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This question studies another minimum spanning tree (MST) algorithm with running time O(m lg n)
(matching the running time of Kruskal’s algorithm). We assume that the input graph G = (V, E) is

connected to keep things simple. Since an MST T = (V, E′) is defined completely by its edge set E′ (the

vertex set is V ), it suffices for the algorithm to output E′.

If G has only one vertex, then it has no edges. Thus, T does not have any edges either and we

return E′ = ;.
If G has at least two vertices and thus at least one edge, then we compute E′ as the union of two

edge sets E1 and E2. For every vertex v ∈ G, let ev be the edge with minimum weight among the edges

incident to v. Then E1 = {ev | v ∈ V}.
Next let H = (V, E1). Then construct a new graph G′ that has one vertex vC per connected component

C of H. There exists an edge (vC1
, vC2
) in G′ if and only if G contains an edge with one endpoint in C1

and the other endpoint in C2. In this case, let e be the minimum-weight edge among all edges with one

endpoint in C1 and the other endpoint in C2. Then the edge (vC1
, vC2
) in G′ has the same weight as e and

stores a pointer orig(vC1
, vC2
) = e. To construct E2, we call the MST algorithm recursively to compute

the edge set E′′ of an MST of G′ and, once this recursive call returns, set E2 = {orig(e′′) | e′′ ∈ E′′}.
Your task in this assignment is to prove that (1) this algorithm does indeed compute a minimum

spanning tree and (2) its running is indeed O(m lg n).

Analysis.

• Argue that the edge set E1 can be found in O(m) time.

• Argue that the graph G′ can be constructed in O(m) time.

• Argue that the edge set E2 can be constructed from the edge set E′′ returned by the recursive call

in O(m) time.

• Argue that G′ has at most half as many vertices as G.

• Argue that this implies that the algorithm takes O(m lg n) time.

Correctness. To simplify things, let us assume that no two edges of G have the same weight. (This

assumption can be eliminated, but it’s a bit technical.) Under this assumption, the MST T of G is

unique. You do not need to prove this fact, even though you are welcome to convince yourself that this

is indeed the case.

• Argue that every edge in E1 belongs to T .

• Argue that every edge in E2 belongs to T .

• Argue that E1 ∩ E2 = ; and |E1|+ |E2|= n− 1.

• Argue that this implies that E1 ∪ E2 is exactly the edge set of T , that is, the algorithm is correct.

The first two claims can be shown using the Cut Theorem.


