CSCI 2132: Software Development

Lab 8: Structs and Dynamic Memory Management

Synopsis

In this lab, you will:

* Learn about C structs.

* Learn to use malloc and free to manage heap-allocated memory.
* Learn a bit about efficient data structures.

* Take your first steps with compiling multi-file C projects.
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Overview

In this lab, you will use two features of C that we have not discussed in class yet: structs and dynamic
memory management. We will cover them shortly in class. The final product you produce in this course
is a balanced binary search tree, an efficient data structure you will hopefully learn more about in either
CSCI 2110 or CSCI 3110. In order to implement this data structure, you will make heavy use of pointers.

You will split your code into three source files: a header file declaring the necessary data types and
functions, a source file defining these types and functions, and an application that includes the header
file to make use of the tree data structure. Thus, you have two source files that need to be compiled
separately and then linked to obtain an executable program.

Note: This lab may seem very long. It is and it isn’t. There are 12 pages that simply show the final code
you constructed over the previous pages. The code itself is little over 200 lines, which is substantial but
should be well within the complexity you should be able to work with in second year. Still, you will
probably not be able to finish this lab in one sitting. I encourage you to finish it at home.



Step 0: An introduction to structs and dynamic memory management

structs

You can think of a struct as a Java class without methods and without access protection: it is nothing
but a collection of named data fields that can be accessed and manipulated freely. Here’s an example:

struct student {
char *first_name;
char xlast_name;
unsigned int banner_number;
float gpa;
e

As you can see, a struct is in a sense orthogonal to an array in its capabilities: an array allows you to
store a number of values that does not need to be known at compile time, but all values must be of the
same type. A struct can store only a fixed number of values, but they can have arbitrary types (which
must be specified at compile time).

To access the elements of a struct, you use dot-notation as in Java:

int main() {
struct student aplus_gal;
aplus_gal.first_name = "Jenna";
aplus_gal.last_name = "Best";
aplus_gal.banner_number = 1; // Represents B00000001
aplus_gal.gpa = 4.3;
print_student(aplus_gal);
return 0;

The invocation print_student(aplus_gal) is interesting because it passes aplus_gal by value; a copy
of the entire structure is passed to the function as an argument. This is different from Java where all
objects are passed by sharing (i.e., as a pointer) and can get costly quickly. You will soon switch to using
pointers to manipulate structs to avoid this cost. For now, here is the print_student function that
completes this example.

void print_student(struct student s) {

printf("First name: %s\n", s.first_name);
printf(”Last name: %s\n", s.last_name);
printf("”"Banner number: B%@8u\n", s.banner_number);
printf ("GPA: %.2f\n" | s.gpa);

One annoying feature of C structs you may have noticed is that, wherever you declare a variable or
function argument of a struct type, you need to write struct structname instead of just structname.



This gets tedious very quickly. Thus, a common C idiom is to define an anonymous struct, one that does
not have a name, and immediately give it a name using typedef:

typedef struct {
char *first_name;
char xlast_name;
unsigned int banner_number;
float gpa;
} student;

Now you can (and must) simply write student instead of struct student everywhere you used struct
student in the example above.

Next you will modify the program to use a pointer as the argument of the print_student function.
structs are types as any other. Therefore, you can create pointers to struct values and dereference
them to gain access to the referenced structs and their fields. The following example should hold
(almost) no mystery for you at this point:

typedef struct {
char *first_name;
char xlast_name;
unsigned int banner_number;
float gpa;
} student;

void print_student(const student *s) {

printf("First name: %s\n", (xs).first_name);
printf(”Last name: %s\n", (*s).last_name);
printf("”"Banner number: B%@8u\n", (*s).banner_number);
printf ("GPA: %.2f\n", (*s).gpa);

int main() {
student aplus_gal;
aplus_gal.first_name = "Jenna";
aplus_gal.last_name = "Best";
aplus_gal.banner_number = 1; // Represents B00000001
aplus_gal.gpa = 4.3;
print_student(&aplus_gal);
return 0;

Instead of passing aplus_gal to print_student, you now pass its address in the last line of the main
function. Consequently, the print_student function needs to dereference this pointer to get access to
the referenced struct. For example, it now refers to the first_name field as (*s).first_name instead
of s.first_name because s is no longer a value of type student but a pointer to a value of type student.

One detail that may not be completely self-explanatory is the use of const student = instead of
student * as the type of the argument of print_student. As discussed in class, this is a common idiom
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when passing a value as a pointer for efficiency reasons. It guarantees that the called function can read
the referenced data but not modify it.

The pattern of dereferencing a pointer and accessing a field of the referenced struct becomes tedious
fairly quickly but is very common. To avoid cluttering your code with excessive parentheses, reduce your
typing effort, and make your code more readable, C has an operator that merges pointer dereferencing
and field access into one: the “arrow operator” ->. Writing s->first_name has exactly the same effect
as writing (xs).first_name.

