
CSCI 2132: Software Development

Files and Directories

Norbert Zeh

Faculty of Computer Science
Dalhousie University

Winter 2019

Files and Directories

Much of the operation of Unix and programs running on Unix can be
described as processes manipulating files.

File = stream of bytes

Examples:

• Data stored on disk, CD, Amazon S3, …

• stdin, stdout, stderr

• Some interfaces to control the Unix kernel are also files

In Unix, a file is an abstraction for a data source or data sink.

Every file must support a certain interface.

7 Types of Files

• Regular files (–)

• Directories (d)

• Buffered special files (block devices) (b)

• Unbuffered special files (character devices) (c)

• Symbolic links (l)

• Pipes (named pipes) (p)

• Sockets (s)

ls -l reveals the file type:

drwxr-xr-x 14 nzeh staff 448 3 Dec 09:23 Applications  
-rw-r#--r#-- 1 nzeh staff 695 31 Jul 2017 required-info.txt

Navigating the Directory Structure
/

bin etc tmp var usr users

bin lib local faculty visitor

nzeh

CSCI2132

Lab1

HelloWorld.java HelloWorld.class

The Directory Structure

• A root directory (/)

• If directory A directly contains directory B, then

• A is B’s parent directory,

• B is a subdirectory of A.

• Every directory has two special directory entries:

• . = the directory itself

• #.. = the parent directory

/

bin etc tmp var usr users

bin lib local faculty visitor

nzeh

CSCI2132

Lab1

HelloWorld.java HelloWorld.class

Pathnames (Paths)

• Each file has a name.

• Two files in different directories can have the same name.

• Files are fully identified by their pathnames (paths).

• A pathname is a sequence of directories, followed by a file name.

• Pathname components are separated by /.

Examples:
• /users/faculty/nzeh/CSCI2132/Lab1/HelloWorld.java
• /users/faculty/nzeh/CSCI2132

/

bin etc tmp var usr users

bin lib local faculty visitor

nzeh

CSCI2132

Lab1

HelloWorld.java HelloWorld.class

Absolute and Relative Paths

• An absolute path starts with a /.

• File is found by traversing the directory tree 
from the root.

• Example:  
/users/faculty/nzeh/CSCI2132/Lab1/HelloWorld.java

• A relative path does not start with a /.

• File is found by traversing the directory tree from the current directory.

• Examples (current directory is /users/faculty/nzeh):
• CSCI2132
• CSCI2132/Lab1/HelloWorld.java
• #../#../visitor
• ./CSCI 2132/Lab1

/

bin etc tmp var usr users

bin lib local faculty visitor

nzeh

CSCI2132

Lab1

HelloWorld.java HelloWorld.class

$ basename /home/ed/file.txt
file.txt
$ basename /home/ed/file.txt .txt
file
$ dirname /home/ed/file.txt
/home/ed

Components of a Pathname

Pathname = dirname + basename

Examples:

Useful Commands to 
Explore/Manipulate Directories

ls paths List directory contents

pwd Print current working directory

cd path Change directory

mkdir dirs Make directory(ies)

mkdir -p paths Make directory(ies) and all ancestor directories

rmdir dirs Remove empty directory(ies)

mv path1 path2 Move or rename file or directory

mv -i path1 path2 — “ — (prompt before overwrite)

rm paths Remove file(s) (directories with -r)
tree paths Visualize directory contents  

(not a standard command)

Consider the following commands:

What is the absolute current working directory?
What directory is #..?
Do the following directories exist and what are their absolute paths?
#.. #../#../b #../#../#../c

$ pwd
/home/ed
$ mkdir tmp
$ cd tmp
$ mkdir a b c
$ mkdir -p a/a1 a/a2/a21 a/a2/a22
$ cd a/a2/a22

A Small Exercise

File Manipulation

cat files show content of text file(s)

more files
less files

— “ —, paged

head files show the first few lines of a file

tail files show the last few lines of a file

vi, emacs, pico, nano various text editors

wc files word count(s) of the file(s) 
(learn about -c, -w, -l options)

File Permissions

Who is allowed to do what with a given file depends on the file’s owner
and permissions.

Users, Usernames, User IDs

Files and processes are owned by users.

Used to protect users working on the same system from each other.

User:

• Unique username, try whoami.

• Unique user ID (numeric ID corresponding to the username), 
try id -u.

Groups

A user is a member of at least one group:

• Groupname and group ID analogous to username and user ID.

List groups a user is a member of using groups or id -G.

Effective User and Group IDs

• Every process has an effective user ID and an effective group ID.

