
Banner number: Name:

Final Exam
CSCI 3110: Design and Analysis of Algorithms

August 5, 2015

Question 1.1

Question 1.2

Question 1.3
∑

Question 2.1

Question 2.2

Question 2.3
∑

Question 3.1

Question 3.2

Question 3.3
∑

Group 1 Group 2 Group 3

∑

Instructions:

• The questions are divided into three groups: Group 1 (36%), Group 2 (40%), and Group 3 (24%).
You have to answer all questions in Groups 1 and 2 and exactly two questions in Group 3. In
the above table, put check marks in the small boxes beside the two questions in Group 3 you want
me to mark. If you select less than or more than two questions, I will randomly choose which two
to mark.

• Provide your answer in the box after each question. If you absolutely need extra space, use the
backs of the pages; but try to avoid it. Keey your answers short and to the point.

• You are not allowed to use a cheat sheet.

• Make sure your answers are clear and legible. If I can’t decipher an answer or follow your
train of thought with reasonable effort, you’ll receive 0 marks for your answer.

• If you are asked to design an algorithm and you cannot design one that achieves the desired running
time, design a slower algorithm that is correct. A correct and slow algorithm earns you 50% of the
marks for the algorithm. A fast and incorrect algorithm earns 0 marks.

• When designing an algorithm, you are allowed to use algorithms and data structures you learned
in class as black boxes, without explaining how they work, as long as these algorithms and data
structures do not directly answer the question.

• Read every question carefully before answering. In particular, do not waste time on an anal-
ysis if none is asked for, and do not forget to provide one if it is required.

• Do not forget to write your banner number and name on the top of this page.

• This exam has 15 pages, including this title page. Notify me immediately if your copy has
fewer than 15 pages.

1



Question 1.1 (Worst-case and average-case running time, randomization) 9 marks

(a) Define what the worst-case running time of a deterministic algorithm is.

(b) Define what the average-case running time of a deterministic algorithm is.

(c) The average-case running time of a deterministic algorithm and the expected running time of a
randomized algorithm are both expectations. Explain the difference between the two. What do
these two performance measures say about the real performance of an algorithm in an application
where little is known about the distribution of possible inputs?

2



Question 1.2 (Asymptotic growth of functions) 9 marks

(a) Using the definitions of O, Ω, and Θ, prove that f (n) ∈ Θ(g(n)) if and only if f (n) ∈ O(g(n)) and
f (n) ∈ Ω(g(n)).

(b) If a function f (n) is not in Ω(g(n)), does that mean that f (n) ∈ o(g(n))? If so, prove it. If not,
provide two functions f (n) and g(n) such that f (n) is neither inΩ(g(n)) nor in o(g(n)) and prove
that this is the case.

3



(c) Using the definition of Θ-notation, prove that n3 + n2 lg n− 10n ∈ Θ(n3).

4



Question 1.3 (Complexity classes) 9 marks

(a) Formally define the complexity class P.

(b) Formally define the complexity class NP.

(c) Formally define what a polynomial-time reduction is.

(d) Formally define what it means for a language to be NP-hard.

(e) Prove that, if there exists a polynomial-time reduction from an NP-hard language L1 to a language
L2, then L2 is also NP-hard.

5



Question 2.1 (Recurrence relations) 10 marks

Given two integers a ≥ b, their greatest common divisor gcd(a, b) is the greatest integer c that divides
both a and b. Euclid’s algorithm computes gcd(a, b):

GCD(a, b)

1 if b = 0
2 then return a
3 else return GCD(b, a mod b)

Here, a mod b denotes the remainder that is left when dividing a by b: a mod b = a− b · ba/bc.

Prove that the running time of the algorithm is O(lg b), where lg x := max(1, log2 x). (Hint: First
prove that the running time is O(lg n), where n= a+ b; show that a+ b decreases by a constant factor
from one recursive call to the next. Then argue that the first recursive call made by the top-level
invocation GCD(a, b) satisfies n< 2b.)

6



Question 2.2 (Correctness proofs) 10 marks

Here’s your standard binary search algorithm for a sorted array A:

BINARYSEARCH(A, i, j, x)

1 if j < i
2 then return no
3 m← b i+ j

2 c
4 if A[m] = x
5 then return yes
6 else if A[m]> x
7 then return BINARYSEARCH(A, i, m− 1, x)
8 else return BINARYSEARCH(A, m+ 1, j, x)

To find an element x in array A, you’d call BINARYSEARCH(A, 1, n, x). Prove that BINARYSEARCH(A, 1, n, x)
returns yes if and only if x ∈ A.

