Sample Solutions

Assignment 6

CSCI 3110 — Summer 2018

Question 1

(a) **Claim:** $T(n) \in O(n^{\log_2 3})$, that is, $T(n) \leq cn^{\log_2 3}$, for some c > 0 and $n_0 \geq 0$ and all $n \geq n_0$. In fact, we claim that $T(n) \leq cn^{\log_2 3} - dn$, for some constants c > 0 and d > 0. This is necessary to make the inductive proof work.

Proof: For n = 1, we have $T(n) \le c - d \le cn^{\log_2 3} - dn$, for some constant c > 0 and d = c/2 because $T(1) \in \Theta(1)$.

For n > 1, we have $n/2 \ge 1$, so we can apply the inductive hypothesis to T(n/2). This gives

$$T(n) = 3T\left(\frac{n}{2}\right) + n$$

$$\leq 3\left[c\left(\frac{n}{2}\right)^{\log_2 3} - \frac{dn}{2}\right] + n$$

$$= cn^{\log_2 3} - \frac{3dn}{2} + n$$

$$= cn^{\log_2 3} - \left(\frac{3d}{2} - 1\right)n$$

$$\leq cn^{\log_2 3} - dn, \text{ for all } 3d/2 - 1 \geq d, \text{ that is, } d \geq 2.$$

Thus, the claims holds for $n_0 = 1$, $c \ge 4$, d = c/2, and c large enough to ensure that $T(1) \le c/2$.

Claim: $T(n) \in \Omega(n^{\log_2 3})$, that is, $T(n) \ge c n^{\log_2 3}$, for some c > 0 and $n_0 \ge 0$ and all $n \ge n_0$. *Proof:* For n = 1, we have $T(n) \ge c = c n^{\log_2 3}$, for some constant c > 0 because $T(1) \in \Theta(1)$ and $n^{\log_2 3} = 1$.

For n > 1, we have $n/2 \ge 1$, so we can apply the inductive hypothesis to T(n/2). This

gives

$$T(n) = 3T\left(\frac{n}{2}\right) + n$$
$$\geq 3c\left(\frac{n}{2}\right)^{\log_2 3} + n$$
$$= cn^{\log_2 3} + n$$
$$> cn^{\log_2 3}$$

Thus, the claim holds for c > 0 small enough that $T(1) \ge c$ and for $n_0 = 1$.

(b) Claim: T(n) ∈ O(n), that is, T(n) ≤ cn, for some c > 0, n₀ ≥ 0, and all n ≥ n₀. *Proof:* For 1 ≤ n < 5, we have T(n) ∈ Θ(1), that is, T(n) ≤ c ≤ cn, for c sufficiently large.

For $n \ge 5$, we have $n/4 > n/5 \ge 1$, that is, we can apply the inductive hypothesis to T(n/4) and T(n/5). This gives

$$T(n) = 3T\left(\frac{n}{4}\right) + T\left(\frac{n}{5}\right) + n$$
$$\leq \frac{3cn}{4} + \frac{cn}{5} + n$$
$$= \left(\frac{19c}{20} + 1\right)n$$
$$\leq cn, \text{ for all } c \geq 20.$$

Thus, the claim holds for $c \ge 20$ and sufficiently large to ensure that $T(1) \le c$ and for $n_0 = 1$.

Claim: $T(n) \in \Omega(n)$, that is, $T(n) \ge cn$, for some c > 0, $n_0 \ge 0$, and all $n \ge n_0$.

Proof: This is trivial for c = 1 and all *n* because $T(n) \ge n$ by definition.

(c) **Claim:** $T(n) \in O(n \lg n)$, that is, $T(n) \le cn \lg n$, for some c > 0, $n_0 \ge 0$, and all $n \ge n_0$. For the inductive proof to work, we do in fact prove the stronger claim that $T(n) \le cn \lg n - dn$, for some c > 0 and d > 0.

Proof: For $2 \le n < 4$, we have $T(n) \in \Theta(1)$, that is, $T(n) \le c - d \le cn \lg n - dn$, for c large enough and d = c/2.

For $n \ge 4$, we have $\sqrt{n} \ge 2$, that is, we can apply the inductive hypothesis to $T(\sqrt{n})$.

This gives

$$T(n) = 2\sqrt{n}T(\sqrt{n}) + n$$

$$\leq 2\sqrt{n} \left[c\sqrt{n} \lg \sqrt{n} - d\sqrt{n} \right] + n$$

$$= 2cn \lg \sqrt{n} - 2dn + n$$

$$= cn \lg n - (2d - 1)n \quad \text{because } \lg \sqrt{n} = \frac{1}{2} \lg n$$

$$\leq cn \lg n - dn, \text{ for all } d \geq 1.$$

Thus, the claim holds for $n_0 = 2$, $c \ge 2$, d = c/2, and c large enough that $T(n) \le c/2$ for all $2 \le n < 4$.

Claim: $T(n) \in \Omega(n \lg n)$, that is, $T(n) \ge cn \lg n$, for some c > 0, $n_0 \ge 0$, and all $n \ge n_0$. *Proof:* For $2 \le n < 4$, we have $T(n) \in \Theta(1)$, so $T(n) \ge 8c > cn \lg n$, for some c > 0. For $n \ge 4$, we have $\sqrt{n} \ge 2$, so we can apply the inductive hypothesis to $T(\sqrt{n})$. This gives

$$T(n) = 2\sqrt{n}T(\sqrt{n}) + n$$

$$\geq 2\sqrt{n}c\sqrt{n}\lg\sqrt{n} + n$$

$$= cn\lg n + n \quad \text{because } \lg\sqrt{n} = \frac{1}{2}\lg n$$

$$> cn\lg n.$$

Thus, the claim holds for $n_0 = 2$ and c small enough that $T(n) \ge 8c$ for $2 \le n < 4$.

Question 2

- (a) Here we have $n \lg n \in o(n^{1.1}) \subset O(n^{1.1}) = O(n^{\log_3 4 \varepsilon})$, where $\varepsilon = \log_3 4 1.1 > 0$. This holds because $\lg n \in o(n^{\delta})$ for all $\delta > 0$. Thus, the second case of the Master Theorem applies and $T(n) \in \Theta(n^{\log_3 4})$.
- (b) Here we have $n^2/\lg n = n^{\log_2 4}/\lg n$. Since $\lg n \in \omega(1)$, we thus don't have $n^2/\lg n \in \Theta(n^{\log_2 4})$ or $n^2/\lg n \in \Omega(n^{\log_2 4+\epsilon})$. We also do not have $n^2/\lg n \in O(n^{\log_2 4-\epsilon})$ for any $\epsilon > 0$ because $\lg n \in o(n^{\epsilon})$ for all $\epsilon > 0$. Thus, the restrictive version of the Master theorem discussed in class cannot be used to solve this recurrence.
- (c) Here we have $n^2 = n^{\log_3 9}$. Thus, the third case of the Master Theorem applies and $T(n) \in \Theta(n^2 \lg n)$.

- (d) Here we have $n = n^{\log_4 3+\varepsilon}$, where $\varepsilon = 1 \log_4 3 > 0$. Since we also have $3n/4 \le cn$ for c = 3/4, the first case of the Master Theorem applies and $T(n) \in \Theta(n)$.
- (e) Here we have $n \lg n = n^{\log_2 2} \lg n$. Thus, similar to (b), we neither have $n \lg n \in \Theta(n^{\log_2 2})$ nor is the difference polynomial in *n*. Thus, once again, the Master Theorem cannot be used to solve this recurrence.