
Banner number: Name:Midterm ExamCSCI 3110: Design and Analysis of AlgorithmsJune 26, 2008
Group 1Question 1.1Question 1.2
∑

Group 2Question 2.1Question 2.2Question 2.3
∑

Group 3Question 3.1Question 3.2
∑

∑

Instructions:

• The questions are divided into three groups. You have to answer all questions in Groups 1

and 2 and exactly one question in Group 3. In the above table, put a check mark in the small

box beside the one question in Group 3 you want me to mark. If you select 0 or 2 questions in

Group 3, I will mark neither.

• Provide your answer in the box after each question. If you absolutely need extra space, use the

backs of the pages; but try to avoid it. Keey your answers short and to the point.

• You are not allowed to use a cheat sheet.

• If you are asked to design an algorithm and you cannot design one that achieves the desired

running time, design a slower algorithm that is correct. A correct and slow algorithm earns you

50% of the marks for the algorithm. A fast and incorrect algorithm earns 0 marks.

• When designing an algorithm, you are allowed to use algorithms and data structures you

learned in class as black boxes, without explaining how they work, as long as these algorithms

and data structures do not directly answer the questions.

• Read every question carefully before answering. In particular, do not waste time on an

analysis if none is asked for, and do not forget to provide one if it is required.

• Do not forget to write your banner number and name on the top of this page.

• This exam has 9 pages, including this title page. Notify me immediately if your copy has

fewer than 9 pages.

1

Question 1.1 (Algorithm design paradigms) 10 marks
a. Explain what characterizes a greedy algorithm.

A greedy algorithm solves an optimization problem. In trying to find a globally optimal solution, it

makes quite natural, local choices.

b. List the three main steps in a divide-and-conquer algorithm.

1.

Divide the input instance I into one or more smaller instances of the same problem.

2.

Recursively solve these smaller instances.

3.

Combine their solutions to obtain a solution to instance I.Question 1.2 (Analysis of algorithms) 5 marks
a. Give the formal definition of the condition functions f and g have to satisfy so that f (n) = o(g(n)).

For every constant c > 0, one can find a constant n0 ≥ 0 such that f (n) ≤ c · g(n) for all n ≥ n0.

b. Now assume that f (n) = o(g(n)), that you have an algorithm A with running time f (n) and an

algorithm B with running time g(n), and that you run both algorithms on the same, sufficiently

large, input. Assume further that algorithm A runs on a slower computer than algorithm B. Which

of the two algorithms will finish first? Justify your answer.

Assume that the faster computer is c times faster than the slower computer. Then we know that there

exists an input size n0 such that, for all n ≥ n0, algorithm A performs 2c times less operations than

algorithm B. Hence, starting at input size n0, algorithm A on the slower computer takes at most half

as long to finish as algorithm B on the faster computer.

2

Question 2.1 (Asymptotic growth) 5 marks
a. Order the following functions by increasing order of growth:

n2 lg n n lg n
p

n 2lg n

lg n
p

n 2lg n (= n) n lg n n2

b. Prove that you have arranged the last two functions in the sorted sequence in the right order; that

is, if the sorted sequence is f1(n), f2(n), . . . , f5(n), prove that f4(n) = o(f5(n)).

The last two functions are n lg n and n2. We claim that n lg n = o(n2) and prove this by showing that

limn→∞(n lg n/n2) = 0:

lim
n→∞

n lg n

n2
= lim

n→∞

lg n

n

= lim
n→∞

lg e(1/n)

1

= lim
n→∞

lg e

n

= 0.Question 2.2 (Recurrence relations) 5 marks
Solve the following recurrences using the Master theorem. To justify your answer, state which case

applies and show that nlogb a and f (n) satisfy the conditions that need to be satisfied for this case to

apply.

1. T (n) = 3T (n/2) +Θ(n2)

a = 3, b = 2. Hence, logb a = log2 3 < 2, that is, n2 = Ω(nlog2 3+ε). Since 3(n/2)2 = 3n/4, Case 3

applies, and T (n) = Θ(n2).