• Every file has a file owner and a file group.

• What a process can do with a file is determined by the file
permissions and whether the effective user ID matches or effective
group ID matches the file owner or file group.

File Permissions

• A file can be allowed to be

• Read (r)

• Written (w)

• Executed (x)

• File: Run the file as a program

• Directory: Change to the directory 

• These permissions are set at three levels:

• User (u)

• Group (g)

• Others (o)

File Permissions, Users, Groups
• Three sets of permissions (user, group, other)

• Which one determines what a process can do with a file?

• If effective user ID = file owner: apply user permissions

• If effective user ID ≠ file owner but effective group ID = file group:  
apply group permissions

• If effective user ID ≠ file owner and effective group ID ≠ file group: 
apply other permissions

• File permissions written in octal:

Common permissions:

• u=rwx,g=rx,o=rx (755) (programs executable by everybody, modifiable
by owner; directories accessible by everyone, modifiable by owner)

• u=rw,g=r,o=r (644) (data files readable by everybody, writable by owner)

r w x r w x r w x

u g o

Examples:

Other useful options:

• -a: List all files, also hidden ones (starting with .)

• -t: Order by time instead of name

• -r: Reverse sorting order

• Example: ls -lt = list files most recent file first

Checking Permissions
Command: ls -l

$ echo test > tmpfile.txt
$ ls -l tmpfile.txt
-rw-r#--r#-- nzeh csfac 5 Jan 8 03:01 tmpfile.txt

Changing Permissions

Examples:
chmod 664 file.txt User/group: read/write  
 Other: read
chmod go-r file.txt Group/others: Remove read permission
chmod u+x,og+r file.txt User: add execute permission 
 Group/others: add read permission
chmod u=rw,og= file.txt User: Set permissions to read/write  
 Group/others: Disallow all access
chmod a+r file.txt All: Add read permission
chmod -R u+r+w+X dir1 User: Add read/write permission  
 Add execute permission if dir  
 recursively for all files in dir1

Command: chmod mode files

Changing Owner and Group of a File

Examples:

chown newuser file.txt  
Change owner of file.txt to newuser

chown -R newuser files dirs  
Change owner of files and dirs to newuser, recursively for dirs

chgrp newgroup file.txt  
Change group of file.txt to newgroup

chgrp -R newgroup files dirs  
Change group of files and dirs to newgroup, recursively for dirs

Commands: chown user files  
 chgrp group files

Effective UserID and GroupID

Recall: Permissions of a process are determined based on matching
effective UserID and GroupID to files’ owners and groups.

How are the effective UserID and GroupID determined?

Changing Effective User and Group in the Shell

• newgrp newgroup logs in with a new effective group  
(user must be part of group newgroup for this to work)

• su user

• Change effective user to user

• For this to work, current user must be root 
(Do not try this on bluenose, sysadmins won’t be happy.)

setuid and setgid bits

• Executable files can have two additional permission bits:

• setuid (4000 oct): No matter who runs this program, the process
will have effective user ID equal to the owner of the program.

• setgid (2000 oct): No matter who runs this program, the process
will have effective group ID equal to the group of the program.

• Another special bit:

• sticky (1000 oct): Controls deletion of files in a shared directory 
(man sticky)

Further Reading

• UNIX book, chapters 1 and 2

• Read tutorials on vi and emacs in the UNIX book

Input/Output Redirection

• Default on Unix:

• stdin = terminal (keyboard input)

• stdout, stderr = terminal (screen output)

• Output redirection changes this

Output Redirection to Files

• command > file redirects the output of command to file.

• stderr still goes to the terminal.

• file is created if it does not exist.

• If file exists, previous content is replaced 
(operation fails if noclobber is set).

• command #>> file redirects the output of command to file.

• stderr still goes to the terminal.

• output is appended to file (old content is not replaced).

Input Redirection from Files

command < file reads input from file. 
(E.g., useful for testing)

Examples:

• sort < names.txt reads lines of names.txt and prints them
to stdout in sorted order.

• sort < names.txt > sorted.txt reads lines of names.txt
and writes them to sorted.txt in sorted order.

• mail csid < HelloWorld.java sends the file
HelloWorld.java to user csid.

Error Redirection

• stderr can be redirected similarly to stdout: 
command 2> filename

• stdout still goes to terminal

• Note: “2>”, not “2␣>”

• An append version also exists: 2#>>

Redirection and File Descriptors

• 2> may look cryptic at first, but

• Every file has a file descriptor:

• 0 = stdin

• 1 = stdout

• 2 = stderr

• Could have written command 1> file instead of  
command > file.

