
CSCI 2132: Software Development

Formatted I/O in C

Norbert Zeh

Faculty of Computer Science
Dalhousie University

Winter 2019

Overview

Formatted output: printf

Formatted input: scanf

To use: #include <stdio.h>

Overview

Formatted output: printf

Formatted input: scanf

To use: #include <stdio.h>

General format:

• format_string contains one conversion specification (%!!...) per
expression

printf(format_string, expr1, expr2, !!...)

Overview

Formatted output: printf

Formatted input: scanf

To use: #include <stdio.h>

General format:

• format_string contains one conversion specification (%!!...) per
expression

Example:

printf(format_string, expr1, expr2, !!...)

printf(“x = %d\n”, x);

How printf Works

• printf reads the format string and prints it

• For each conversion specification it encounters, it interprets the next
expression as the specified type and prints it.

Warning:

• Mismatches between conversion specifier and parameter type
may go undetected.

• (Modern C compilers seem to catch them.)

printf Example

Output:

int i = 7;
double x = 2.71;
char c = ‘A’;
printf(“i = %d, x = %.2f, c = %c\n”, i, x, c);

i = 7, x = 2.71, c = A

Conversion Specifiers

Conversion specifiers start with %

In its basic form, each specifier states the type of expression it expects:

• %d: integer

• %u: unsigned integer

• %f: floating point number (float)

• %s: string

• %c: character

• !%%: literal “%”

Conversion Modifiers

Full format of conversion specifier:

%[flags][minw].[prec][lenm]spec

• spec: specifier (%d, %f, ...)

• lenm: length modifier (e.g., %lf double instead of %f float)

• prec: precision (number of digits after decimal point, %.2f)

• minw: minimum width (e.g., %10d)

• flags: (%+d mandatory sign, %0d pad with zeroes, ...)

More info: man 3 printf

Formatted Input: scanf

Format similar to printf:

• scanf reads the format string and stdin and matches them

• On each conversion specification, input is interpreted as given
type and stored in next memory address.

• If matching fails, scanf stops reading

Return value: number of converted values or EOF in some cases

More information: man 3 scanf

scanf(format_string, addr1, addr2, !!...)

scanf Example

Possible input:

Why do we need the &?

int i, j;
double x, y;
scanf(“%d%d%lf%lf”, &i, &j, &x, &y);

1 -20 .3 -4.0e3

scanf Example

Possible input:

Why do we need the &?

• C passes all arguments by value

• scanf needs addresses (memory locations) where to store read
values

• & is the “take address” operator

int i, j;
double x, y;
scanf(“%d%d%lf%lf”, &i, &j, &x, &y);

1 -20 .3 -4.0e3

scanf Matching Procedure

• White space is matched with white space or nothing.

• Characters other than conversion specifiers match themselves.

Conversion specifiers:

• %d, %u, %s, %c, %f, !%% (numeric conversion skips leading whitespace)

• %[0-9], %[^A-Z] similar to wildcards, matches arbitrary number of
occurrences of the given characters, store as string

• %n: no matching, store number of characters consumed so far

Modifiers:

• *: Parse the value but don’t store it

• l: float vs double, int vs long int

A scanf Example

int n, i, j;
double x, y;
n = scanf(“%d%d%lf%lf”, &i, &j, &x, &y);
printf(“n = %d\n”, n);
printf(“i = %d, j = %d\n”, i, j);
printf(“x = %.2lf, y = %.2lf\n”, x, y);

 1
-20 .3
 -4.0e3

n = 4
i = 1, j = -20
x = 0.30, y = -4000.00

1-20.3-4.0e3

n = 4
i = 1, j = -20
x = 0.30, y = -4000.00

scanf skips
whitespace

scanf reads as
far as it can

A scanf Example

int n, i, j;
double x, y;
n = scanf(“%d%d%lf%lf”, &i, &j, &x, &y);
printf(“n = %d\n”, n);
printf(“i = %d, j = %d\n”, i, j);
printf(“x = %.2lf, y = %.2lf\n”, x, y);

1 -20.3 -4.5 5.5

n = 4
i = 1, j = -20
x = 0.30, y = -4.50

1.1 -20 -4.5 .5

n = 1
i = 1, j = <junk>
x = <junk>, y = <junk>

scanf reads
as far as it can

errors
result in reading

fewer values

Some Finer Points about scanf
Are the following two scanf statements equivalent?

Yes and no:

• They both succeed on the same inputs and assign the same values
to i and x.

• The spaces between the values assigned to i and x are skipped by
• Matching the space between %d and %lf
• Skipping whitespace when matching %lf

int i; double x;
scanf(“%d %lf”, &i, &x);
scanf(“%d%lf”, &i, &x);

Some Finer Points about scanf
Are the following two scanf statements equivalent?

No:

• The first reads an integer, possibly skipping leading whitespace.

• The second consumes as many spaces after the read number as
possible.

• You need to enter a non-whitespace to make it finish.

int i;
scanf(“%d”, &i);
scanf(“%d ”, &i);

Some Finer Points about scanf
Are the following two scanf statements equivalent?

No:

• The first fails if there are spaces between the first number and
the comma.

• The second succeeds no matter how many whitespaces surround
the numbers.

double x, y;
scanf(“%lf,%lf”, &x, &y);
scanf(“%lf ,%lf”, &x, &y);

A Slightly Larger Example

Specification:

• Print “Enter expression: “.

• Accept input in the form “a/b + c/d” with arbitrary spacing
around the numbers.

• Output “e/f” where “e/f = a/b + c/d” (no need to simplify).

Solution

#include <stdio.h>

int main() {
 int a, b, c, d, e, f;

 printf(“Enter expression: “);
 scanf(“%d / %d + %d / %d”, &a, &b, &c, &d);

 f = b * d;
 e = a * d + c * b;

 printf(“%d/%d\n”, e, f);

 return 0;
}