2. T (n) = 4T (n/2) +Θ(1)

a = 4, b = 2. Hence, logb a = log2 4 = 2, that is, 1 = n0 = O(nlog2 4−ε). Thus, we have Case 1, and

T (n) = Θ(n2).

3. T (n) = 3T (n/3) +Θ(n)

a = 3, b = 3. Hence, logb a = log3 3 = 1, that is, n = Θ(nlog3 3). Thus, we have Case 2, and

T (n) = Θ(n lg n).

3

Question 2.3 (Correctness proofs) 10 marks
Consider the algorithm for merging two sorted sequences L and R to produce a new sequence S

containing all their elements in sorted order:

MERGE(L, R)

1 S← ;
2 while L 6= ; and R 6= ;
3 do x ← first element of L

4 y ← first element of R

5 if x < y

6 then remove x from L

7 append x to S

8 else remove y from R

9 append y to S

10 if L 6= ;
11 then append L to S

12 else append R to S

13 return S

Your task is to prove that this algorithm is correct, that is, that the returned sequence S contains the

elements of L ∪ R in sorted order. While you are free to do this whichever way you want, one way to

structure the proof is to prove the following claims by induction on the number of iterations of the

while-loop executed so far and argue that they imply the correctness of the algorithm:

(i) Let L0 and R0 denote the contents of L and R at the beginning of the algorithm. Then at any

point in time S ∪ L ∪ R= L0 ∪ R0.

(ii) At any point in time, x ≤ y holds for all pairs (x , y) such that x ∈ S and y ∈ L ∪ R.

(iii) At any point in time, S is sorted.

Base case: (before the first iteration)

(i) We have L = L0, R= R0, and S = ;. Hence, S ∪ L ∪ R= L0 ∪ R0.

(ii) This trivially holds because S is empty.

(iii) This trivially holds because S is empty.

Inductive step: Denote the first element in L by x an the first element in R by y, and assume wlog.

that x < y. (The other case can be handled analogously.) In this case, we remove x from L and add it

to S. Let Lb, Rb, and Sb denote the contents of L, R, and S before the current iteration, and let La, Ra,

and Sa denote the contents of L, R, and S after the current iteration.

4

Extra space for Question 2.3

(i) We have Sa = Sb ∪ {x}, La = Lb \ {x}, and Ra = Rb. Hence, Sa ∪ La ∪ Ra = (Sb ∪ {x}) ∪ (Lb \
{x})∪ Rb = Sb ∪ Lb ∪ Rb = L0 ∪ R0, where the last equality follows by the induction hypothesis.

(ii) Consider an element u ∈ Sa and an element v ∈ La ∪ Ra. If u 6= x, then u ≤ v follows by the

induction hypothesis because every element in Sa except x belongs to Sb and La ∪ Ra ⊂ Lb ∪ Rb. If

u = x and v ∈ La, then u ≤ v because x preceded v in Lb and Lb is sorted. If u = x and v ∈ Ra,

then u ≤ v because x < y, y precedes v in Ra = Rb, and Rb is sorted.

(iii) By the induction hypothesis, Sb is sorted. Sa is the same as Sb, except that x has been appended to

the end. Thus, it suffices to prove that z ≤ x for every z ∈ Sb. This, however, follows immediately

from the inductive hypothesis (part (ii)) because z ∈ Sb and x ∈ Lb ∪ Rb.

Once the while-loop terminates, we have L = ; or R= ;. Wlog., assume that R= ;. Then S∪L = L0∪R0.

Hence, by appending L to S, we obtain a sequence that contains the same elements as L0 and R0.

Moreover, L is sorted as a suffix of the sorted input sequence L0, and S is sorted by (iii). Thus, the

concatenation of S and L is sorted if we can prove that every element in S is no greater than any

element in L. This, however, follows immediately from (ii). Thus, the algorithm produces an output

sequence that contains the elements in L0 ∪ R0 in sorted order.

