
CSCI 2132: Software Development

Pointers

Norbert Zeh

Faculty of Computer Science
Dalhousie University

Winter 2019

Pointers

Pointer = memory address 
 (e.g., of another variable)

• Hardware indexes memory addresses linearly.

• Addresses on modern processors more complicated

0 0xffffffffffffffff

Pointer Variables

Pointer variable = variable that can store a pointer

Declaration:
type_to_be_referenced * variable_name;

Examples:

• int *p;

• int* q;

• char "**argv;

• Careful: int* a, b;

Retrieving Addresses and Dereferencing

Address operator &:

• Takes the address of a variable

Indirection operator or dereference operator *:

• Accesses the memory location referenced
by a pointer

int i, *p;
p = &i;

int i, *p;
p = &i;
printf(“%d\n”, *p);

i

p

Common Pitfalls with Pointers

int i = 1, *p;
p = &i;
p = 5;

int *p;
*p = 5;

int *f() { 
 int i = 4;
 return &i;
}

int *p;
p = f();
"++(*p);

• Forgetting to dereference the
pointer

• Dangling pointer

• Dereference pointer after object
no longer exists on stack or
heap

• Dereferencing an un-initialized
pointer

Pointers in Java?
Java’s variable model:

• Primitive types (int, char, ...) stored variables (value model).

• Objects (anything allocated with new) stored on heap, variable
stores reference (pointer) to object (reference model).

• Pointers cannot be manipulated explicitly.

• Assignment in reference model makes two variables point to the
same object (careful!).

int x = 5;
int y = x;

Integer x = new Integer(5);
Integer y = x;

5 5
x y

5

x y

Pointer Assignment

• Pointers can be passed around and stored in variables just as any
other type.

• Only pointers of matching type can be assigned to pointer variables.

int i = 8, j = 15;
int *p = &i;
int *q;
int *r = &j;

*r = *p;
q = p;
(*q)"++;

printf(“%d %d %d %d %d\n”, i, j, *p, *q, *r);

Pointer and Arrays

From the programmer’s point of view, C does not distinguish between
an array and its first element!

int a[10];
*a = 15;
printf(“%d\n”, a[0]);

Pointer Arithmetic
• Assume type *p, *q and int offset

• p + offset points to address addr(p) + offset * sizeof(type)

• p - offset points to address addr(p) - offset * sizeof(type)

• p < q if addr(p) < addr(q)

• p == q, p != q

• q - p = (addr(q) - addr(p)) / sizeof(type)

Not a real
operator

int a[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
int *start, *end, *p, sum;
start = a + 3;
end = a + 7;
for (sum = 0, p = start; p < end; sum += *p"++);
printf(“%d\n”, sum);

This is *(p"++), not (*p)"++.

Pointer Arithmetic or Array Indexing?

Which one is faster?

int a[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
int start, end, p, sum;
start = 3;
end = 7;
for (sum = 0, p = start; p < end; sum += a[p"++]);
printf(“%d\n”, sum);

int a[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
int *start, *end, *p, sum;
start = a + 3;
end = a + 7;
for (sum = 0, p = start; p < end; sum += *p"++);
printf(“%d\n”, sum);

Pointer Arithmetic or Array Indexing?

Traditionally, pointer arithmetic was faster than array indexing:

• Array indexing:

• Access two variables: array and index

• Pointer arithmetic:

• Access only pointer

Modern compilers (with -O3 optimization option) translate array
indexing into pointer arithmetic ⟶ no difference in efficiency.

A 2D Arrays Using Pointers
Memory is linear. How do we store 2D arrays?

#define WIDTH 20
#define HEIGHT 10

int a[WIDTH * HEIGHT];

"// Access element in row i and column j
a[WIDTH * i + j] = ""...

A 2D Arrays Using Pointers
Memory is linear. How do we store 2D arrays?

#define WIDTH 20
#define HEIGHT 10

int a[WIDTH * HEIGHT];

"// Access element in row i and column j
a[WIDTH * i + j] = ""...

A 2D Arrays Using Pointers
Memory is linear. How do we store 2D arrays?

#define WIDTH 20
#define HEIGHT 10

int a[WIDTH * HEIGHT];

"// Access element in row i and column j
a[WIDTH * i + j] = ""...

This will become important once we allocate dynamic arrays on the
heap.

