CSCI 2132: Software Development Norbert Zeh

Wildcards and oS
Regular Expressions winter 2019

Searching

Problem:
* Find all files whose names match a certain pattern

» Find all files that contain a certain text pattern

Tools:
« Wildcards (shell)

 Regular expressions (grep and other tools)

Filename Substitution (Wildcards)

* Also known as pathname substitution or pathname expansion

+ Used to specify patterns that match multiple pathnames

* Makes use of wildcards (metacharacters expanded by the shell)

Some wildcards:
* 7 matches any single character
* % matches any string

?

'a-z_] matches any character in therange ‘a’ .. "z’ and ‘ _

" la-z] or ["a-z] matches any character not in the range

d ? ? ?

Gl 7

File Substitution Examples

[0-9] any digit
a-zA-Z7] any English letter
unix] any of the characters ‘u’, 'n’, ‘1", ‘x’

ls ~/csci12132/1labl/*.java
List Java files in csci2132/1abl

List all files with 4-character extension

ls lab[1-9]
List all files with names Labl, ..., L[ab9

ls [10-9]*
List all files whose names don't start with a digit

cp labl.bk/*.java labl/
Copy Java files from the Labl.bk directory to the Lab1l directory

More Examples

» 1s ~/csc12132/1labl/H????World. java

« |S H*

« 1s [IA-Z]*

* 1s */*/%.java

« 1s *.java */*.java

e echo .x

(echo prints out its command line arguments, useful in scripts)

e cat *.txt > allfiles

Regular Expressions

» Patterns used to match strings

« Used In fast and flexible text search tools

* Name comes from regular sets defined by Stephen Kleene
» Can be matched using deterministic finite automaton (DFA)

» Kleene's notation implemented in QED editor to match patterns
(author Ken Thompson)

* Thompson later added this to the UNIX editor ed

* Led to the tool grep
(Name comes from ed command g/re/p: slobal search for regular

expression and print matching lines.)

Reading about Regular Expressions

* The Unix book
» Chapter 3, “Filtering Files” (page 84)
» Appendix, “Regular Expressions” (page 665)

Two Types of Regular Expressions

Basic regular expressions follow exactly the definition of regular sets
by Kleene and can be matched using a DFA.

Extended regular expressions add extensions that

« Make regular expressions more powerful
« Cannot be matched using a DFA but ...

» ... can still be matched efficiently.

Basic Regular Expressions

« Made up of characters and metacharacters:

* Metacharacters: . () [] = 2 ~ $ \

- Anything that Is not a metacharacter matches itself

Metacharacters:

matches any character

- [...] matches a character class analogously to wildcards
(metacharacters are not special; negation using only *, not !)

« (expr) matches the expr (grouping)

¢ eXpr* matches any sequence of strings that match expr

« expr? matches 0 or 1 string that matches expr

- \char matches char even If char i1s a metacharacter

matches the beginning of the line

« $ matches the end of the line

Examples of Basic Regular Expressions

* One or more spaces: “_*"
- Empty line: “*$”

« Formatted dollar amount: “\$[0-9][0-9]*\.[0-9][0-9]"

Filters

A filter Is a program that reads text from stdin, transforms it, and
outputs the result to stdout.

Often used as elements of pipelines.

grep

grep Is a filter that reads its input line by line and prints all lines that
match a given pattern

Input:
- stdin if no files given on command line

* Otherwise, the listed files

Generaluse: grep [options] <pattern> [files]

ogrep Options

None: Pattern Is interpreted as a basic regular expression

-E: Pattern Is interpreted as an extended regular expression

-F: Pattern Is interpreted as a fixed string

-Nn: Precede each output line by its line number

-1: lgnore case (lowercase/uppercase) when looking for matches
-v: Output the lines that do not match

-w: Restrict matches to whole words

orep Example

Consider the following file prices:

Chocolate $1.23 each
Candy $.56 each
Jacket $278.00</pre>
<pre>$44.00

$4.4

If we enter
$ grep ‘\$[0-9][0-9]*\.[0-9][0-9]" prices
what Is the output?

Chocolate $1.23 each
Jacket $278.00</pre>
<pre>$44.00

Another grep Example

The file /usr/share/dict/linux.words contains a dictionary of
English words.

What grep command can we use to find all 5-letter words that start
with “a’ or ‘b’ and end with “b"?

$ grep ‘"“[ab]...b$’ /usr/share/dict/linux.words

What grep command can we use to find all words that start with “a’
or ‘b’ and end with ‘b’"?

$ grep ‘"“[ab].*b$’ /usr/share/dict/linux.words

What command do | add to my pipeline to count how many such words
there are?

$ grep ‘"“[ab].*b$’ /usr/share/dict/linux.words | wc -1

Extended Regular Expressions

Every basic regular expression Is an extended regular expression.

Additional features:
« More repetition specifiers:

« expr?: Match expression expr 0 or 1time

« expr+: Match expression expr at least once

« exprim}: Match expression expr exactly m times

« exprim,n}: Match expression expr between m and n times
« expri,n}: Match expression expr up to n times

- exprim, }: Match expression expr at least m times
- Back references:

« (subexprl) ... (subexpr2) ... \2\1:\1 and \2 match copies of the strings
that matched the subexpressions subexprl and subexpr?2 enclosed In
parentheses

Examples of Extended Regular Expressions

» A string that consists of one or two digits followed by at least one
letter:

0-9]?[0-9][a-z]+
0-9]{1,2}[a-z]+

« At least one occurrence of Mon, Wed or Fri:

 An |IP address:

- A string that ends with the same two characters it starts with, in
reverse order:

Similarities and Differences Between
Wildcards and Regular Expressions

Most of the time, wildcards are good enough for file matching:
* All Java files:

$ 1ls *.java
$ ls | grep ‘x.java$’

Some patterns cannot easily be matched using wildcards but can be
matched using regular expressions:

 All files whose names contain exactly one dash:

$ 1s | grep ‘"["-Ix-["-1+$’