This leads to the final version of our little A+ student example and finishes this crash course on structs
in C:

aplus.c

#include <stdio.h>

typedef struct {
char *first_name;
char *last_name;
unsigned int banner_number;
float gpa;
} student;

void print_student(student *s) {

printf("First name: %s\n", s->first_name);
printf(”"Last name: %s\n", s->last_name);
printf("”"Banner number: B%@8u\n"”, s->banner_number);
printf ("GPA: %.2f\n", s->gpa);

int main() {
student aplus_gal;
aplus_gal.first_name = "Jenna";
aplus_gal.last_name = "Best";
aplus_gal.banner_number = 1; // Represents B00000001
aplus_gal.gpa = 4.3;
print_student(&aplus_gal);
return 0;

If you are confident that you fully understand the above code, move on to the next part of the lab; there
is plenty of work left to do. If you feel you need to try this code out to gain some confidence, then copy
the above code into a text file, compile it using gcc and check that it does what you expect it to do.



Dynamic memory management

We discussed in class that local variables of functions are stored in the function call’s stack frame and
cease to exist the moment the function call returns. Thus, a function cannot create any values that
should outlive the duration of the function call.

One alternative would be to store such values in static variables that are stored in the DATA segment of
your code and thus exist for as long as your program runs. This may be okay if you know the sizes, types,
and number of such variables that you need at compile time, but when the number of such variables
depends on the input you are processing, this is not a viable solution either.

This is where the heap comes to your rescue: it is a memory space where you can store values whose
lifetime is not limited to the duration of a single function call and whose number or size (in the case of
arrays) you cannot determine at compile time.

In Java, all objects allocated with new are stored on the heap; the variable to which this new object is
“assigned” stores only a reference (i.e., pointer) to the memory location on the heap where the object is
stored. Java’s garbage collector periodically searches the heap for objects that are no longer referenced
by any variable and then destroys those objects, that is, it marks the memory occupied by these objects
as unused (and thus available for future allocation requests) again.

C’s management of heap-allocated data differs from Java’s in three ways: First, it makes the fact that you
are storing a pointer to a value rather than a value explicit; every time you work with heap-allocated
data, pointers abound. Second, allocating a chunk of heap memory is not type-safe as in Java: You
simply tell the malloc function how many bytes of memory you need; malloc reserves a chunk of heap
memory of at least this size for you and returns a void pointer to it; you then need to assign this void
pointer to a pointer of the type you really want so you can work with the allocated memory." If you
allocate too little memory (the sizeof operator helps you avoid this mistake), you will eventually access
memory locations outside the allocated heap block and bad things will happen.

The third difference is the most jarring for users of modern programming languages: there is no garbage
collector (we discussed why). So, whether you still hold a pointer to a heap-allocated memory block or
not, C will make no effort to release this block back to the set of available memory locations on the heap.
It is your responsibility as a programmer to tell C when you are done using a given chunk of memory by
calling free with a pointer to the memory block as an argument.

You will explore this more in the context of building binary search trees in this lab. For now, modify your
A+ student example so the student is created on the heap by a function make_student. This function
returns a pointer to the student record. Your main function calls make_student to obtain a new student
record, then calls print_student to print it, and finally frees the allocated memory before exiting. Here
is the make_student function:

1C does not require you to cast the pointer type. It is reasonable to assume that this is because void pointers do not allow
you to do anything with the referenced data, so you simply must assign it to a typed pointer. Since this always involves a cast
to the pointer type on the left-hand side of the assignment, the cast happens implicitly.



student *make_student() {
student *aplus_gal = malloc(sizeof (student));
aplus_gal->first_name = "Jenna";
aplus_gal->last_name = "Best”;
aplus_gal->banner_number = 1;
aplus_gal->gpa = 4.3;
return aplus_gal;

Compared to the way you previously created the aplus_gal record, there are two differences: As just
said, you request a chunk of memory to hold the student record. You use malloc to do so and request
sizeof (student) bytes of memory. Second, since aplus_gal is now a pointer to student, not a value
of type student itself, all fields of the record need to be accessed using “~>” rather than “.”. Finally, you
return a pointer to the allocated memory block to the caller of make_student.

Next, modify your main function so it uses make_student to get a student record:

int main() {
student *aplus_gal = make_student();
print_student(aplus_gal);
free(aplus_gal);
return 0;

The most notable difference here is that you use make_student to create the student record to print. As
a result, aplus_gal’s type has changed from student to student *. After calling print_student on
this record—this function does not change from its earlier version because it already takes a pointer
as an argument—you make sure the memory occupied by the student record is released by calling
free(aplus_gal).

