Assignment 2

CSCI 3110: Design and Analysis of Algorithms
Due May 29, 2018

Banner ID: Name:
Banner ID: Name:
Banner ID: Name:

Assignments are due on the due date before class and have to include this cover page. Plagiarism in assignment answers will
not be tolerated. By submitting their answers to this assignment, the authors named above declare that its content is their
original work and that they did not use any sources for its preparation other than the class notes, the textbook, and ones
explicitly acknowledged in the answers. Any suspected act of plagiarism will be reported to the Faculty’s Academic Integrity
Officer and possibly to the Senate Discipline Committee. The penalty for academic dishonesty may range from failing the
course to expulsion from the university, in accordance with Dalhousie University’s regulations regarding academic integrity.




Question 1 (20 marks) We discussed in class how to determine whether a graph G is connected,
in O(n + m) time. If G represents a computer network, connectivity is important but doesn’t ensure
reliability. What if a mouse gnaws through one of the wires? Can all computers still communicate with
each other, that is, is the network still connected? Formally, we would like to answer the following
question: Given a connected graph G, does G contain an edge e whose removal disconnects G, that is,
an edge e such that the graph G, = (V, E \ {e}) is disconnected? If the answer to this question is no,
then the mouse has to nibble through at least two wires to disconnect the network; we call the graph
2-edge-connected in this case. (In general, a graph is k-edge connected if at least k edges need to be
removed to disconnect the graph.)

It turns out that deciding whether a given graph is 2-edge-connected also takes O(n + m) time,
using a clever strategy based on depth-first search. Your task is much simpler: Develop an algorithm
that takes O(n - m) time to decide whether a given graph is 2-edge connected. As you will come to
expect as the norm in this course, there are three parts to a complete answer:

e Give a clear description of your algorithm in plain English (preferable) or pseudo-code (if the
English description becomes too convoluted). (To check whether your description is clear, ask
yourself whether a competent computer scientist would be able to implement your algorithm
based solely on your description. The answer should be yes.) Your algorithm may use any tools
we discussed in class as building blocks, as long as these tools do not directly solve the problem
you are asked to solve. (Example: If I ask you to describe a sorting algorithm, “use Merge Sort” is
not enough; you need to give the details of the algorithm. If I ask you to solve some optimization
problem where the first step in your algorithm is to sort the input, then “sort the input using
Merge Sort” is sufficient, without describing the inner workings of Merge Sort.)

e Prove that the algorithm is correct, that is, that it gives the desired answer for every valid input.
(For some algorithms, as the one discussed here, this proof can be fairly simple without a need
for much formal machinery, but it is required.)

e Prove that the algorithm achieves the desired running time for every possible input. (Again, this
proof may be simple, but it is required.)

How to approach the problem: First observe that an O(m?)-time algorithm is easy to obtain: For
every edge e, the graph G, can be computed from G in O(n + m) time by making a copy of G and
removing edge e. Since G is connected, we have m > n— 1, that is, O(n + m) = O(m). As discussed in
class, the connected components of G, can be computed in O(n + m — 1) = O(m) time. Thus, testing
whether each graph G, is connected takes m - O(m) = O(m?) time. Since G is 2-edge-connected if and
only if each graph G, is connected, we thus have a valid O(m?) algorithm for testing whether G is
2-edge-connected.

To reduce the running time to O(nm), you want to avoid testing for every edge whether G, is
connected. Specifically, you want to divide the edge set E into two subsets E; and E, = E \ E; such
that |E;| € O(n) and you can guarantee, without explicitly testing that this is true, that G, is connected
for every edge e € E,. Thus, you only have to test whether G, is connected for every edge e € E;. Can
you use a spanning tree of G to identify such a partition of E into two sets E; and E,?



Question 2 (10 marks) Rooted trees are used extensively to represent ancestry relationships in
various contexts. For example, concept hierarchies in computational linguistics or the evolutionary
history of a set of species in computational biology are often represented as rooted trees. The simplest
question an algorithm manipulating these trees can ask is whether a node u is an ancestor of another
node v. Consider a tree T and assume that every node in the tree has a unique ID between 0 and n—1
(the tree has n nodes). Your task is to build a data structure which, given a pair of node IDs (u, v)
decides whether the node with ID u is an ancestor of the node with ID v. Your algorithm should take
O(n) time to build the data structure. The size of the data structure should be O(n). Answering an
ancestry query for any given pair (u, v) using the constructed data structure should take constant time.

Just as in your answer to Question 1, give clear descriptions of the data structure, of the algorithm
to construct it, and of the query procedure; prove that the query procedure gives the correct answer
for every possible pair (u, v) of node IDs; and prove that the construction of the data structure and the
query procedure take O(n) and O(1) time, respectively.

How to approach the problem: For every pair (u,v), there are three possibilities: u may be an
ancestor of v, v may be an ancestor of u or neither u nor v is an ancestor of the other. Now compute a
preorder numbering and a postorder numbering of the nodes in T. How do u and v’s preorder and
postorder numbers relate to each other in each of these scenarios? Can you construct the desired data
structure based on your observations?



