Sample Solution

Assignment 7

CSCI 3110 — Fall 2018

We use the following adaptation of Quick Sort. Let p be the pivot chosen to partition the input. We partition S into three sets: $L:=\{x \in S \mid x<p\}, M:=\{x \in S \mid x=p\}$, and $R:=\{x \in S \mid x>p\}$. If H_{S} denotes the set of heavy hitters of S, then

$$
H_{S}= \begin{cases}H_{L} \cup H_{R} & |M|<k \\ H_{L} \cup H_{R} \cup\{p\} & |M| \geq k\end{cases}
$$

We can find H_{L} and H_{R} by recursively calling the algorithm on L and R. The size of M can of course be determined in linear time. Moreover, if we choose the pivot p to be the median of S, which we can do in linear time using the linear-time selection algorithm, then $|L| \leq|S| / 2$ and $|R| \leq|S| / 2$. So the cost of the case when we do make recursive calls is $T(n) \leq 2 T(n / 2)+O(n)$. What's the base case? Well, if $|S|<k$, we can immediately report $H_{S}=\emptyset$ because there is no element in S that occurs at least k times. The cost of this is in $O(1)$. So this gives the following algorithm:

HeavyHitters(S)

$$
\begin{aligned}
& \text { if }|S|<k \\
& \text { then return } \emptyset \\
& \text { else } p:=\operatorname{FindMedian}(S) \\
& \quad(L, M, R):=\operatorname{Partition}(S, p) \\
& H_{L}:=\text { HeavyHitters }(L) \\
& H_{R}:=\text { HeavyHitters }(R) \\
& \text { if }|M|<k \\
& \\
& \quad \text { then return } H_{L} \cup H_{R} \\
& \\
& \text { else return } H_{L} \cup H_{R} \cup\{p\}
\end{aligned}
$$

FindMedian is the standard linear-time selection algorithm. Partition is a straightforward adaptation of the standard two-way partition algorithm, but let's present it here for completeness:

Partition(S, \boldsymbol{p})

$$
(L, M, R):=(\emptyset, \emptyset, \emptyset)
$$

for every $x \in S$

$$
\begin{aligned}
& \text { do if } \quad x<p \text { then } L:=L \cup\{x\} \\
& \text { else if } x=p \text { then } M:=M \cup\{x\} \\
& \text { else } \quad R:=R \cup\{x\}
\end{aligned}
$$

return (L, M, R)

As already observed above, FindMedian, Partition, and determining the size of $|M|$ take $O(n)$ time, and $|L| \leq|S| / 2$ and $|R| \leq|S| / 2$. So the running time of the algorihm is given by the recurrence

$$
T(n) \leq\left\{\begin{array}{ll}
2 T(n / 2)+O(n) & n \geq k \\
O(1) & n<k
\end{array},\right.
$$

which can be rewritten as

$$
T(n) \leq \begin{cases}2 T(n / 2)+d n & n \geq k \\ d & n<k\end{cases}
$$

for an appropriate constant $d>0$.
This is easily shown to be in $O(n \lg (n / k)$): We claim that $T(n) \leq c n \lg (n / k)$ for some $c>0$.
For $1 \leq n<4 k$, we have $T(n) \leq c n$, for a large enough constant c. Indeed, if $n<k, T(n) \leq d \leq c n$ for $c \geq d$. If $k \leq n<2 k$, the algorithm makes two recursive calls on less than k elements each, so the cost is $T(n) \leq d n+2 d \leq 3 d n \leq c n$ for $c \geq 3 d$. If $2 k \leq n<4 k$, the algorithm makes two recursive calls on less than $2 k$ elements, so the cost is $T(n) \leq d n+2 \cdot(3 d n / 2)=4 d n \leq c n$ for $c \geq 4 d$. Since $\lg (n / k) \geq 1$, we have $c n \leq c n \lg (n / k)$, so for $1 \leq n<4 k, T(n) \leq c n \lg (n / k)$.

For $n \geq 4 k$, we have

$$
\begin{aligned}
T(n) & \leq 2 T\left(\frac{n}{2}\right)+d n & & \\
& \leq 2 c\left(\frac{n}{2}\right) \lg \left(\frac{n}{2 k}\right)+d n & & \text { (by the inductive hypothesis) } \\
& =c n\left(\lg \left(\frac{n}{k}\right)-1\right)+d n & & \left(\text { because } n \geq 4 k, \text { so } \lg \left(\frac{n}{k}\right) \geq 2 \text { and } \lg \left(\frac{n}{2 k}\right)=\lg \left(\frac{n}{k}\right)-1\right) \\
& \leq c n \lg \left(\frac{n}{k}\right) & & \text { as long as } c \geq d .
\end{aligned}
$$

