Sample Solution

Assignment 1 — CSCI 3110

Summer 2018

Question 1

(a) First observe that the function $f(n) = 8n^2 - 5n + 12\sqrt{n} - 10n \lg n$ is well-defined only for n > 0, so we impose $n \ge 1$ as an initial constraint. Under this assumption, we have:

f(n) =	$8n^3 + 5n^2 + 12\sqrt{n}$ -	- 10n lg n	$\forall n \geq 1$	(1)
$0 \leq$		10 <i>n</i> lg <i>n</i>	$\forall n \geq 1$	(2)
$f(n) \leq$	$8n^3 + 5n^2 + 12\sqrt{n}$		$\forall n \ge 1$	(3)
$0 \leq$	$n^3 - 12\sqrt{n}$		$\forall n \ge 4$	(4)
$f(n) \leq$	$9n^3 + 5n^2$		$\forall n \ge 4$	(5)
$0 \leq$	$n^3 - 5n^2$		$\forall n \ge 5$	(6)
$\overline{f(n)} \leq$	10 <i>n</i> ³		$\forall n \ge 5$	(7)

- Inequality (2) holds because, for $n \ge 1$, $\lg n \ge 0$, so $10n \lg n \ge 0$.
- Inequality (4) holds because, for $n \ge 4$, $n \ge \sqrt{n}$ and $n^2 \ge 16$, so $n^3 = n^2 \cdot n \ge 16 \cdot \sqrt{n}$.
- Inequality (6) holds because, for $n \ge 5$, we have $n^3 = n \cdot n^2 \ge 5 \cdot n^2$.

For the lower bound, we obtain:

f(n) =	8n ³ -	$+5n^2 + 12\sqrt{n} - 10n \lg n$	$\forall n \geq 1$	(8)
$0 \ge$	-	$-5n^2 - 12\sqrt{n}$	$\forall n \ge 0$	(9)
$\overline{f(n)} \ge$	8n ³	$-10n \lg n$	$\forall n \ge 1$	(10)
$0 \ge -$	–5n ³	$+10n \lg n$	$\forall n \ge 2$	(11)
$\overline{f(n)} \ge$	3n ³		$\forall n \ge 2$	(12)

- Inequality (9) holds because, for $n \ge 0$, $5n^2 \ge 0$ and $12\sqrt{n} \ge 0$.
- Inequality (11) holds because, for n = 2, we have $5n^3 = 40$ and $10n \lg n = 20$, so $5n^3 \ge 10n \lg n$. Now observe that $\frac{d(5n^2)}{dn} = 10n$ and $\frac{d(10\lg n)}{dn} = \frac{10}{n \ln 2} \le \frac{20}{n}$. For $n \ge 2$, $10n \ge 20$ and $20/n \le 10$, that is, $5n^2$ grows faster than $10\lg n$ and thus $5n^3$ grows faster than $10n \lg n$. Since $5n^3 \ge 10n \lg n$ for n = 2, this implies that $5n^3 \ge 10n \lg n$ for all $n \ge 2$.

By combining (7) and (12), we obtain

$$3n^3 \le f(n) \le 10n^3 \quad \forall n \ge 5,$$

that is, $f(n) \in \Theta(n^3)$.

(b) Again, we constrain *n* to be at least 1 because this ensures that lg *n* is well defined and non-negative. This gives:

f(n) =	$n\lg n + 13n - 40\lg n$	$\forall n \ge 1$	(1)
$0 \leq$	40 lg <i>n</i>	$\forall n \geq 1$	(2)
$\overline{f(n)} \leq$	$n \lg n + 13n$	$\forall n \ge 1$	(3)
$0 \leq$	$n \lg n - 13n$	$\forall n \geq 2^{13}$	(4)
$f(n) \leq$	2n lg n	$\forall n \geq 2^{13}$	(5)

- Inequality (2) is obvious.
- Inequality (4) holds because, for $n \ge 2^{13}$, $\lg n \ge 13$ and, thus, $n \lg n \ge 13n$.