The complete code now looks like this:

aplus2.c (1/2)

#include <stdio.h>
#tinclude <stdlib.h>

typedef struct {
char *first_name;
char xlast_name;
unsigned int banner_number;
float gpa;
} student;



aplus2.c (2/2)

student *make_student() {
student *aplus_gal = malloc(sizeof(student));
aplus_gal->first_name = "Jenna";
aplus_gal->last_name = "Best";
aplus_gal->banner_number = 1;
aplus_gal->gpa = 4.3;
return aplus_gal;
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void print_student(const student xs) {
printf("First name: %s\n", s->first_name);
printf("Last name: %s\n", s->last_name);
printf(”"Banner number: B%@8u\n", s->banner_number);
printf ("GPA: %.2f\n", s->gpa);

int main() {
student *aplus_gal = make_student();
print_student(aplus_gal);
free(aplus_gal);
return 0;

If you paid attention, you may wonder why it is okay to assign "Jenna" and "Best” to the fields of
aplus_gal without allocating them on the heap. In a production use of the student structure, you
would store arbitrary strings as first_name and last_name and, yes, those values would also have to
be allocated on the heap because their lifetime must be at least as long as the lifetime of the record
that refers to them. Releasing the memory of a student record would then most likely involve not
only releasing the memory of the record itself but also the memory referenced by pointers stored in the
record. Here, you get away without doing this because "Jenna" and "Best" are string constants and are
therefore stored in the DATA segment of your code: they exist for as long as your program runs.

Another note: Whenever you use malloc to request a chunk of heap-allocated memory, you should
normally check its return value. This return value can be NULL (the equivalent of Java’s null) if there is
not enough heap memory available to satisfy the allocation request. If the return value is NULL, your
program should print an error message and terminate gracefully instead of trying to work with the NULL
pointer and, as a result, most likely crashing with a segmentation fault. You did not do this here in the
interest of simplicity.



Binary search trees: Efficient dictionaries

A common problem almost any non-trivial program has to solve is storing a collection of values that can
be updated and searched quickly. Such a data structure is called a dictionary. A dictionary is what is called
an abstract data type (ADT), which simply means that it is defined not by its concrete implementation
but by the set of operations it must support. In Java terminology, an abstract data type is an interface.

A basic dictionary should support six operations:

Create: Create a new dictionary.

Destroy: Destroy the dictionary, that is, release all heap memory it uses. (In a language like Java, the
garbage collector would take care of this. In C, you need to call a function to accomplish this.)

Insert(x): Insert an item x into the dictionary.

Delete(k): Delete an item with key k. (The dictionary organizes the records it stores by keys associated
with them. For a student record, for example, a reasonable key would the student’s banner number.
Which part of the record to use as the key is part of the definition of the dictionary.)

Find(k): Decide whether there exists an x with key k in the dictionary and, if so, return it.

List: Provide some means to iterate over all items in the dictionary.

There are many concrete dictionaries. Java has ArrayLists (essentially arrays), linked lists, hash tables,
and search trees. Each of these data structures supports all the basic dictionary operations and is thus a
dictionary, but the cost of these operations differ between concrete dictionary implementations.

For an array, insertions and deletions can take up to linear time no matter whether you keep the array
sorted or not. The advantage of sorting the array is that you can use binary search to search for any
element in the array in only O(lgn) time. If you do not sort the array, then the best you can do to
locate a given element (or decide that it is not present) is to iterate over all elements in the array until
you find the element or reach the end of the array. This takes linear time in expectation. This is also
the search cost achieved by a linked list, no matter whether you keep it sorted or not (because binary
search requires constant-time access to elements in the middle of the sequence, something that a linked
list does not support). Insertions into a linked list, on the other hand, take constant time because you
can simply add the new element to the beginning of the list. If the list is a doubly-linked list (with
predecessor and successor pointers), then deletions can also be supported in constant time. Hashtables
are the most efficient dictionaries in many situations in practice because they allow you to perform both
updates (insertions and deletions) and searches in expected constant time. Here, we discuss balanced
binary search trees, which achieve O(lgn) time per update or search, but in the worst case, not only in
expectation.

The road map for this lab is as follows:

* First you will implement a basic binary search tree. The cost per operation depends heavily on the
order in which you insert elements into the data structure because you will not make any effort to
keep the tree balanced yet.

* Then you will write a simple test program that uses the tree to store a set of strings. You will be
able to add strings to this set, delete strings from this set, search for a string matching a given
pattern, and list all strings currently in the set in sorted order.



* Finally, you will modify your implementation so the tree remains balanced, that is, you will maintain
a logarithmic bound on the height of the tree, thereby guaranteeing that the cost per operation is
O(lgn).

There are, once again, many ways to balance binary trees. Many methods that guarantee a height
of O(lgn) are fairly complicated (albeit not nearly as complicated as often claimed); the best one
in many ways is the strategy used by red-black trees. We will not discuss these here and instead
opt to implement splay trees. The way you maintain balance in a splay tree is very simple. The
penalty you pay for this simplicity is that you cannot guarantee that the cost of a single operation
on a splay tree is O(lgn); you can only guarantee that a sequence of n operations takes O(nlgn)
time, which is what you really care about most of the time. However, splay trees enjoy additional
properties not enjoyed by the worst-case structures. For example, if you access the elements in
the tree in almost sorted order, the cost on a red-black tree is O(Ign) per element access, O(nlgn)
for the entire access sequence. A splay tree, on the other hand, can be proven to achieve a much
lower linear cost for the entire access sequence in this case.

