CSCI 2132: Software Development Norbert Zeh

Faculty of Computer Science
Dalhousie University

Threads, Processes, and Jobs

Winter 2019



Processes

Recall:

* A program is a file storing executable code

* A process executes a program

Process occupies memory:

* Code (executable machine code)

* Data (static data)
* Heap (used for dynamic memory allocation)

* Stack (local variables of subroutines, supports recursion)

We will learn more about these types of memory in the context of C programming.



Threads

A thread executes the instructions in a program one at a time
(sequentially).



Threads

A thread executes the instructions in a program one at a time
(sequentially).

Thread state:
 Program counter (memory address of next instruction to execute)

* Register contents



Threads

A thread executes the instructions in a program one at a time
(sequentially).
Thread state:

 Program counter (memory address of next instruction to execute)
* Register contents

Traditionally, one thread per process.

Modern OSs: one process can have many threads (utilize multicore
CPUs).

Different processes/threads can execute the same code in memory.



The Cost of Processes and Threads

Generally, there are many more processes/threads than CPU cores.
OS allocates “times slices” of CPU cores to threads/processes.
Processes store more admin information than threads.

Process creation and process switching is more costly than thread
creation and thread switching.



Process Control Block (PCB)

Created by OS when a process starts

Includes:
* Process identifier (PID)
» Program counter
+ Resources allocated to process (e.g., memory, open files)

» Process ownership (user and group)

* Process state (running, sleeping, pre-empted, created, zombie)



Process Creation

Every process Is created by another process and becomes its child
Drocess.

One exception: the root process init (PID=1)

This gives us a process tree



root
root
root
root
polkitd
dbus
root
root
chrony
root

root
root

root
nzeh

nzeh

1

@

2382
2414
4575
4598
4600
4631
4633
4691
5022
5027
5031

T T g G N

15934 5022

15937 15934

15938 15937

O

OB ONONONONONONONONONO)

PACKRS

PACKRS
PACKRS!
PACKRS
PACKRS!
PACKRS
PACKRS!
PACKRS
PACKRS!
PACKRS
PACKRS!
PACKRS

22:09

22:09

22:09

Process Iree

N ) ) ) ) ) ) ) ) oY) Y

pts/29

Ss 15
Ss 5
Ss 0]
S<sl 1
Ssl 0
Ssl 3
Ssl 3
Ss 1
S 0
Ss 1
Ss 9
Ssl 242
Ss 0]
) 0
Ss O:

123

:51
100
101
140
118
112
145
217
:33
154
:58

100

100

00

/usr/1lib/systemd/systemd

/usr/1lib/systemd/systemd-journald
/usr/sbin/lvmetad

/sbin/auditd
/usr/1lib/polkit-1/polkitd
/usr/bin/dbus-daemon
/usr/sbin/NetworkManager
/usr/1lib/systemd/systemd-logind
/usr/sbin/chronyd

/usr/sbin/sshd

/usr/sbin/cupsd
/usr/1lib/gitlab-runner/gitlab-runner

sshd: nzeh [priv]
sshd: nzehapts/29

-bash



Process Creation
How the Shell Starts a Program

Parent process

running shell
Duplicate: forl;()/ \
Child process Parent process
running shell waiting for child
Differentiate: exec() l
Child process Wait for child: wait()
running program
Terminate: exit() l
Child process | Parent process
terminates awakens

Signal



Foreground and Background Processes

Foreground process controls the terminal

Background process cannot read from keyboard but can print to
terminal



Job and Process Control

Job control = shell functionality for managing processes

Print jobs (processes started from the current shell)
$ jobs

Print processes

$ ps

Start a process in background

$ xterm &



Job and Process Control

Suspend a process

Ctrl-Z

Put suspended job In background

$ bg $ bg %job
Resume suspended job In foreground

$ g $ fg %job
Terminate a job or process

$ kill %job $ kill pid