• command 0< file instead of command < file.

Redirecting stdout and stderr to the Same File

• command > file sends stdout to file but stderr to the terminal.

• command 2> file sends stderr to file but stdout to the terminal.

• Can we send both to file to capture what would have been printed on
screen?

• command > file 2>&1 sends both stdout and stderr to file.

• The order of the redirections matters!

• > file redirects stdout to file.

• 2>&1 redirects stderr to stdout, which is already going to file.

• command 2>&1 > file would

• Redirect stderr to stdout (terminal) and then

• Redirect stdout (but not stderr) to file.

Pipes

Pipes come in two flavours:

• “Ad hoc” pipes created by joining commands using |

• Named pipes on the file system

Ad Hoc Pipes

• command1 | command2 starts two processes running  
command1 and command2:

• stdout of command1 goes to stdin of command2.

• The terminal input goes to stdin of command1.

• The stdout output of command2 is written to the terminal.

• stderr of both command1 and command2 are written to the terminal.

Example: Count the number of files in a directory

• Can chain multiple commands: cmd1 | cmd2 | cmd3 | ##...

ls | wc -l

Named Pipes

• Named pipes are special files:

• One process opens the file and writes to the pipe.

• Another process opens the file and reads from the pipe.

• The reading process reads exactly what’s written by the writing
process.

• Create a named pipe using mkfifo pipename  
(FIFO = first in-first out)

Building a Long Pipeline

• Break the problem into simple problems that can be accomplished
using individual commands:

• Sort the lines (sort)

• Manipulate the contents of individual lines (cut, sed, awk)

• Drop lines (uniq, sed)

• ...

• Add one stage at a time and test the output

The file /etc/passwd is in the following format:

• Fields separated by colon

• 7th field is the user’s shell

Problem: Count the number of distinct shells used by all users of the
system (3 above).

Problem Example

root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:/sbin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin
adm:x:3:4:adm:/var/adm:/sbin/nologin
user1:x:1000:1000:John Doe:/home/user1:/bin/tcsh

Solution

cut -d’:’ -f 7 /etc/passwd | sort | uniq | wc -l

cut -d’:’ -f 7 < /etc/passwd | sort | uniq | wc -l

or

home: bin:

010011101… 010011101…

sort: who: nzeh: mhe: vlado:

…

010011101…

file.txt:

010011101…

file.txt:

Inodes and Links
The way we have thought about the organization of the directory
hierarchy so far:

home: bin:

010011101… 010011101…

sort: who: nzeh: mhe: vlado:

010011101…file.txt:

010011101…

file.txt:

Inodes

Inodes and Links

home: bin:

010011101… 010011101…

sort: who: nzeh: mhe: vlado:

010011101…file.txt:

010011101…

file.txt:

Inodes

Inodes and Links

Inodes

• Each file has a unique inode number

• One inode table per file system.

• Inode structure stores:

• File type

• File permissions

• Owner and group IDs

• Last modification and access time

• Size of the stored object

• Location of the data on disk

Creating Multiple Hard Links to a File

Advantage of separating directories and inodes: 
A file can exist in multiples directories.

• Create additional hard link to the same file: ln source target

• source and target now refer to the same inode and are
indistinguishable.

• rm source or rm target only removes link to the inode.

• File is removed only once there is no longer any reference its inode.

Restrictions:

• source and target must exist on the same file system.

• Only one hard link to any directory.

Inspecting Inode Information

• ls -i displays inode information

• The following example demonstrates that ln file1 file2 makes
both file1 and file2 refer to the exact same file:

$ cat “Hello world!” > file1.txt
$ ln file1.txt file2.txt
$ cat “Hallo, Welt!” #>> file1.txt
$ cat file2.txt
Hello world!
Hallo, Welt!
$ ls -li
8635840546 -rw------- 2 nzeh staff 9 25 Dec 16:02 file1.txt
8635840546 -rw------- 2 nzeh staff 9 25 Dec 16:02 file2.txt

Soft Links

Soft links act as shortcuts:

Inode

Inode

file1

file2

file3 /a/b/c/file1soft link

hard link

target
010011101…

Soft Links vs Hard Links

Advantages of soft links:

• Can cross file system boundaries

• Can point to directories

• Can point to another user’s file/directory

Disadvantages of soft links:

• The link is not indistinguishable from the file it references.

• Less efficient in terms of time and space

• Backup and other processes need to deal with soft links carefully.

• cp does not copy the link but makes a copy of the referenced file.