Exploring different types of binary search trees would be a serious excursion into the theory of
algorithms and data structures and thus is not something we do in this course. The main reason I
chose splay trees as an example for this lab is that the rebalancing strategy is very simple but still
demonstrates the basic operations needed to restore balance.

As a last step before starting your binary search tree implementation, here is the specification of the data
structure you will develop:

The tree should be able to store values of arbitrary types, not just integers, floating point numbers or
records of a specific type. Thus, the operations of the search tree will take void * arguments similar to
the gsort function in the standard library, which takes a void * to the array to be sorted. The tree will
not take ownership of the data items it stores, that is, when you delete an item from the tree, it will not
be destroyed automatically. Instead, the delete operation will return the deleted item; if this is an item
that needs to be deleted, the caller of the delete operation needs to take care of this. This makes the
binary search tree more flexible because it allows you to build a binary search tree over a collection of
elements stored in an array, for example, which should not be freed individually.

A consequence of wanting to store arbitrary elements in the tree is that the tree implementation cannot
know how to compare elements stored in the tree, something that is needed because the tree’s efficiency
stems from the fact that it stores its elements in sorted order. Thus, the user needs to provide a comparator
function that allows the tree to compare the elements it stores. Specifically, the user should provide
two comparator functions, one to compare records and one to compare a given key with the key of a
record. For the correct behaviour of the data structure, it is important that the ordering of two records is
consistent with the ordering of their keys. In order to avoid passing these comparator functions to every
dictionary operation, they are provided to the function that creates a new dictionary and are stored in
the created dictionary. Any operation on the dictionary then uses these functions stored in the dictionary
as needed. This gives the following interface to the tree data structure.

First, you need to define a function type that allows you to compare two records:

typedef int (*cmp_t)(const void *, const void *);

This says that cmp_t is a function type that takes two void * as arguments and returns an int. This
int is less than, equal to or greater than zero if the first argument is less than, equal to or greater than
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the second argument. (This is not pointer comparison. The function should compare the data items
referenced by the two pointers.)

The comparison between keys and records is captured by a second function type key_cmp_t. Since you
do not know anything about these key and record types, they are once again represented as void *, so
the resulting type looks exactly the same as the above cmp_t type:

typedef int (*key_cmp_t)(const void *, const void *);

The first argument is a pointer to a key. The second argument is a pointer to a record. Even though
any function that is a cmp_t is also a key_cmp_t and vice versa, it is still valuable to have two different
names for these two types of functions because using them in the argument list of a function makes it
explicit how the function intends to use these function arguments.

To create a tree of type tree_t (which will be define later), you need to implement a function

tree_t make_tree(cmp_t cmp, key_cmp_t key_cmp);

As said before, this creates a tree that uses cmp and key_cmp to compare records and keys and records.

When you are done using the tree, you need to destroy it using the function

void destroy_tree(tree_t tree);

Inserting a new element (represented as a void * because you want to be able to store values of any
type) is done using the function

node_t tree_insert(tree_t tree, void *new_item);

This function inserts the new item into the tree and returns an identifier of (really a pointer to) the tree
node storing this element.

This identifier is used when deleting an element:

void *tree_delete(tree_t tree, node_t node);

As said before, this function returns the deleted element so the user can free the memory occupied by
this element if necessary. (Essentially, the tree returns ownership of the deleted item back to the user.)

To decide whether the tree stores a record with a given key, you use the following function:

node_t tree_find(tree_t tree, void *key);

If a record with the given key is found, this function returns the ID of the node storing this record. If
no such record is found, it returns NULL (because node_t is just a pointer). Returning the ID of the tree
node is useful because it allows you to use, for example, tree_delete(tree, tree_find(tree, key))
to delete a record with a given key.
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The record stored at a given tree node can be accessed using

void *node_value(node_t node);

The final function you need is one that allows you to iterate over all records in the tree. You will do this
by creating an iterator:

iter_t make_iterator(tree_t tree);

This iterator type iter_t supports a single operation:

void xiter_next(iter_t iter);

advances the iterator to the next record in the tree and returns it. If there is no next element, that is, the
iterator has moved past the last record in the tree, the return values is NULL.

