Sample Solutions

Assignment 6

CSCI 3110 - Summer 2018

Question 1

(a) Claim: $T(n) \in O\left(n^{\log _{2} 3}\right)$, that is, $T(n) \leq c n^{\log _{2} 3}$, for some $c>0$ and $n_{0} \geq 0$ and all $n \geq n_{0}$. In fact, we claim that $T(n) \leq c n^{\log _{2} 3}-d n$, for some constants $c>0$ and $d>0$. This is necessary to make the inductive proof work.

Proof: For $n=1$, we have $T(n) \leq c-d \leq c n^{\log _{2} 3}-d n$, for some constant $c>0$ and $d=c / 2$ because $T(1) \in \Theta(1)$.

For $n>1$, we have $n / 2 \geq 1$, so we can apply the inductive hypothesis to $T(n / 2)$. This gives

$$
\begin{aligned}
T(n) & =3 T\left(\frac{n}{2}\right)+n \\
& \leq 3\left[c\left(\frac{n}{2}\right)^{\log _{2} 3}-\frac{d n}{2}\right]+n \\
& =c n^{\log _{2} 3}-\frac{3 d n}{2}+n \\
& =c n^{\log _{2} 3}-\left(\frac{3 d}{2}-1\right) n \\
& \leq c n^{\log _{2} 3}-d n, \text { for all } 3 d / 2-1 \geq d, \text { that is, } d \geq 2 .
\end{aligned}
$$

Thus, the claims holds for $n_{0}=1, c \geq 4, d=c / 2$, and c large enough to ensure that $T(1) \leq c / 2$.

Claim: $T(n) \in \Omega\left(n^{\log _{2} 3}\right)$, that is, $T(n) \geq c n^{\log _{2} 3}$, for some $c>0$ and $n_{0} \geq 0$ and all $n \geq n_{0}$. Proof: For $n=1$, we have $T(n) \geq c=c n^{\log _{2} 3}$, for some constant $c>0$ because $T(1) \in$ $\Theta(1)$ and $n^{\log _{2} 3}=1$.

For $n>1$, we have $n / 2 \geq 1$, so we can apply the inductive hypothesis to $T(n / 2)$. This
gives

$$
\begin{aligned}
T(n) & =3 T\left(\frac{n}{2}\right)+n \\
& \geq 3 c\left(\frac{n}{2}\right)^{\log _{2} 3}+n \\
& =c n^{\log _{2} 3}+n \\
& >c n^{\log _{2} 3}
\end{aligned}
$$

Thus, the claim holds for $c>0$ small enough that $T(1) \geq c$ and for $n_{0}=1$.
(b) Claim: $T(n) \in O(n)$, that is, $T(n) \leq c n$, for some $c>0, n_{0} \geq 0$, and all $n \geq n_{0}$.

Proof: For $1 \leq n<5$, we have $T(n) \in \Theta(1)$, that is, $T(n) \leq c \leq c n$, for c sufficiently large.

For $n \geq 5$, we have $n / 4>n / 5 \geq 1$, that is, we can apply the inductive hypothesis to $T(n / 4)$ and $T(n / 5)$. This gives

$$
\begin{aligned}
T(n) & =3 T\left(\frac{n}{4}\right)+T\left(\frac{n}{5}\right)+n \\
& \leq \frac{3 c n}{4}+\frac{c n}{5}+n \\
& =\left(\frac{19 c}{20}+1\right) n \\
& \leq c n, \text { for all } c \geq 20 .
\end{aligned}
$$

Thus, the claim holds for $c \geq 20$ and sufficiently large to ensure that $T(1) \leq c$ and for $n_{0}=1$.

Claim: $T(n) \in \Omega(n)$, that is, $T(n) \geq c n$, for some $c>0, n_{0} \geq 0$, and all $n \geq n_{0}$.
Proof: This is trivial for $c=1$ and all n because $T(n) \geq n$ by definition.
(c) Claim: $T(n) \in O(n \lg n)$, that is, $T(n) \leq c n \lg n$, for some $c>0, n_{0} \geq 0$, and all $n \geq n_{0}$. For the inductive proof to work, we do in fact prove the stronger claim that $T(n) \leq$ $c n \lg n-d n$, for some $c>0$ and $d>0$.

