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Given a set S of n items, a heavy hitter is an item that occurs often in S, according to some appropriate

notion of “often”. Here, we consider an item to occur often in S if it occurs at least k times, for some

parameter k given as part of the algorithm’s input. So, a heavy hitter of S is an element that occurs

at least k times in S. Your task is to develop an algorithm that finds all the heavy hitters in S in

O(n lg(n/k)) time. (In the interest of simplifying the analysis, let us define lg x :=max(1, log2 x) here.)

Describe your algorithm, prove that it is correct, and show that its running time is indeed O(n lg(n/k)).
Hint: Sorting can get you close: After sorting the input, you scan it and output all elements that you

see at least k times in a row in the sorted sequence. This takes O(n lg n) time, which is O(n lg(n/k)) as

long as k ≤ n1−ε, for any ε > 0. For large values of k, however, the algorithm takes too long.

Sorting gets you close in a different sense as well. Take Quick Sort as a starting point. Assume the

current invocation partitions around a pivot p. Can you afford to check whether p is a heavy hitter?

How do you find all other heavy hitters? When can you stop recursing because you can be certain that

the current input contains no heavy hitters? Stopping the recursion early enough is the key to reducing

the running time from O(n lg n) to O(n lg(n/k)).
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