Similarly to a tree, you need to destroy an iterator once you are done using it. The following function
does this:

void destroy_iterator(iter_t iter);

Now let us get to work and implement the above functions:
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Step 1: Create a header file that defines the interface

You will separate the implementation of the tree from the implementation of any code that uses the
tree. Thus, you need to split the tree implementation into the C source code file that contains the
implementations of all binary tree functions and a header file that only declares these functions and can
be included by any code that uses your binary tree. Here is the header file:

tree.h

#ifndef TREE_H
#tdefine TREE_H

struct _tree_t;
struct _node_t;
struct _iter_t;
typedef struct _tree_t *tree_t;
typedef struct _node_t *node_t;
typedef struct _iter_t *iter_t;

typedef int (*cmp_t)(const void *, const void *);
typedef int (*key_cmp_t)(const void *, const void *);

tree_t make_tree(cmp_t cmp, key_cmp_t key_cmp);
void destroy_tree(tree_t tree);

node_t tree_insert(tree_t tree, void *new_item);
void xtree_delete(tree_t tree, node_t node);

node_t tree_find(tree_t tree, void *key);
void xnode_value(node_t node);

iter_t make_iterator(tree_t tree);
void destroy_iterator(iter_t iter);

void xiter_next(iter_t iter);
#endif /x TREE_H %/

This header file uses two common idioms. First, it wraps the entire header file into

#ifndef TREE_H
#tdefine TREE_H

#endif
As discussed in class, there are situations where you implement multiple header files that should include
tree.h because they use tree functions. If some C file includes two or more such header files, you end up
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including tree.h two or more times (because, remember, #include "tree.h” includes the text contained
in tree.h verbatim). This double inclusion can create problems. The #ifndef-#define-#endif idiom
ensures that the header file is included only once:

The first time you try to include it, TREE_H is undefined and #ifndef (“if not defined”) succeeds. As a
result, the code up to the matching #endif is included. Part of the included code is to define TREE_H
(#tdefine TREE_H). Thus, the next time you try to include tree.h, TREE_H is defined, which makes
#ifndef TREE_H fail and the code between #ifndef TREE_H and #endif is silently ignored.

The other idiom is to define tree_t, node_t and iter_t as pointers to structs that are declared in
the header file but not defined. Thus, the user of this header file has no way to manipulate trees, tree
nodes, and iterators in any way other than using the functions provided in the header file because no
information about the inner structure of the tree representation is shared with the user. The tree, tree
node, and iterator types are opaque. This is one way to ensure proper separation between different
components of a program.

Note that this works only because you define pointers to these structs. In order to define a pointer to
some data type, the size of that data type does not have to be known. If you had written, for example,

struct _tree_t;
typedef struct _tree_t tree_t;

the compiler would have complained because it cannot determine the size of the type tree_t defined
here because the size of a struct _tree_t is not known yet.
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Step 2: Define the tree structure

A binary tree is a collection of tree nodes that are all reachable from the root of the tree (see Figure 1a).
Thus, it suffices to store a pointer to the root. In addition, as discussed before, the tree stores the
comparator functions so they do not need to be passed to each of the functions that work with the tree.
This leads to the following definition of the tree type:

struct _tree_t {
node_t root;
cmp_t cmp;
key_cmp_t key_cmp;
};

This is part of the tree implementation and, along with all the code below, should be added to a file
named tree.c.

Every tree node stores a record and has a parent, a left child, and a right child (see Figure 1b):

struct _node_t {

void *xval;

node_t parent, left, right;
3%

For the root of the tree, the parent is NULL. For a leaf, the left and right children are NULL. This is
illustrated in Figure 1c.

3 20
e @ NULL NULL /—Z/'UKX\
parent 11 31
20
val ﬁ 'X_\
@ @ Teft |right NULL NULL  NULL  \
33
@ NULL NULL
(a (b) ©

Figure 1: (a) A binary search tree. (b) The representation of a binary search tree node. (c) The
representation of the tree in Figure (a).
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Step 3: Creating and destroying a tree

Creating an empty tree is easy. This tree has no nodes at all, so even its root is NULL. Apart from that, it
only needs to store the provided comparators:

tree_t make_tree(cmp_t cmp, key_cmp_t key_cmp) {
tree_t tree = malloc(sizeof(struct _tree_t));
if (tree) {
tree->root = NULL;
tree->cmp = cmp;
tree->key_cmp = key_cmp;
}

return tree;

Destroying a tree is a bit more challenging: you need to find all the nodes in the tree and destroy
them as well. To this end, it is useful to view each node as representing the subtree composed of all its
descendants. To destroy this subtree, you need to first destroy the subtrees rooted at the children of the
current node and then free the memory used by the current node:

void destroy_subtree(node_t node) {
if (node) {
destroy_subtree(node->left);
destroy_subtree(node->right);
free(node);

void destroy_tree(tree_t tree) {
destroy_subtree(tree->root);
free(tree);
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Step 4: Insertions and deletions

The key property that allows a binary search tree to be searched efficiently is that it stores the records in
sorted order. Specifically, for any node x in the tree, the records stored at descendants of x->1ef't are no
greater than x->val and the records stored at descendants of x->right are no less than x->val. This is
illustrated in Figure 1a. When inserting a new record into the tree, you need to ensure that this property
is preserved.

