
CSCI 2132: Software Development

Wildcards and  
Regular Expressions

Norbert Zeh

Faculty of Computer Science
Dalhousie University

Winter 2019

Searching

Problem:

• Find all files whose names match a certain pattern

• Find all files that contain a certain text pattern

• ...

Tools:

• Wildcards (shell)

• Regular expressions (grep and other tools)

Filename Substitution (Wildcards)

• Also known as pathname substitution or pathname expansion

• Used to specify patterns that match multiple pathnames

• Makes use of wildcards (metacharacters expanded by the shell)

Some wildcards:

• ? matches any single character

• * matches any string

• [a-z_] matches any character in the range ‘a’"..’z’ and ‘_’

• [!a-z] or [^a-z] matches any character not in the range
‘a’"..’z’

File Substitution Examples

• [0-9] any digit

• [a-zA-Z] any English letter

• [unix] any of the characters ‘u’, ’n’, ‘i’, ‘x’

• ls ~/csci2132/lab1"/*.java  
List Java files in csci2132/lab1

• ls *.???? 
List all files with 4-character extension

• ls lab[1–9] 
List all files with names lab1, ""..., lab9

• ls [!0-9]* 
List all files whose names don’t start with a digit

• cp lab1.bk"/*.java lab1/  
Copy Java files from the lab1.bk directory to the lab1 directory

More Examples

• ls ~/csci2132/lab1/H????World.java

• ls H*

• ls [!A-Z]*

• ls */*/*.java

• ls *.java */*.java

• echo .* 
(echo prints out its command line arguments, useful in scripts)

• cat *.txt > allfiles

Regular Expressions

• Patterns used to match strings

• Used in fast and flexible text search tools

• Name comes from regular sets defined by Stephen Kleene

• Can be matched using deterministic finite automaton (DFA)

• Kleene’s notation implemented in QED editor to match patterns  
(author Ken Thompson)

• Thompson later added this to the UNIX editor ed

• Led to the tool grep 
(Name comes from ed command g/re/p: global search for regular
expression and print matching lines.)

Reading about Regular Expressions

• The Unix book

• Chapter 3, “Filtering Files” (page 84)

• Appendix, “Regular Expressions” (page 665)

Two Types of Regular Expressions

Basic regular expressions follow exactly the definition of regular sets
by Kleene and can be matched using a DFA.

Extended regular expressions add extensions that

• Make regular expressions more powerful

• Cannot be matched using a DFA but ...

• ... can still be matched efficiently.

Basic Regular Expressions
• Made up of characters and metacharacters:

• Metacharacters: . () [] * ? ^ $ \

• Anything that is not a metacharacter matches itself

Metacharacters:

• . matches any character

• [""...] matches a character class analogously to wildcards  
 (metacharacters are not special; negation using only ^, not !)

• (expr) matches the expr (grouping)

• expr* matches any sequence of strings that match expr

• expr? matches 0 or 1 string that matches expr

• \char matches char even if char is a metacharacter

• ^ matches the beginning of the line

• $ matches the end of the line

Examples of Basic Regular Expressions

• One or more spaces: “␣␣*”

• Empty line: “^$”

• Formatted dollar amount: “\$[0-9][0-9]*\.[0-9][0-9]”

Filters

A filter is a program that reads text from stdin, transforms it, and
outputs the result to stdout.

Often used as elements of pipelines.

grep

grep is a filter that reads its input line by line and prints all lines that
match a given pattern

Input:

• stdin if no files given on command line

• Otherwise, the listed files

General use: grep [options] <pattern> [files]

grep Options

• None: Pattern is interpreted as a basic regular expression

• -E: Pattern is interpreted as an extended regular expression

• -F: Pattern is interpreted as a fixed string

• -n: Precede each output line by its line number

• -i: Ignore case (lowercase/uppercase) when looking for matches

• -v: Output the lines that do not match

• -w: Restrict matches to whole words

grep Example
Consider the following file prices:

If we enter

what is the output?

Chocolate $1.23 each
Candy $.56 each
Jacket $278.00"</pre>
<pre>$44.00
$44

$ grep ‘\$[0-9][0-9]*\.[0-9][0-9]’ prices

Chocolate $1.23 each
Jacket $278.00"</pre>
<pre>$44.00

Another grep Example
The file /usr/share/dict/linux.words contains a dictionary of
English words.

What grep command can we use to find all 5-letter words that start
with ‘a’ or ‘b’ and end with ‘b’?

What grep command can we use to find all words that start with ‘a’
or ‘b’ and end with ‘b’?

What command do I add to my pipeline to count how many such words
there are?

$ grep ‘^[ab]...b$’ /usr/share/dict/linux.words

$ grep ‘^[ab].*b$’ /usr/share/dict/linux.words

$ grep ‘^[ab].*b$’ /usr/share/dict/linux.words | wc -l

Extended Regular Expressions
Every basic regular expression is an extended regular expression.

Additional features:

• More repetition specifiers:

• expr?: Match expression expr 0 or 1 time

• expr+: Match expression expr at least once

• expr{m}: Match expression expr exactly m times

• expr{m,n}: Match expression expr between m and n times

• expr{,n}: Match expression expr up to n times

• expr{m,}: Match expression expr at least m times

• Back references:

• (subexpr1)""...(subexpr2)""...\2\1: \1 and \2 match copies of the strings
that matched the subexpressions subexpr1 and subexpr2 enclosed in
parentheses

Examples of Extended Regular Expressions

• A string that consists of one or two digits followed by at least one
letter:

• [0-9]?[0-9][a-z]+

• [0-9]{1,2}[a-z]+

• At least one occurrence of Mon, Wed or Fri: (Mon|Wed|Fri)+

• An IP address: [0-9]{1,3}(\.[0-9]{1,3}){3}

• A string that ends with the same two characters it starts with, in
reverse order: (.)(.).*\2\1

Similarities and Differences Between 
Wildcards and Regular Expressions

Most of the time, wildcards are good enough for file matching:

• All Java files:

Some patterns cannot easily be matched using wildcards but can be
matched using regular expressions:

• All files whose names contain exactly one dash:

$ ls *.java
$ ls | grep ‘*.java$’

$ ls | grep ‘^[^-]*-[^-]*$’

