
CSCI 2132: Software Development

Threads, Processes, and Jobs

Norbert Zeh

Faculty of Computer Science
Dalhousie University

Winter 2019

Processes

Recall:

• A program is a file storing executable code

• A process executes a program

Process occupies memory:

• Code (executable machine code)

• Data (static data)

• Heap (used for dynamic memory allocation)

• Stack (local variables of subroutines, supports recursion)

We will learn more about these types of memory in the context of C programming.

Threads

A thread executes the instructions in a program one at a time
(sequentially).

Thread state:

• Program counter (memory address of next instruction to execute)

• Register contents

Traditionally, one thread per process.

Modern OSs: one process can have many threads (utilize multicore
CPUs).
Different processes/threads can execute the same code in memory.

Threads

A thread executes the instructions in a program one at a time
(sequentially).

Thread state:

• Program counter (memory address of next instruction to execute)

• Register contents

Traditionally, one thread per process.

Modern OSs: one process can have many threads (utilize multicore
CPUs).
Different processes/threads can execute the same code in memory.

Threads

A thread executes the instructions in a program one at a time
(sequentially).

Thread state:

• Program counter (memory address of next instruction to execute)

• Register contents

Traditionally, one thread per process.

Modern OSs: one process can have many threads (utilize multicore
CPUs).
Different processes/threads can execute the same code in memory.

The Cost of Processes and Threads

Generally, there are many more processes/threads than CPU cores.

OS allocates “times slices” of CPU cores to threads/processes.

Processes store more admin information than threads.

Process creation and process switching is more costly than thread
creation and thread switching.

Process Control Block (PCB)

Created by OS when a process starts

Includes:

• Process identifier (PID)

• Program counter

• Resources allocated to process (e.g., memory, open files)

• Process ownership (user and group)

• Process state (running, sleeping, pre-empted, created, zombie)

Process Creation

Every process is created by another process and becomes its child
process.

One exception: the root process init (PID=1)

This gives us a process tree

Process Tree

root 1 0 0 2018 ? Ss 15:23 /usr/lib/systemd/systemd
""...
root 2382 1 0 2018 ? Ss 5:51 /usr/lib/systemd/systemd-journald
root 2414 1 0 2018 ? Ss 0:00 /usr/sbin/lvmetad
root 4575 1 0 2018 ? S<sl 1:01 /sbin/auditd
polkitd 4598 1 0 2018 ? Ssl 0:40 /usr/lib/polkit-1/polkitd
dbus 4600 1 0 2018 ? Ssl 3:18 /usr/bin/dbus-daemon
root 4631 1 0 2018 ? Ssl 3:12 /usr/sbin/NetworkManager
root 4633 1 0 2018 ? Ss 1:45 /usr/lib/systemd/systemd-logind
chrony 4691 1 0 2018 ? S 0:17 /usr/sbin/chronyd
root 5022 1 0 2018 ? Ss 1:33 /usr/sbin/sshd
root 5027 1 0 2018 ? Ss 9:54 /usr/sbin/cupsd
root 5031 1 0 2018 ? Ssl 242:58 /usr/lib/gitlab-runner/gitlab-runner
""...
root 15934 5022 0 22:09 ? Ss 0:00 sshd: nzeh [priv]
""...
nzeh 15937 15934 0 22:09 ? S 0:00 sshd: nzeh@pts/29
""...
nzeh 15938 15937 0 22:09 pts/29 Ss 0:00 -bash

Process Creation
How the Shell Starts a Program

Parent process
running shell

Child process
running program

Child process
running shell

Parent process
waiting for child

Child process
terminates

Parent process
awakens

Duplicate: fork()

Wait for child: wait()

Differentiate: exec()

Terminate: exit()

Signal

Foreground and Background Processes

Foreground process controls the terminal

Background process cannot read from keyboard but can print to
terminal

Job and Process Control

Job control = shell functionality for managing processes

Print jobs (processes started from the current shell)

Print processes

Start a process in background

$ jobs

$ ps

$ xterm &

Job and Process Control
Suspend a process

Put suspended job in background

Resume suspended job in foreground

Terminate a job or process

Ctrl-Z

$ bg

$ fg

$ bg %job

$ fg %job

$ kill pid$ kill %job