5

Question 3.1 (Greedy algorithms) 15 marks
You have just opened a new restaurant/café in Halifax. It’s called “The Greedy Place”. Your restaurant

has a sidewalk patio. The patio is quite long, but the sidewalk is narrow; so the tables on the patio are

essentially arranged in a straight line. Since the restaurant is in Halifax, you absolutely need to cover

the tables with umbrellas to allow your customers to sit outside in spite of the 24/7 rain. Your goal is

to cover all tables with as few umbrellas as possible. Here are the constraints and a few simplifying

assumptions:

• Every umbrella has a diameter of 8′.

• You may assume that the tables are points; that is, a table is covered when the point where it is

placed is contained in the interval covered by an umbrella.

• Assume that the table positions p1, p2, . . . , pn are given by increasing distance from one end of

the patio. Let us call this the left-to-right order.

Develop a greedy algorithm that determines a covering of the tables with a minimum number of

umbrellas. Your algorithm should take linear time. Prove that the algorithm finds a covering with the

minimum number of umbrellas.

In the algorithm, we define the position of an umbrella to be its center.

PLACE-UMBRELLAS(p)

1 m←−∞
2 for i← 1 to n

3 do if p[i] > m

4 then Place an umbrella at position p[i] + 4′

5 m← p[i] + 8′

To prove that the algorithm produces a minimal set of umbrellas that covers all the tables, we have to

prove that the set of umbrellas does indeed cover all the tables and that there is no smaller set with this

property.

The first claim is easily proved by induction. In particular, we claim that all umbrellas placed by the end

of the i-th iteration cover all tables at positions p1, p2, . . . , pi and the last umbrella covers all positions

between pi and m. This is most certainly true before the very first iteration. If i > 0, the induction

hypothesis implies that, before the current iteration, tables p1, p2, . . . , pi−1 are covered, and the last

umbrella covers all positions between pi−1 and m. If the current iteration does not place any new

umbrella, we have pi−1 < pi ≤ m. Hence, by the induction hypothesis, table pi is covered, and the

last umbrella covers all positions between pi and m. If the current interation place a new umbrella,

then the new umbrella obviously covers pi (because it is just at the left edge of the umbrella), and the

last umbrella covers all positions between pi and m (because m is updated to refer to the right edge

of the umbrella). Since tables p1, p2, . . . , pi−1 were already covered by the previously placed umbrellas,

they are still covered. Hence, the current set of umbrellas covers all tables p1, p2, . . . , pi. After the last

iteration, we therefore have all positions covered.

6

Extra space for Question 3.1

Now let u1, u2, . . . , uk be the set of positions produced by our algorithm, and let o1, o2, . . . , o` be the

positions of a minimal set of umbrellas covering all the tables, both sorted left to right. We know that

k ≥ `. We prove by induction on i that, for 0 ≤ i ≤ `, ui ≥ oi and, thus, umbrellas u1, u2, . . . , ui

cover at least as many tables as umbrellas o1, o2, . . . , oi. Hence, since o1, o2, . . . , o` cover all tables, so do

umbrellas u1, u2, . . . , u`, that is, we have k = `.

For i = 0, the base case, neither subsequence contains an umbrella and, hence, both sequences cover no

tables. Thus, our claim is true in this case.

For i > 0, assume that the claim is true for umbrellas u1, u2, . . . , ui−1 and o1, o2, . . . , oi−1. Let p j

be the leftmost table not covered by u1, u2, . . . , ui−1, and let ph be the leftmost table not covered by

o1, o2, . . . , oi−1. Since, by the induction hypothesis, u1, u2, . . . , ui−1 cover at least as many tables as

o1, o2, . . . , oi−1, we have h≤ j, that is, ph ≤ p j. Since umbrella oi must cover table ph and umbrella ui is

placed as far right as possible while still covering table p j, we have ui ≥ oi. This completes the inductive

step.

