
Banner number: Name:

Midterm Exam

CSCI 3110: Design and Analysis of Algorithms

June 24, 2015

Group 1

Question 1.1

Question 1.2

∑

Group 2

Question 2.1

Question 2.2

∑

Group 3

Question 3.1

Question 3.2

∑

∑

Instructions:

• The questions are divided into three groups: Group 1 (18 marks = 36%), Group 2 (20 marks =

40%), and Group 3 (12 marks = 24%). You have to answer all questions in Groups 1 and 2

and exactly one question in Group 3. In the above table, put a check mark in the small box

beside the one question in Group 3 you want me to mark. If you select 0 or 2 questions in

Group 3, I will mark neither.

• Provide your answer in the box after each question. If you absolutely need extra space, use the

backs of the pages; but try to avoid it. Keey your answers short and to the point. If you need

scrap paper, you can also use the backs of the pages.

• You are not allowed to use a cheat sheet.

• Make sure your answers are clear and legible. If I can’t decipher an answer or follow your

train of thought with reasonable effort, you’ll receive 0 marks for your answer.

• If you are asked to design an algorithm and you cannot design one that achieves the desired

running time, design a slower algorithm that is correct. A correct and slow algorithm earns you

50% of the marks for the algorithm. A fast and incorrect algorithm earns 0 marks.

• When designing an algorithm, you are allowed to use algorithms and data structures you learned

in class as black boxes, without explaining how they work, as long as these algorithms and data

structures do not directly answer the questions.

• Read every question carefully before answering. In particular, do not waste time on an

analysis if none is asked for, and do not forget to provide one if it is required.

• Do not forget to write your banner number and name on the top of this page.

• This exam has 9 pages, including this title page. Notify me immediately if your copy has

fewer than 9 pages.
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Question 1.1 (Asymptotic growth of functions) 9 marks

a. Define the set o( f (n)).

b. Running times of algorithms are always positive functions, that is, T (n) > 0 for all n. Use the

definition of o-notation given above to show that, for two positive functions f (n) and g(n),

f (n) ∈ o(g(n)) if and only if limn→∞
f (n)

g(n)
= 0.
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Question 1.2 (Running time of algorithms) 9 marks

Let A and B be two algorithms that solve the same problem P. Assume A’s average-case running time

is in Θ(n) while its worst-case running time is in Θ(n2). B’s average-case running time is in Θ(n lg n),

as is its worst-case running time. The constants hidden by the Θ-notation are much smaller for A than

for B and A is much easier to implement than B. Now consider a number of real-world scenarios where

you would have to solve problem P. State which of the two algorithms would be the better choice in

each of the following scenarios and briefly justify your answer.

a. The inputs are fairly small.

b. The inputs are big and fairly uniformly chosen from the set of all possible inputs. You want to

process a large number of inputs and would like to minimize the total amount of time you spend

on processing them all.

c. The inputs are big and heavily skewed towards A’s worst case. As in the previous case, you want

to process a large number of inputs and would like to minimize the total amount of time you

spend on processing them all.

d. The inputs are of moderate size, neither small nor huge. You would like to process them one at

a time in real time, as part of some interactive tool for the user to explore some data collection.

Thus, you care about the response time on each individual input.
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Question 2.1 (Asymptotic growth of functions) 10 marks

a. Order the following functions by increasing order of growth:

n lg n nlg n (lg n)n 2
lg n
2 n2

b. Prove that you have arranged the second and third functions in the sorted sequence in the right

order; that is, if the sorted sequence is f1(n), f2(n), . . . , f5(n), prove that f2(n) ∈ o( f3(n)).

c. Prove that f (n) = 3n2+n lg n−10n ∈ Θ(n2) by providing constants 0< c1 < c2 and n0 ≥ 0 such

that c1n2 ≤ f (n)≤ c2n2 for all n≥ n0.
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Question 2.2 (Correctness proofs) 10 marks

Here’s yet another minimum spanning tree algorithm:

MST(G)

T := G

while T contains a cycle

do Choose an arbitrary cycle C in T

Remove the heaviest edge in C from T

return T

Prove that this algorithm does indeed produce a minimimum spanning tree of G. You may assume

that G is connected and that there are no two edges in G that have the same weight. Your proof needs

to show that the algorithm terminates, that the result is a spanning tree of G, and that it has minimum

weight among all spanning trees of G.
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Question 3.1 (Graph algorithms) 12 marks

Given a graph G whose edges have positive weights, a shortest path between two vertices u and w is a

path from u to w whose edges have minimum total weight among all paths from u to w. The distance

dist(u, w) between u and w is the length of such a shortest path. The diameter of G is the maximum

distance between any two vertices in G: diam(G) = maxu,v∈G dist(u, v). In general, computing the

diameter of G boils down to computing all pairwise vertex distances and reporting the largest one. If

G is a tree, however, things get quite a bit simpler.

Develop an algorithm that computes the diameter of a tree T whose edges have positive weights. The

running time of your algorithm should be in O(n), where n is the number of vertices of T . Describe

your algorithm, argue that its running time is in O(n), and prove that it does indeed compute the

diameter of T .
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Extra space for Question 3.1
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Question 3.2 (Greedy algorithms) 12 marks

In this question, you are given a set C = {1, 5, 10, 25} of coin denominations, that is, pennies, nickels,

dimes, and quarters. Your goal is to design an algorithm which, for any input value V in cents, outputs

the minimum number of coins with denominations in C whose total value is exactly V . For example,

to represent the value V = 37, we would choose one quarter, one dime, one nickel, and two pennies,

a total of 5 coins. Your algorithm should take O(|C |) = O(1) time. An O(V + |C |)-time algorithm is

also acceptable.

Describe your algorithm, argue briefly that it does indeed achieve the desired running time, and prove

formally that it outputs the minimum number of coins needed to represent a given value V , for any

value V it is given as input.

8



Extra space for Question 3.2
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