CSCI 2132: Software Development | NorbertZeh

Faculty of Computer Science
Dalhousie University

Introduction

This Course In a Nutshell

This course will be your first step towards becoming a better software
developer.

C programming q SOftware
evelopment
- Shells - Procedural - Testing
- Command-line tools - Low-level - Debugging
- Close to hardware - Source code
management

- Software development
methodologies

Programming in the Large
(Learning Objective 1)

Challenges:

- Software systems composed of multiple modules (parts)

- Modules often written by different users

Techniques:

- Software development process/methodologies
+ Software testing and debugging

» Source code management

Low-Level Programming
(Learning Objective 2)

Understand how computer systems work “under the hood”:

 High-level programming:

« High level of abstraction

- Close to user (programmer)
« Low-level programming:

* Close to hardware

This supports learning objective 1:

- Would you like someone to design a car
without knowing how cars work?

- Provide examples of abstractions

« Understand the runtime cost of abstractions

Why Unix?

First popular multi-user OS that set a standard
Stable

Powerful command-line interface (CLI):
Command line = GUI + IDE for power users

Many utilities, well known, standard tools
Philosophy of elegant and modular solutions

Widely used on servers, desktops, and mobile devices
(UNIX, BSD, Linux, macQOS, Android, ...)

Open Unix-Style Model

- Does not hide operating system operations

* Provides all low-level abstractions used in modern operating

systems:

+ Text-based interface
* Files

* Processes

* Pipes

- Virtual memory (process isolation)

Why C?

e Widely used:
« Systems written in C: UNIX, Linux, ...
- Languages influenced by C: C++, PHP, Java, C#, Rust, ...

e Low-level programming language:
« Close to machine, gives programmer fine-grained control
- No garbage collection, no virtual machine, compiled
- 0-overhead principle

« Forces programmer to think about low-level i1ssues

e “Lingua franca” of programming world:

- Interface between different programming languages
often uses C-style calling conventions

Instructor

Name: Norbert Zeh
Email: nzeh@cs.dal.ca
Office: MC 4246

Office hours: MWF 12:00-14:00

TAS: TBD

Lectures and Labs

Lectures

MWF 3:30-4:30 McCain Auditorium 1

Labs

M 8:30-10:00 Mona Campbell 1201 BO1
M 8:30-10:00 Goldberg 143 BO2
M 10:00-11:30 Mona Campbell 1201 BO3

M10:00-11:30 Goldberg 143 BO4

Important Dates

Monday, Jan 7 Lectures start

Friday, Feb 1 Munro Day (university closed)
Monday, Feb 18 NS Heritage Day (university closed)
Feb 18-22 Study Break (no classes)

Monday, Apr 8 Last lecture

The “fun” stuff

Monday, Feb 4, 6:30-8:30 (PM) Midterm 1
Monday, Mar 4, 6:30-8:30 (PM) Midterm 2
TBD Apr 10-26 Final

Lectures

« Slides available online

» Longer examples (programs)

» Code will be available electronically:
(few comments, blank parts)

- Blanks will be filled in in class, take notes

- Fill in the blanks after class, run on bluenose, study the code

EXams

noto ID required

losed book

neat sheet: One single sheet, front and back, is allowed

o cell phone
0 notes

P
C
C
No calculators
\
\
No dictionaries
\

o other aids (electronic or paper)

Fvaluation

Assignments (30%)

- 7-10 assignments, best n-1 count
- Late assignments not accepted

« Submit electronically

Midterms (20%)

« 2 midterms, 10% each

* In the evening

Final exam (50%)

- Scheduled by university

« Covers all material covered in the course

Evaluation of Programming Assignments

Criteria:

 Correctness
* Design

 Documentation

Correctness:

« Will be evaluated using automatic testing
- Similar to client evaluation of software product

* Program must compile and pass at least the test cases given In
the assignment

What to do When Your Program Is Incorrect?

Do:

* Debug!

* Try to make your program work for simple cases If you run out of
time.

* You will learn a lot from debugging.

* You will spend much of your time as a programmer testing and
debugging.
Do not:

« Keep writing your program without testing.

* You will learn little by simply writing code without testing It.

Lab Work

Labs are mandatory,
Cover material more suitable to be explored in a lab than in lectures,

Help you get ready for assignments,

Will likely cover some material not covered in lectures or
assignments.

Programming Environment: Labs

In the lab:

« ssh from Mac/Windows (use PuTTY on Windows)

« Server:bluenose.cs.dal.ca

At home;

- ssh from Mac/Windows/Linux
- Work directly on a Linux PC

« Run Linux in a VirtualBox

Note: All evaluation will happen on bluenose

- Make sure your code compiles and runs correctly on bluenose

Academic Integrity Policy

https:/ /www.dal.ca/dept/university_secretariat/academic-integrity.html

Suspected cases of plagiarism referred to Academic Integrity Officer

« Serious consequences If found guilty

Plagiarism = “presentation of work of another author as your own”

Fully reference sources In your assignments and reports

You can look at other code, but do not
« Cut and paste

» Copy verbatim (or with only cosmetic changes)

You can discuss assignments, do not exchange notes

Dalhousie Culture of Respect

* We believe that inclusiveness is fundamental to education and learning.
* Every person has the right to be respected and safe.

* Misogyny and disrespectful behaviour on campus, in the wider community or
on social media is not acceptable.

* We stand for equality and hold ourselves to a higher standard.

- Take an active role:

- Be ready: Don't remain silent.

- |dentify the behaviour, avoid labelling, name-calling or blame
- Appeal to principles, particularly with friends and co-workers
« Set lImits

- Find an ally and be an ally, lead by example

- Be vigilant

Textbooks

Required:

* K.N. King. C Programming: A Modern Approach. W.W. Norton &
Company, 2008.

* (. Glass and K. Ables. UNIX for Programmers and Users. Prentice
Hall, 2003.

Recommended:

- E. Nemeth, G. Snyder, T.R. Hein, and B. Whaley. UNIX and Linux
System Administration HandooR. 4th ed. Pearson Education,
2010.

- B.W. Kerninghan and D.M. Ritchie. The C Programming Language.
2nd ed. Prentice Hall Software Series, 1988.

