
Sample Solution

Assignment 7

CSCI 3110 — Fall 2018

We use the following adaptation of Quick Sort. Let p be the pivot chosen to partition the input. We

partition S into three sets: L := {x ∈ S | x < p}, M := {x ∈ S | x = p}, and R := {x ∈ S | x > p}. If HS

denotes the set of heavy hitters of S, then

HS =

HL ∪HR |M |< k

HL ∪HR ∪ {p} |M | ≥ k
.

We can find HL and HR by recursively calling the algorithm on L and R. The size of M can of course be

determined in linear time. Moreover, if we choose the pivot p to be the median of S, which we can do in

linear time using the linear-time selection algorithm, then |L| ≤ |S|/2 and |R| ≤ |S|/2. So the cost of the

case when we do make recursive calls is T (n)≤ 2T (n/2) +O(n). What’s the base case? Well, if |S|< k,

we can immediately report HS = ; because there is no element in S that occurs at least k times. The cost

of this is in O(1). So this gives the following algorithm:

HeavyHitters(S)

if |S|< k

then return ;
else p := FindMedian(S)

(L, M , R) := Partition(S, p)

HL := HeavyHitters(L)

HR := HeavyHitters(R)

if |M |< k

then return HL ∪HR

else return HL ∪HR ∪ {p}

FindMedian is the standard linear-time selection algorithm. Partition is a straightforward adaptation of

the standard two-way partition algorithm, but let’s present it here for completeness:

1

Partition(S, p)

(L, M , R) := (;,;,;)
for every x ∈ S

do if x < p then L := L ∪ {x}
else if x = p then M := M ∪ {x}
else R := R∪ {x}

return (L, M , R)

As already observed above, FindMedian, Partition, and determining the size of |M | take O(n) time, and

|L| ≤ |S|/2 and |R| ≤ |S|/2. So the running time of the algorihm is given by the recurrence

T (n)≤

2T (n/2) +O(n) n≥ k

O(1) n< k
,

which can be rewritten as

T (n)≤

2T (n/2) + dn n≥ k

d n< k

for an appropriate constant d > 0.

This is easily shown to be in O(n lg(n/k)): We claim that T (n)≤ cn lg(n/k) for some c > 0.

For 1≤ n< 4k, we have T (n)≤ cn, for a large enough constant c. Indeed, if n< k, T (n)≤ d ≤ cn

for c ≥ d. If k ≤ n< 2k, the algorithm makes two recursive calls on less than k elements each, so the cost

is T(n) ≤ dn+ 2d ≤ 3dn ≤ cn for c ≥ 3d. If 2k ≤ n < 4k, the algorithm makes two recursive calls on

less than 2k elements, so the cost is T (n)≤ dn+ 2 · (3dn/2) = 4dn≤ cn for c ≥ 4d. Since lg(n/k)≥ 1,

we have cn≤ cn lg(n/k), so for 1≤ n< 4k, T (n)≤ cn lg(n/k).

For n≥ 4k, we have

T (n)≤ 2T
�n

2

�

+ dn

≤ 2c
�n

2

�

lg
� n

2k

�

+ dn (by the inductive hypothesis)

= cn
�

lg
�n

k

�

− 1
�

+ dn
�

because n≥ 4k, so lg
�n

k

�

≥ 2 and lg
� n

2k

�

= lg
�n

k

�

− 1
�

≤ cn lg
�n

k

�

as long as c ≥ d.

2