Let x be the value to be inserted, let y be the largest value already in the tree that is no greater than x
and let z be the smallest value greater than x (y’s successor). Then it is not hard to see that (a) ¥ has no
right child or z has no left child and (b) making x the right child of y or the left child of z preserves the
ordering of the elements in the tree. Figure 2 illustrates both cases. Thus, you only need to find z and, if
z has a left child, y and then add x as a child of one of these two nodes. The next procedure does this:

node_t tree_insert(tree_t tree, void *new_element) {
node_t new_node = malloc(sizeof(struct _node_t));
if (new_node) {
new_node->val = new_element;
new_node->left = new_node->right = NULL;
if (tree->root) {
node_t node = tree->root;
while (node) {
if (tree->cmp(new_element, node->val) < @) {
if (node->left) {
node = node->left;
} else {
node->left = new_node;
new_node->parent = node;
node = NULL;
}
} else {
if (node->right) {
node = node->right;
} else {
node->right = new_node;
new_node->parent = node;
node = NULL;

}

} else {
new_node->parent = NULL;
tree->root = new_node;

3

return new_node;
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Figure 2: The two cases of inserting a new item x (blue). (a) x is added after its predecessor in sorted
order. (b) x is added before its successor in sorted order.

To delete an element, you do not need to find the node that stores it because the deletion procedure
already takes a reference to this node as an argument. However, deletion poses its own challenges.
Deleting a leaf is easy: you just free its memory and make sure that its parent’s left or right pointer is set
to NULL depending on whether the deleted node was its left or right child. If the deleted leaf is the last
node of the tree, then it has no parent. In this case, the root of the tree has to be set to NULL. However,
the deleted node is not guaranteed to be a leaf. You have to deal with a number of cases:

* If the node to be deleted does not have a left child, replacing it with its right child gives a valid
tree again (see Figure 3a).

* If the node to be deleted does not have a right child, replacing it with its left child gives a valid
tree again (see Figure 3b).

* It the node to be deleted has both a left and a right child, the leftmost node in its right subtree
by definition does not have a left child. Deleting this leftmost node from the right subtree using
the first case above and then replacing the node to be deleted with this leftmost node once again
produces a valid tree (see Figure 3c).

This gives the following code:
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void xtree_delete(tree_t tree, node_t node) {
void xval = node->val;
if (node->left && node->right) {
node_t repl = node->right;
while (repl->left) {
repl = repl->left;
}
node_suppress(tree, repl);
repl->left = node->left;
if (repl->left) {
repl->left->parent = repl;
}
repl->right = node->right;
if (repl->right) {
repl->right->parent = repl;

}

node_replace(tree, node, repl);
} else {

node_suppress(tree, node);
}
free(node);

return val;

The helper function node_suppress removes a node with at most one child from the tree by making its
only child a child of its parent (see Figures 3ab):

void node_suppress(tree_t tree, node_t node) {
if (node->left) {
node_replace(tree, node, node->left);
} else {
node_replace(tree, node, node->right);

The call node_replace(node, repl) used in both tree_delete and node_suppress replaces node with
repl as the child of node’s parent or as the root of the tree if node has no parent:
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Figure 3: The three cases of deleting a node. The deleted node is shown in red on the left. The resulting
tree is shown on the right. (a) The deleted node has no left child. The deleted node is suppressed. (b)
The deleted node has no right child. The deleted node is suppressed. (c) The deleted node has two
children. The green node on the left is the leftmost node in the deleted node’s right subtree and replaces

the deleted node in the resulting tree.
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Step 5: Finding a key in the tree and accessing a node’s value

The procedure for finding a node whose record’s key matches a given search key is very similar to the
procedure for looking for the spot where to insert a new value: If the search key matches the key of the
current node, this node is the answer. Otherwise, the search has to continue in the left subtree or in the
right subtree depending on whether the search key is less than or greater than the key of the current
node:

node_t tree_find(tree_t tree, void *key) {
node_t node = tree->root;
while (node) {
int dir = tree->key_cmp(key, node->val);
if (dir == 0) {
break;
} else if (dir < 0) {
node = node->left;
} else {
node = node->right;
}
}

return node;

Accessing the value stored at a node is straightforward:

void *node_value(node_t node) {
return node->val;

3
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Step 6: Iterating over the values in a tree, in sorted order

In order to iterate over the elements in a tree in order, you first need to visit the nodes in the root’s left
subtree in order (recursively), followed by the root, followed by the nodes in the root’s right subtree.
The first visited node is thus the leftmost node of the tree, which is easy to find. The next node after the
current node is

* The leftmost node in the current node’s right subtree if this subtree is not empty or
* The lowest ancestor of the current node that has the current node in its left subtree otherwise.

This is illustrated in Figure 4. Based on this, an iterator over the elements in the tree can be implemented
as a pointer to the current tree node:

struct _iter_t {
node_t node;

g

The iterator is initialized by finding the leftmost node in the tree:

iter_t make_iterator(tree_t tree) {
iter_t iter = malloc(sizeof(struct _iter_t));
if (iter) {
iter->node = tree->root;
if (iter->node) {
while (iter->node->left) {
iter->node = iter->node->left;

}

return iter;

Destroying an iterator simply frees it:

void destroy_iter(iter_t iter) {
free(iter);

The iter_next function updates iter->node to be the successor of iter->node using the rules above:
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Figure 4: The red arrows indicate the order in which an iterator needs to visit the nodes in the tree. You
should verify that this ordering can be found using the rules implemented in iter_next.