7



Question 2.3 (Amortized analysis) 10 marks

Recall the trusty old queue data structure. ENQUEUE(Q, x) appends element x to the end of the queue.
DEQUEUE(Q) removes the frontmost element from Q and returns it. This structure is easy to imple-
ment using a doubly-linked list or a singly-linked list with an additional pointer to the tail of the list.
Both implementations support ENQUEUE and DEQUEUE operations in constant time but neither can be
implemented purely functionally. Doubly-linked lists are impossible to implement purely functionally.
Functional singly-linked lists support only the following operations: access the first element in the list,
prepend a new element to the list, remove the first element from the list, and query whether the list
is empty. Each such operation takes constant time. A simple functional queue implementation now
consists of two singly linked lists F and B: Q = (F, B). An ENQUEUE(Q, x) operation prepends x to B.
A DEQUEUE(Q) operation tests whether F is empty. If F is not empty, it removes the first element from
F and returns it. If F is empty, it tests whether B is empty. If B is also empty, no element is returned
because the queue is empty. If B is non-empty, then the DEQUEUE operation first reverses B, which is
easily done using the following pseudo-code:

REVERSE(L)

1 R← an empty list
2 while L is not empty
3 do Remove the first element from L and prepend it to R
4 return R

It then replaces F with this reversed copy of B, sets B to be the empty list, and finally continues as
in the case when F 6= ; (which is now the case). Prove that the amortized cost per ENQUEUE and
DEQUEUE operation on this data structure is constant.

8



Question 3.1 (Divide and conquer) 9 marks

Consider an array A storing n numbers and consider the problem of finding the kth smallest element
in A. In this question, we measure the complexity of an algorithm not in terms of the number of
operations it performs but in terms of the number of comparisons it performs; we do not care about
the number of other operations it performs, such as additions, memory accesses, etc. To be precise,
even comparisons are counted only if at least one of the compared elements is an element of A;
comparisons between array indices, for example when evaluating loop conditions, are not counted.

Finding the minimum element in A using n− 1 comparisons is easy. We also showed in class that we
can find the kth smallest element in A in O(n) time and thus using O(n) comparisons. Now let’s care
about constant factors and let’s focus on finding the second-smallest element in A. This can easily be
done using 2n− 3 comparisons. This question asks you to do better by using divide and conquer. In
particular, you are asked to find the second-smallest element in A using only n+dlg ne−2 comparisons.
Argue briefly why your algorithm does indeed return the second-smallest element and why it performs
n+ dlg ne − 2 comparisons.

Hint: Think about how to find the minimum using divide and conquer rather than using a straight scan
of the array A. By keeping track of the outcomes of the comparisons performed by this algorithm, you
should be able to narrow down the search for the second-smallest element to a very small candidate
set.

9



Extra space for Question 3.1

10



Question 3.2 (Dynamic programming) 9 marks

Let S be a sequence of m integer pairs 〈(x1, y1), (x2, y2), . . . , (xm, ym)〉. Each of the values x i and yi, for
all 1 ≤ i ≤ m, is an integer between 1 and n. A domino sequence is a subsequence 〈(x i1 , yi1), (x i2 , yi2),
. . . , (x it

, yit
)〉 such that 1 ≤ i1 < i2 < · · · < it ≤ n and, for all 1 ≤ j < t, yi j

= x i j+1
. Note that it

isn’t necessarily true that i j+1 = i j + 1, that is, the elements of the domino sequence don’t have to be
consecutive in S, but they have to appear in the right order.

Example: For S = 〈(1, 3), (4,2), (3, 5), (2, 3), (3,8)〉, both 〈(1,3), (3,5)〉 and 〈(4,2), (2, 3), (3, 8)〉 are
domino sequences.

Use dynamic programming to find a longest domino sequence of S in O(n + m) time. Argue briefly
that the running time of your algorithm is indeed O(n + m) and that its output is indeed a longest
domino sequence of S.

11



Extra space for Question 3.2

12



Question 3.3 (Application of data structures) 9 marks

Let R = {R1, R2, . . . , Rn} be a set of rectangles in the plane. We call R properly nested if (i) Ri ⊆ R1 for
all 1 < i ≤ n, that is R1 contains all rectangles in R and (ii) there are no two rectangles in R whose
boundaries intersect, that is, two rectangles are either disjoint or one is completely contained in the
other. A properly nested set of rectangles can be represented by a nesting tree whose nodes are the
rectangles of R and where Ri is the parent of R j if and only if R j ⊂ Ri and there is no rectangle Rh such
that R j ⊂ Rh ⊂ Ri.

Example of a properly nested set of rectangles and the corresponding nesting tree:

R1

R2

R8

R3 R4

R5

R6

R7
R1

R8R2 R5

R3

R4

R6 R7

Develop an O(n lg n)-time algorithm that tests whether a given set R of rectangles is properly nested.
If R is properly nested, the algorithm should output the nesting tree of R represented as a set of
pairs {(i, pi) | 1 < i ≤ n} such that Rpi

is the parent of Ri in the tree for all 1 < i ≤ n. If R is not
properly nested, the algorithm should output a pair of indices (i, j) such that the boundaries of Ri and
R j intersect or i = 1 and R1 and R j are disjoint. Argue briefly that your algorithm runs in O(n lg n)
time and that it produces the correct answer, both when R is properly nested and when it is not.

13



Extra space for Question 3.3

14



Extra space for Question 3.3

15


