
CSCI 2132: Software Development 

C vs Java

Norbert Zeh 

Faculty of Computer Science 
Dalhousie University 

Winter 2019



Comparing C to Java

Assumption: You know Java well. 

Focus on differences between C and Java.



Arithmetic Operators

Most operators are the same: +, -, *, /, %, !++, !--, =, +=, ... 

Some differences: 

• % cannot be applied to floating point numbers. 

• Integer division (/) has implementation-defined behaviour for 
negative numbers in earlier C standards. 

• C99 defines that integer division rounds towards 0. 

Concept: Implementation-defined behaviour



Expression Evaluation

Order of evaluation: 

• Java: left-to-right 

• C: Unspecificed 

Example: 

Result: 

• Java: 6 

• C: 6

a = 5; 
c = (b = a + 2) - (a = 1);



Logical Expressions

Operators as in Java: 

• Comparison: <, >, <=, >=, ==, != 

• Logical operators: !, &&, || 

• Logical operators short-circuited in both languages 

Representation of Boolean values: 

• Java: boolean 

• C: int (C99 has a bool type but int is still in use, bool not 
mandatory) 

• int as Boolean: 0 = false, anything else = true



int as Boolean

Allows convenient compact notation: 

But beware: 

An extremely common mistake the compiler won’t catch:

int f = 1, i = n; 
while (!--i) f *= i + 1;

if (a < i < b) { !!... }

if (x = a + b) { !!... }



Short-Circuit Evaluation

Applies to && and ||, as in Java 

Example:

if (a != 0 && b/a > 2) { ... }



Control Structures

• if, switch, while, do-while, and for work as in Java 

• break works as in Java but does not accept a label 

• To continue to the next iteration of a loop: continue 

• Return from a function: return 

Only in C: 

• goto label: jump to label (within the same function) 

• label: define a label 

• Exit the program: 

• exit() function defined in stdlib.h 

• return from main function



Variable Declaration in for-Loop

Java allows 

• Not allowed in C before C99 

• Allowed in C99

for (int i = 0; i < 10; i!++) !!...



The Comma Operator

• Expressions can be sequenced with , 

• Value of the whole expression is the value of the last subexpression 

• Useful in for-loops:

x = (a = 3, b = 4, c = 5);

for (i = 0, j = 0; i < 10; ++i) 
  if (a[i] != 0) b[j++] = a[i];



goto Statement

#include <stdio.h> 

int main() { 
  int i = 1; 

  loop: printf(“%d\n”, i); 

  ++i; 
  if (i <= 10) goto loop; 

  return 0; 
}



Some Notes about goto

goto mirrors how your CPU implements loops and conditionals. 

Basic and FORTRAN were not as structured as C and used goto as their 
main looping and branching construct. 

Use of goto is discouraged in structured programming: 

• Most control flows can be implemented without goto. 

• Excessive use of goto leads to “spaghetti code”, hard to read.



Typical Uses of goto

• Machine-generated code 

• In place of labelled break:

while (...) { 
  for (...) { 
    ... 
    if (...) goto loop_done; 
    ... 
  } 
} 

loop_done: ...



Null Statement

• Does nothing 

• Simply put a semicolon (;) 

• Often used in for-loops:

for (d = 2; d < n && n % d != 0; ++d); 
if (d < n) 
  printf(“%d is not a prime number\n”, n);