Proof: For $2 \leq n<4$, we have $T(n) \in \Theta(1)$, that is, $T(n) \leq c-d \leq c n \lg n-d n$, for c large enough and $d=c / 2$.

For $n \geq 4$, we have $\sqrt{n} \geq 2$, that is, we can apply the inductive hypothesis to $T(\sqrt{n})$.

This gives

$$
\begin{aligned}
T(n) & =2 \sqrt{n} T(\sqrt{n})+n \\
& \leq 2 \sqrt{n}[c \sqrt{n} \lg \sqrt{n}-d \sqrt{n}]+n \\
& =2 c n \lg \sqrt{n}-2 d n+n \\
& =c n \lg n-(2 d-1) n \quad \text { because } \lg \sqrt{n}=\frac{1}{2} \lg n \\
& \leq c n \lg n-d n, \text { for all } d \geq 1 .
\end{aligned}
$$

Thus, the claim holds for $n_{0}=2, c \geq 2, d=c / 2$, and c large enough that $T(n) \leq c / 2$ for all $2 \leq n<4$.

Claim: $T(n) \in \Omega(n \lg n)$, that is, $T(n) \geq c n \lg n$, for some $c>0, n_{0} \geq 0$, and all $n \geq n_{0}$. Proof: For $2 \leq n<4$, we have $T(n) \in \Theta(1)$, so $T(n) \geq 8 c>c n \lg n$, for some $c>0$.

For $n \geq 4$, we have $\sqrt{n} \geq 2$, so we can apply the inductive hypothesis to $T(\sqrt{n})$. This gives

$$
\begin{aligned}
T(n) & =2 \sqrt{n} T(\sqrt{n})+n \\
& \geq 2 \sqrt{n} c \sqrt{n} \lg \sqrt{n}+n \\
& =c n \lg n+n \quad \text { because } \lg \sqrt{n}=\frac{1}{2} \lg n \\
& >c n \lg n .
\end{aligned}
$$

Thus, the claim holds for $n_{0}=2$ and c small enough that $T(n) \geq 8 c$ for $2 \leq n<4$.

Question 2

(a) Here we have $n \lg n \in o\left(n^{1.1}\right) \subset O\left(n^{1.1}\right)=O\left(n^{\log _{3} 4-\varepsilon}\right)$, where $\varepsilon=\log _{3} 4-1.1>0$. This holds because $\lg n \in o\left(n^{\delta}\right)$ for all $\delta>0$. Thus, the second case of the Master Theorem applies and $T(n) \in \Theta\left(n^{\log _{3} 4}\right)$.
(b) Here we have $n^{2} / \lg n=n^{\log _{2} 4} / \lg n$. Since $\lg n \in \omega(1)$, we thus don't have $n^{2} / \lg n \in$ $\Theta\left(n^{\log _{2} 4}\right)$ or $n^{2} / \lg n \in \Omega\left(n^{\log _{2} 4+\epsilon}\right)$. We also do not have $n^{2} / \lg n \in O\left(n^{\log _{2} 4-\epsilon}\right)$ for any $\epsilon>0$ because $\lg n \in o\left(n^{\epsilon}\right)$ for all $\epsilon>0$. Thus, the restrictive version of the Master theorem discussed in class cannot be used to solve this recurrence.
(c) Here we have $n^{2}=n^{\log _{3} 9}$. Thus, the third case of the Master Theorem applies and $T(n) \in$ $\Theta\left(n^{2} \lg n\right)$.
(d) Here we have $n=n^{\log _{4} 3+\varepsilon}$, where $\varepsilon=1-\log _{4} 3>0$. Since we also have $3 n / 4 \leq c n$ for $c=3 / 4$, the first case of the Master Theorem applies and $T(n) \in \Theta(n)$.
(e) Here we have $n \lg n=n^{\log _{2} 2} \lg n$. Thus, similar to (b), we neither have $n \lg n \in \Theta\left(n^{\log _{2} 2}\right)$ nor is the difference polynomial in n. Thus, once again, the Master Theorem cannot be used to solve this recurrence.

