Sample Solution

Assignment 7

CSCI 3110 — Fall 2018

We use the following adaptation of Quick Sort. Let *p* be the pivot chosen to partition the input. We partition *S* into three sets: $L := \{x \in S \mid x < p\}, M := \{x \in S \mid x = p\}$, and $R := \{x \in S \mid x > p\}$. If H_S denotes the set of heavy hitters of *S*, then

$$H_S = \begin{cases} H_L \cup H_R & |M| < k \\ H_L \cup H_R \cup \{p\} & |M| \ge k \end{cases}$$

We can find H_L and H_R by recursively calling the algorithm on L and R. The size of M can of course be determined in linear time. Moreover, if we choose the pivot p to be the median of S, which we can do in linear time using the linear-time selection algorithm, then $|L| \le |S|/2$ and $|R| \le |S|/2$. So the cost of the case when we do make recursive calls is $T(n) \le 2T(n/2) + O(n)$. What's the base case? Well, if |S| < k, we can immediately report $H_S = \emptyset$ because there is no element in S that occurs at least k times. The cost of this is in O(1). So this gives the following algorithm:

HeavyHitters(S)

```
 \begin{aligned} & \text{if } |S| < k \\ & \text{then return } \emptyset \\ & \text{else } p := \text{FindMedian}(S) \\ & (L, M, R) := \text{Partition}(S, p) \\ & H_L := \text{HeavyHitters}(L) \\ & H_R := \text{HeavyHitters}(R) \\ & \text{if } |M| < k \\ & \text{then return } H_L \cup H_R \\ & \text{else return } H_L \cup H_R \cup \{p\} \end{aligned}
```

FindMedian is the standard linear-time selection algorithm. Partition is a straightforward adaptation of the standard two-way partition algorithm, but let's present it here for completeness:

Partition(S, p)

```
(L, M, R) := (\emptyset, \emptyset, \emptyset)
for every x \in S
do if x < p then L := L \cup \{x\}
else if x = p then M := M \cup \{x\}
else R := R \cup \{x\}
return (L, M, R)
```

As already observed above, FindMedian, Partition, and determining the size of |M| take O(n) time, and $|L| \le |S|/2$ and $|R| \le |S|/2$. So the running time of the algorithm is given by the recurrence

$$T(n) \le \begin{cases} 2T(n/2) + O(n) & n \ge k \\ O(1) & n < k \end{cases},$$

which can be rewritten as

$$T(n) \le \begin{cases} 2T(n/2) + dn & n \ge k \\ d & n < k \end{cases}$$

for an appropriate constant d > 0.

This is easily shown to be in $O(n \lg(n/k))$: We claim that $T(n) \le cn \lg(n/k)$ for some c > 0.

For $1 \le n < 4k$, we have $T(n) \le cn$, for a large enough constant c. Indeed, if n < k, $T(n) \le d \le cn$ for $c \ge d$. If $k \le n < 2k$, the algorithm makes two recursive calls on less than k elements each, so the cost is $T(n) \le dn + 2d \le 3dn \le cn$ for $c \ge 3d$. If $2k \le n < 4k$, the algorithm makes two recursive calls on less than 2k elements, so the cost is $T(n) \le dn + 2 \cdot (3dn/2) = 4dn \le cn$ for $c \ge 4d$. Since $\lg(n/k) \ge 1$, we have $cn \le cn \lg(n/k)$, so for $1 \le n < 4k$, $T(n) \le cn \lg(n/k)$.

For $n \ge 4k$, we have

$$T(n) \leq 2T\left(\frac{n}{2}\right) + dn$$

$$\leq 2c\left(\frac{n}{2}\right) \lg\left(\frac{n}{2k}\right) + dn \qquad \text{(by the inductive hypothesis)}$$

$$= cn\left(\lg\left(\frac{n}{k}\right) - 1\right) + dn \qquad \left(\text{because } n \geq 4k, \text{ so } \lg\left(\frac{n}{k}\right) \geq 2 \text{ and } \lg\left(\frac{n}{2k}\right) = \lg\left(\frac{n}{k}\right) - 1\right)$$

$$\leq cn \lg\left(\frac{n}{k}\right) \qquad \text{ as long as } c \geq d.$$