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Back to interval scheduling. In class, we discussed how to maximize the number of classes we can

schedule without conflicts in a single classroom. Now, scheduling only some of the classes and just

cancelling the remaining ones because we cannot schedule all classes in the same classroom isn’t really

an option. So here is a much more realistic formulation of the problem. You are given n classes, each

represented by an interval defined by its starting time and its ending time. (Note, as in class, we are

given actual start and ending times that cannot be moved, not just the duration of each class.) As in

class, two classes can be scheduled in the same classroom only if their time intervals do not overlap.

Your goal is to schedule all classes and to minimize the number of classrooms needed to accommodate

them all.

(a) Provide a simple greedy algorithm that solves this problem in O(n lg n+ kn) time, where k is the

number of classrooms the schedule you compute requires.

(b) Prove that your algorithm produces a valid schedule that uses the minimum number of classrooms:

no two classes scheduled in the same room by your algorithm overlap and, if your schedule uses

k classrooms, there is no way to accommodate all the given classes in less than k classrooms.

Your proof should use the fact that, if there is a time t that is contained in the time intervals of k

classes, then each of these classes needs to be scheduled in a different classroom, that is, there

cannot be any schedule that uses less than k classrooms.

(c) Argue briefly that the running time of your algorithm is indeed O(n lg n+ kn).

(d) Optional (25% bonus marks): Discuss how to modify the implementation details, not the overall

strategy, of your algorithm so its running time is reduced to O(n lg n+ n lg k) = O(n lg n). Argue

briefly that this modification indeed achieves this running time.

Hint: The reason why Serikzhan discussed decomposing a sequence of numbers into a minimum

number of monotonically increasing subsequences in the last tutorial is because the problem in this

assignment is very similar to it and in fact a bit simpler:

• The algorithm for decomposing into monotonically increasing subsequences started with a single

sequence and only added a new sequence every time it was impossible to add the next number to

any of the existing sequences. A similar strategy should work here; the key in this case is sorting

the intervals in the right order so you can guarantee that, whenever you add a new classroom to

accommodate the next class, the set of classes seen so far indeed cannot be scheduled in fewer

classrooms.

• The correctness proof of the algorithm for decomposing into monotonically increasing subse-

quences used the fact that, if there’s a monotonically decreasing subsequence of length k, then

the decomposition must have at least k increasing subsequences. The argument in point (b)

above is similar: if you need to run k classes in parallel (that is, there is a time when all of these

k classes are simultaneously in progress), then you need at least k classrooms.