24



The code so far

Here is the complete tree. c file so far:
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Step 7: A test case

Before adding code to keep the tree balanced, you should test that the current tree implementation
works. Search trees are very useful for solving a range of problems efficiently. For example, you can sort
by inserting the elements to be sorted into a binary search tree and then iterating over the elements in
sorted order. If you keep the tree balanced, this takes O(nlgn) time just as if you had used Mergesort or
Quicksort.

Here, you will use a much more mundane application as an example: You will store a set of strings and
support four operations on this set:

* Add a string to the set.

* Remove a string from the set. To do so, you will provide a pattern and remove an arbitrary string
in the set that starts with this pattern.

* Find a string. Again, you will report an arbitrary string that starts with the given pattern.

* List the current set of strings in sorted order. (This is something that binary search trees support
easily. If you used a hashtable to store the set of strings, updates would be faster but reporting the
strings in the hashtable in sorted order would involve an additional sorting step.)

Your program will start with the empty set and will print a prompt “? ”. At this prompt, you can enter
one of five commands:

* a <string> to add the given string to the set.
* d <pattern> to delete a string starting with the given pattern.

* f <pattern> to find a string starting with the given pattern. Both this operation and the delete
operation print STRING NOT FOUND if there is no match.

1 to list all strings in sorted order.

* g to quit.

The following code implements this functionality. Three details are worth discussing. First, the tree.h
header file is included using #include "tree.h” instead of #include <tree.h>. This difference is
significant. The #include <...> form searches for the header file to be included in “system loca-
tions” determined as part of the installation of the C compiler, by setting the environment variable
C_INCLUDE_PATH or by providing the -I option to gcc. The #include "..." form also searches in the
current working directory and thus finds the tree. h file you created earlier.

Second, the two comparison functions of the dictionary are used to implement exactly the functionality
you want: The sorting of the strings in the tree is done using strcmp, which ensures that the strings
are sorted lexicographically. The search for a pattern (the “key” here) is done using a thin wrapper
around strncmp. strncmp is a variant of strcmp that takes an additional argument to limit the number
of characters used in the string comparison. By setting this argument to the length of the pattern, you
ensure that a string that starts with this pattern is deemed to be equal to the pattern during the search
while any other string is correctly found to be less than or greater than the pattern.
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Third, these comparison functions take char pointers as arguments while a cmp_t or key_cmp_t takes
two void pointers as arguments. To silence compiler warnings pointing out this mismatch, you cast
strcmp and prefix_strcmp to to cmp_t and key_cmp_t, respectively.

stringset.c (1/3)

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "tree.h"

int

int

prefix_strcmp(const char *key, const char *val) {
return strncmp(key, val, strlen(key));

main() {
tree_t tree = make_tree((cmp_t) strcmp, (key_cmp_t) prefix_strcmp);
if (!tree) {
printf ("ERROR ALLOCATING TREE\n");
return 1;
}
int quit = 0;
size_t line_cap = 0;
char *input = NULL;
while (!quit) {
printf("? ");
int num_chars = getline(&input, &line_cap, stdin);
if (num_chars < 0) {
quit = 1;
} else if (num_chars < 2) {
printf("INVALID INPUT\n");

} else if (input[@] == 'a') {
if (num_chars < 4 || input[1] != " ") {
printf("INVALID INPUT\n");
} else {

size_t len = strlen(input);
char *string = malloc(len - 2);
input[len - 1] = 0;
if (string) {
strcpy(string, input + 2);
tree_insert(tree, string);
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Step 8: Compile and test your work

This is the first example of a program with more than one source file. We will discuss later how to
automate the compilation of such multi-file projects and ensure that every time you recompile your
code, only the files that have changed since the last compilation are compiled again. Here, you simply
compile things manually:

$ gcc -c tree.c
$ gcc -c stringset.c

The -c option runs the given . c file through the preprocessor and compiler to produce an object file (. 0)
with the same name but does not perform the linking step.

You should not get any compiler errors from these two steps if you entered the code in the previous
steps exactly as listed here. If you do get errors, fix them and recompile until the compilation does not
produce any errors.