For the lower bound, we have:

f(n) =	$n \lg n +$	$13n - 40 \lg n$	$\forall n \ge 1$	(6)
$0 \ge$		13n	$\forall n \geq 0$	(7)
$f(n) \ge$	n lg n	— 40 lg n	$\forall n \geq 1$	(8)
$0 \ge -$	$-\frac{1}{2}n \lg n$	+ 40 lg n	$\forall n \ge 80$	(9)
$\overline{f(n)} \ge$	$\frac{1}{2}n \lg n$		$\forall n \ge 80$	(10)

- Inequality (7) is once again obvious.
- Inequality (9) holds because, for $n \ge 80$, $n/2 \ge 40$ and thus $(n/2) \lg n \ge 40 \lg n$.

By combining (5) and (10), we obtain

$$\frac{1}{2} \lg n \le f(n) \le 2 \lg n \quad \forall n \ge 2^{13},$$

that is, $f(n) \in \Theta(n \lg n)$.

Question 2

The correct order is

$$4^{\lg \lg n} (4/3)^{\lg n} \sqrt{n} n n \lg n 3^n.$$

 $4^{\lg \lg n} \in o((4/3)^{\lg n})$: First observe that

$$4^{\lg \lg n} = (2^2)^{\lg \lg n} = (2^{\lg \lg n})^2 = (\lg n)^2.$$

Similarly,

$$(4/3)^{\lg n} = (2^{\lg(4/3)})^{\lg n} = (2^{\lg n})^{\lg(4/3)} = n^{\lg(4/3)}.$$

Now we have

$$\lim_{n \to \infty} \frac{(\lg n)^2}{n^{\lg(4/3)}} = \lim_{n \to \infty} \left(\frac{\lg n}{n^{\frac{\lg(4/3)}{2}}}\right)^2 = 0 \Leftrightarrow \lim_{n \to \infty} \frac{\lg n}{n^{\frac{\lg(4/3)}{2}}} = 0$$

By l'Hôpital's rule,

$$\lim_{n \to \infty} \frac{\lg n}{n^{\frac{\lg(4/3)}{2}}} = \lim_{n \to \infty} \frac{\frac{1}{\ln 2 \cdot n}}{\frac{\lg(4/3)}{2} \cdot n^{\frac{\lg(4/3)}{2} - 1}} = \lim_{n \to \infty} \frac{1}{\frac{\lg(4/3) \cdot \ln 2}{2} \cdot n^{\frac{\lg(4/3)}{2}}} = 0.$$

Thus,

$$\lim_{n \to \infty} \frac{(\lg n)^2}{n^{\lg(4/3)}} = 0,$$

that is, $(\lg n)^2 \in o(n^{\lg(4/3)})$.

 $(4/3)^{\lg n} \in o(\sqrt{n})$: As observed above, $(4/3)^{\lg n} = n^{\lg(4/3)}$.

$$\lim_{n \to \infty} \frac{n^{\lg(4/3)}}{\sqrt{n}} = \lim_{n \to \infty} \frac{1}{n^{1/2 - \lg(4/3)}} = 0$$

because $4/3 < \sqrt{2}$ and, thus, $\lg(4/3) < 1/2$, that is, $1/2 - \lg(4/3) > 0$. This proves that $n^{\lg(4/3)} \in o(\sqrt{n})$.

$$\sqrt{n} \in o(n)$$
:

$$\lim_{n \to \infty} \frac{\sqrt{n}}{n} = \lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0.$$
Thus, $\sqrt{n} \in o(n)$

Thus, $\sqrt{n} \in o(n)$.

 $n \in o(n \lg n)$:

$$\lim_{n\to\infty}\frac{n}{n\lg n}=\lim_{n\to\infty}\frac{1}{\lg n}=0.$$

Thus, $n \in o(n \lg n)$.

 $n \lg n \in o(3^n)$: By l'Hôpital's rule (applied twice),

$$\lim_{n \to \infty} \frac{n \lg n}{3^n} = \lim_{n \to \infty} \frac{\lg n + n \cdot \frac{1}{\ln 2 \cdot n}}{3^n \ln 3} = \lim_{n \to \infty} \frac{\lg n + \frac{1}{\ln 2}}{3^n \ln 3} = \lim_{n \to \infty} \frac{\frac{1}{\ln 2 \cdot n}}{3^n \ln^2 3} = \lim_{n \to \infty} \frac{1}{3^n \cdot n \cdot \ln^2 3 \cdot \ln 2} = 0.$$

Thus, $n \lg n \in o(3^n)$.