CSCI 2132: Software Development | NorbertZen

Faculty of Computer Science
Dalhousie University

Pointers



Pointers

Pointer = memory address
(e.g.,, of another variable)

- Hardware indexes memory addresses linearly.

- Addresses on modern processors more complicated

< >

0 OxFFFFffffffffffff




Pointer Variables

Pointer variable = variable that can store a pointer

Declaration:
type _to _be referenced * varilable name;

Examples:
* 1Nt *p;
* 1Int*x Q;

* char **argv;

« Careful: 1nt* a, b;



Retrieving Addresses and Dereferencing

Address operator &:
- Takes the address of a variable

1nt 1, *p;
g = @it i

Indirection operator or dereference operator *:

« Accesses the memory location referenced P
by a pointer

1Nt 1, *p;
p = &1,
printf(“%d\n"”, *p);




Common Pitfalls with Pointers

» Forgetting to dereference the Fl)nE ;i: Lo %P
pointer D= 5

« Dereferencing an un-initialized 1Nt *p;
pointer *p = 5,

* Dangling pointer int xf() {

1Nt 1 = 4;

- Dereference pointer after object .
return &i;

no longer exists on stack or

heap $
1nt *p;
p = f(O);

++(*p);



Pointers In Java?

Java's variable model:

* Primitive types (int, char, ...) stored variables (value model).

 Objects (anything allocated with new) stored on heap, variable
stores reference (pointer) to object (reference model).

» Pointers cannot be manipulated explicitly.

* Assignment in reference model makes two variables point to the
same object (careful!).

int x = 5; "

int y = x; 5 5 X y
\ /

Integer x = new Integer(5); \/

Integer = X; 5

<
I




Pointer Assighment

» Pointers can be passed around and stored In variables just as any
other type.

* Only pointers of matching type can be assigned to pointer variables.

int 1 =8, J = 15;
1nt *p = &1;

1nt *q;

1nt *xr = §J;

*I = *D;
q = p;
(*q)++;

printf(“%d %d %d %d %d\n”, 1, j, *p, *q, *I);



Pointer and Arrays

From the programmer’s point of view, C does not distinguish between
an array and its first element!

int a[10];
*a = 15;
printf(“%d\n”, al0]);



POinter Ar Not a real

operator

« Assume type *p, *gand int of
- p + offset points to address addr(p) + offset * sizeof(type)
- offset points to address addr(p) - offset * sizeof(type)
< qifaddr(p) < addr(q)

== q,p '= ¢
L L IC) LA  Nis is x(p++), not (xp)++.

° ° ° °
O T T 1O

1nt a[] - {17 2; 3; 47 57 67 77 87 97 16};

1nt xstart, xend, *p, sum;

start = a + 3;

end = a + 7;

for (sum = 0, p = start; p < end; sum += *p++);
printf(“%d\n"”, sum);



Pointer Arithmetic or Array Indexing?

int al] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

1nt xstart, xend, *p, sum;

start = a + 3;

end = a + 7;

for (sum = 0, p = start; p < end; sum += *p++);
printf(“%d\n"”, sum);

1nt a[] - {17 2; 37 47 57 6r 77 87 97 1@};

1nt start, end, p, sum;

start = 3;

end = 7;

for (sum = 0, p = start; p < end; sum += a[p+1]);

printf(“%d\n”, sum);

Which one Is faster?



Pointer Arithmetic or Array Indexing?

Traditionally, pointer arithmetic was faster than array indexing:

* Array indexing:

+ Access two variables: array and index
* Pointer arithmetic:

* Access only pointer

Modern compilers (with —03 optimization option) translate array
Indexing Into pointer arithmetic — no difference In efficiency.



A 2D Arrays Using Pointers

Memory Is linear. How do we store 2D arrays?

#define WIDTH 20
#define HEIGHT 10



A 2D Arrays Using Pointers

Memory Is linear. How do we store 2D arrays?

#define WIDTH 20
#define HEIGHT 10

int a[WIDTH * HEIGHT];



A 2D Arrays Using Pointers

Memory Is linear. How do we store 2D arrays?

#define WIDTH 20
#define HEIGHT 10

int a[WIDTH * HEIGHT];

// Access element 1n row 1 and column j
aLWIDTH = 1 + j] =

This will become important once we allocate dynamic arrays on the
heap.



