
CSCI 2132: Software Development

Introduction

Norbert Zeh

Faculty of Computer Science
Dalhousie University

Winter 2019

This Course in a Nutshell

This course will be your first step towards becoming a better software
developer.

Unix C programming Software
development

• Shells

• Command-line tools
• Procedural

• Low-level

• Close to hardware

• Testing

• Debugging

• Source code
management

• Software development
methodologies

Programming in the Large
(Learning Objective 1)

Challenges:

• Software systems composed of multiple modules (parts)

• Modules often written by different users

Techniques:

• Software development process/methodologies

• Software testing and debugging

• Source code management

Low-Level Programming
(Learning Objective 2)

Understand how computer systems work “under the hood”:

• High-level programming:

• High level of abstraction

• Close to user (programmer)

• Low-level programming:

• Close to hardware

This supports learning objective 1:

• Would you like someone to design a car  
without knowing how cars work?

• Provide examples of abstractions

• Understand the runtime cost of abstractions

Why Unix?

• First popular multi-user OS that set a standard

• Stable

• Powerful command-line interface (CLI): 
Command line = GUI + IDE for power users

• Many utilities, well known, standard tools

• Philosophy of elegant and modular solutions

• Widely used on servers, desktops, and mobile devices 
(UNIX, BSD, Linux, macOS, Android, …)

Open Unix-Style Model

• Does not hide operating system operations

• Provides all low-level abstractions used in modern operating
systems:

• Text-based interface

• Files

• Processes

• Pipes

• Virtual memory (process isolation)

Why C?

• Widely used:

• Systems written in C: UNIX, Linux, …

• Languages influenced by C: C++, PHP, Java, C#, Rust, …

• Low-level programming language:

• Close to machine, gives programmer fine-grained control

• No garbage collection, no virtual machine, compiled

• 0-overhead principle

• Forces programmer to think about low-level issues

• “Lingua franca” of programming world:

• Interface between different programming languages  
often uses C-style calling conventions

Instructor

Name: Norbert Zeh

Email: nzeh@cs.dal.ca

Office: MC 4246

Office hours: MWF 12:00–14:00

TAs: TBD

Lectures and Labs

Lectures

MWF 3:30–4:30 McCain Auditorium 1

Labs

M 8:30–10:00 Mona Campbell 1201 B01

M 8:30–10:00 Goldberg 143 B02

M 10:00–11:30 Mona Campbell 1201 B03

M10:00–11:30 Goldberg 143 B04

Important Dates
Monday, Jan 7 Lectures start

Friday, Feb 1 Munro Day (university closed)

Monday, Feb 18 NS Heritage Day (university closed)

Feb 18–22 Study Break (no classes)
Monday, Apr 8 Last lecture

The “fun” stuff

Monday, Feb 4, 6:30–8:30 (PM) Midterm 1

Monday, Mar 4, 6:30–8:30 (PM) Midterm 2

TBD Apr 10–26 Final

Lectures

• Slides available online

• Longer examples (programs)

• Code will be available electronically: 
(few comments, blank parts)

• Blanks will be filled in in class, take notes

• Fill in the blanks after class, run on bluenose, study the code

Exams

• Photo ID required

• Closed book

• Cheat sheet: One single sheet, front and back, is allowed

• No calculators

• No cell phone

• No notes

• No dictionaries

• No other aids (electronic or paper)

Evaluation

Assignments (30%)

• 7–10 assignments, best n–1 count

• Late assignments not accepted

• Submit electronically

Midterms (20%)

• 2 midterms, 10% each

• In the evening

Final exam (50%)

• Scheduled by university

• Covers all material covered in the course

Evaluation of Programming Assignments

Criteria:

• Correctness

• Design

• Documentation

Correctness:

• Will be evaluated using automatic testing

• Similar to client evaluation of software product

• Program must compile and pass at least the test cases given in
the assignment

What to do When Your Program is Incorrect?

Do:

• Debug!

• Try to make your program work for simple cases if you run out of
time.

• You will learn a lot from debugging.

• You will spend much of your time as a programmer testing and
debugging.

Do not:

• Keep writing your program without testing.

• You will learn little by simply writing code without testing it.

Lab Work

• Labs are mandatory,

• Cover material more suitable to be explored in a lab than in lectures,

• Help you get ready for assignments,

• Will likely cover some material not covered in lectures or
assignments.

Programming Environment: Labs

In the lab:

• ssh from Mac/Windows (use PuTTY on Windows)

• Server: bluenose.cs.dal.ca

At home:

• ssh from Mac/Windows/Linux

• Work directly on a Linux PC

• Run Linux in a VirtualBox

Note: All evaluation will happen on bluenose

• Make sure your code compiles and runs correctly on bluenose

Academic Integrity Policy

https://www.dal.ca/dept/university_secretariat/academic-integrity.html

• Suspected cases of plagiarism referred to Academic Integrity Officer

• Serious consequences if found guilty

• Plagiarism = “presentation of work of another author as your own”

• Fully reference sources in your assignments and reports

• You can look at other code, but do not

• Cut and paste

• Copy verbatim (or with only cosmetic changes)

• You can discuss assignments, do not exchange notes

Dalhousie Culture of Respect

• We believe that inclusiveness is fundamental to education and learning.

• Every person has the right to be respected and safe.

• Misogyny and disrespectful behaviour on campus, in the wider community or
on social media is not acceptable.

• We stand for equality and hold ourselves to a higher standard.

• Take an active role:

• Be ready: Don’t remain silent.

• Identify the behaviour, avoid labelling, name-calling or blame

• Appeal to principles, particularly with friends and co-workers

• Set limits

• Find an ally and be an ally, lead by example

• Be vigilant

Textbooks

Required:

• K.N. King. C Programming: A Modern Approach. W.W. Norton &
Company, 2008.

• G. Glass and K. Ables. UNIX for Programmers and Users. Prentice
Hall, 2003.

Recommended:

• E. Nemeth, G. Snyder, T.R. Hein, and B. Whaley. UNIX and Linux
System Administration Handook. 4th ed. Pearson Education,
2010.

• B.W. Kerninghan and D.M. Ritchie. The C Programming Language.
2nd ed. Prentice Hall Software Series, 1988.