7

Question 3.2 (Divide and conquer) 15 marks
You are on the team of a TV station covering the Tour de France. You would like to provide your

audience with different kinds of statistics about each stage of the tour. This includes detailed infor-

mation about the profile of the stage. One of the pieces of information about the profile you want to

provide is the highest elevations the cyclists have to master in different parts of each stage. So you

are given the profile of the stage, consisting of n heights, h1, h2, . . . , hn, sampled at a distance of 1km

along the route; and you are given m parts P1, P2, . . . , Pm of today’s stage. Each part Pj is a pair (f j, t j)

indicating that this part starts at kilometer f j and ends at kilometer t j. For each part Pj, you want

to report the highest elevation between kilometer f j and kilometer t j. Develop a divide-and-conquer

algorithm that does this in O((n + m) lg n) time. Argue that the running time of your algorithm is

what you claim.

We start by observing that this problem has the following abstract formulation: Given an array h =

(h1, h2, . . . , hn) and a set P = {P1, P2, . . . , Pm} of query ranges of the type (f j, t j), report, for every query

Pj, the maximal element in h[f j . . t j]. This problem is known as the range-maxima problem.

RANGE-MAXIMA(h, P, p, r)

Â The first call is with p = 1 and r = n.

1 if p = r

2 then Report h[p] as the answer to every query in P

3 else q← b(p+ 2)/2c
4 Partition P into three sets Pl , Pr , P∗ such that

• Pl = {Pj ∈ P | t j ≤ q},
• Pr = {Pj ∈ P | f j > q}, and

• P∗ = {Pj ∈ P | t j ≤ q < f j}.
5 RANGE-MAXIMA(h, Pl , p, q)

6 RANGE-MAXIMA(h, Pr , q+ 1, r)

7 m[q]← h[q]

8 m[q+ 1]← h[q+ 1]

9 for i← q− 1 downto p

10 do m[i]←max(h[i], m[i + 1])

11 for i← q+ 2 to r

12 do m[i]←max(h[i], m[i − 1])

13 for every query Pj ∈ P∗

14 do Report max(m[f j], m[t j]) as the answer to query Pj

To prove that the running time of the algorithm is O((n+m) lg n), we make the following observations:

For n = 1, that is, p = r, the running time of the algorithm is O(m) because it iterates over all queries

in P and spends constant time per query. For n > 1, the running time is given by the recurrence

T (n, m) = O(n+m) + T (n/2, ml) + T (n/2, mr),

where ml = |Pl | and mr = |Pr |. Indeed, finding the middle index q takes constant time. Partitioning

P into the three sets Pl , Pr , P∗ takes O(m) time. The recursive calls are on the two halves of h and on

Pl and Pr , respectively. Computing array m takes O(n) time. Finally, we spend O(m∗) = O(m) time to

answer all queries in P∗, where m∗ = |P∗|.

8

Extra space for Question 3.2

We claim that the solution to this recurrence is O((n + m) lg n). The base case (n ∈ {2, 3}) is trivial

because we make at most five recursive calls, each of which costs at most O(1+m) = O((n+m) lg n)

time.

For the inductive step (n ≥ 4), we prove our claim using substitution; that is, we prove that T (n, m) ≤
c(n+m) lg n, for some c > 0:

T (n, m)≤ a(n+m) + T

�

n

2
, ml

�

+ T

�

n

2
, mr

�

≤ a(n+m) + c

�

n

2
+ml

�

lg
n

2
+ c

�

n

2
+mr

�

lg
n

2

≤ a(n+m) + c(n+m) lg
n

2
, because ml +mr ≤ m

= a(n+m) + c(n+m)(lg n− 1)

≤ c(n+m) lg n, for all c ≥ a.

This completes the inductive step and, thus, proves our claim.

9

