4dn < cn for ¢ > 4d. Since 1g(n/k) > 1,
we have cn < cnlg(n/k), so for 1 < n < 4k, T(n) < cnlg(n/k).

For n > 4k, we have

T(n) < 2T (g) +dn

<2 (g) lg (%) +dn (by the inductive hypothesis)

=cn (lg(g) — 1) +dn (because n > 4k, so lg(%) > 2 and lg(z—nk) = lg(%) — 1)

Scnlg(%) as long as c > d.