To obtain an executable, you need to link the two object files produced by the above compilation steps.
You do this by running gcc as you have done so far, only you provide object files rather than C files as
arguments and you provide multiple object files:

$ gcc -o stringset stringset.o tree.o

Again, this should not give any errors. You can now run your code using

$ ./stringset

Congratulations! You made it to the first milestone in this lab and have succeeded in implementing a
non-trivial pointer-based data structure. Celebrate by adding and deleting some strings, searching for
strings, and listing all strings currently in the tree. Verify that the find and list operations produce the
ouput you’d expect.
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Step 9: The basic tool for rebalancing

The icing on the cake will be that you keep the tree balanced to ensure searches are fast. (The cost of
traversing the tree to list all items it contains is always linear no matter the shape of the tree.) The tool
used by all balanced binary search trees to limit the height of the tree is rotations. If the left subtree of a
given node is very deep compared to the right subtree, then it is helpful to restructure the tree so the
left child of x becomes the new root of the subtree. This is called a right rotation. If the right subtree is
deeper, a left rotation restructures the tree in the opposite direction. These two operations are inverses
of each other and are illustrated in Figure 5.

By referring to the node that must become the new root of the subtree, they both simply become rota-
tions. The direction of the rotation is determined by whether the referenced node is the left child or
right child of its parent:

void left_rotate(tree_t tree, node_t node) {
node_t parent = node->parent;
node_replace(tree, parent, node);
parent->right = node->left;
if (node->left) {
node->left->parent = parent;
3
node->left = parent;
parent->parent = node;

void right_rotate(tree_t tree, node_t node) {
node_t parent = node->parent;
node_replace(tree, parent, node);
parent->left = node->right;
if (node->right) {
node->right->parent = parent;
3
node->right = parent;
parent->parent = node;

void rotate(tree_t tree, node_t node) {
if (node == node->parent->left) {
right_rotate(tree, node);
} else {
left_rotate(tree, node);
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Figure 5: Rotations. The top part of the figure shows left and right rotations abstractly. The bottom part
of the figure illustrates these two operations using a concrete example.
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Step 10: Splaying

The operation used by a splay tree to maintain balance is splaying. Splaying a node means that the tree
is restructured using rotations so the node becomes the root of the tree (see Figure 6).

Splaying is implemented using three basic operations:

Zig: If the node to be splayed is a child of the root, a single rotation makes it the root of the tree (see
the last step in Figure 6).

Zig-zig: If the node to be splayed and its parent are both left children of their parents or both right
children of their parents, you first rotate the parent and then the node to move the node two levels
up the tree (see the second step in Figure 6).

Zig-zag: If the node to be splayed is the left child of its parent and the parent is the right child of its
parent or vice versa, you rotate the node twice to move it two levels up the tree (see the first step
in Figure 6).

A splay operation applies zig-zig and zig-zag operations to move the node to be splayed up the tree
until it is either the root or a child of the root. If it is the child of the root, you finish with a single zig
operation. The code of the splay operation looks as follows:

void splay(tree_t tree, node_t node) {
while (node->parent) {
if (node->parent->parent) {

if ((node->parent == node->parent->parent->left &&
node == node->parent->left) ||
(node->parent == node->parent->parent->right &&

node == node->parent->right)) {
rotate(tree, node->parent);
} else {
rotate(tree, node);
}
}

rotate(tree, node);
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Zig-zig

Figure 6: An example of a splay operation that involves a zig-zag, a zig-zig, and a zig operation.
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Step 11: Splaying after basic operations

The final piece in the puzzle is to invoke the splay operation on the appropriate nodes as part of every
insertion, deletion or search:

* After a search operation, the node storing the sought record (or, if no such node exists, the last
node visited by the search) is splayed.

* After an insertion, the new leaf is splayed.

* After a deletion, the parent of the removed node is splayed. The notion of “removed node” depends
on the situation that applies to the delete operation. If the node to be deleted has at most one
child, its parent is the node that is splayed. If the node to be deleted has two children, it cannot be
removed directly. Instead, it is replaced with the leftmost node in its right subtree. In this case,
this leftmost node in the right subtree is the one that is considered to be removed as far as splaying
goes, that is, the parent of this replacement node is splayed.

Modifying search and insert operations to add these splay operations is fairy straightforward:

node_t tree_find(tree_t tree, void xkey) {
node_t node = tree->root;
if (!node) {
return NULL;
}
for (5;) {
int dir = tree->key_cmp(key, node->val);
if (dir == 0) {
splay(tree, node);
return node;
} else if (dir < @) {
if (node->left) {
node = node->left;
} else {
splay(tree, node);
return NULL;
}
} else {
if (node->right) {
node = node->right;
} else {
splay(tree, node);
return NULL;
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The delete operation is complicated slightly by the fact that you need to decide whether to splay the
parent of the deleted node or the parent of the leftmost node in its right subtree:
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The final code

This is the final version of the tree.c file:
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Step 12: Test the final version of your code

Recompile you test.c file

$ gcc -c test.c

and link it with the stringset.o file

$ gcc -o stringset stringset.o tree.o

There is no need to recompile stringset.c because its code has not changed. Again, if the compiler
reports errors, fix them by checking how your code deviates from the code in these notes. Then experiment
with the program by adding, deleting, and searching for different strings and listing all strings in the
string set.

Step 13: Commit your work

Commit your work to SVN. The files you should commit are

1lab8

tree.h
tree.c
stringset.c
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