## DALHOUSIE UNIVERSITY

Inspiring Minds

Midterm 2
Term: Fall 2018 (Sep4-Dec4)

| Student ID Information |  |
| :--- | :--- |
| Last name: | First name: |
| Student ID \#: | CS.Dal.Ca userid: |



Note: There are numerous questions in this exam that cover material we cover laker. They are marked and will have no equivalent in Monday's exam.

1. (10 points) True-false questions: 2 points each. Justification is not necessary, but brief justification may be helpful if correct.
a) (2 points) In the C programming language, the following two pairs of scanf format strings are equivalent: "\%c:\%c" and "\%c: \%c"
b) (2 points) The -g option of gcc is used to produce object code only from a C source file.
c) (2 points) The following C code is valid: int $i$; double $d=5.1$; $i=d$;
d) (2 points) The function parameters and function local variables are stored on the call stack.
e) (2 points) After executing 'int $a[10]=\{1\}$;' the value of $a[10]$ is not defined.
2. (12 points) Multiple-choice. Circle the correct answer to the question.
a) (3 points) Which of the following statements is FALSE about processes?
A. We can start a process in background by using character ' $£$ ' in the command line.
B. A foreground process can print to the terminal.
C. A background process can read input from the keyboard.
D. A foreground process can run in the same time (concurrently) as a background process.
b) (3 points) Which phase is NOT part of the Waterfall Model of software development life cycle?
A. Verification
B. Requirement Analysis
C. Prototype Development
D. Design
c) (3 points) After the following code:
int $a[10]=\{10,20,30\}$; int *p; $p=\& a[2] ; p-=1 ;--(*--p)$;
the array a will start with the following values or an error is generated:
A. $\{9,19,29\}$
B. $\{10,20,27\}$
C. Invalid pointer operation (possibly Segmentation-fault error)
D. $\{9,20,30\}$
d) (3 points) The fork system call is used in the following situation:
A. Creation of a new process.
B. Creation of a new sub-directory.
C. Execution of a conditional statement.
D. Creation of a new stack frame.

## 3. (12 points) Give concise answers.

a) (4 points) Briefly describe gdb commands break, step, and next.
b) (4 points) If we have the declarations 'int *p, a[10] = \{1\};' briefly explain the meaning of the statement: ' $p=a+2$;'. Is there another way to write this statement?
c) (4 points) If we execute MergeSort on array $\{4,1,3,7,6,2,5,8\}$, how many times will the function 'merge' be executed? What will be sub-arrays that are merged during the last execution of the 'merge' function? (List the values of sub-arrays.)

## 4. (8 points) Code snippets.

a) (4 points) What is the output of the following code:

```
int a[] = {1,10,20}, *p=a, i=1, j=2;
for (i=0, p=a; i < 2; i++) {
    int j = *p; p++; *p = *p + j;
    printf("in: i=%d j=%d a=%d,%d,%d\n", i, j, a[0], a[1], a[2]);
}
printf("out: i=%d j=%d a=%d,%d,%d\n", i, j, a[0], a[1], a[2]);
```

b) (4 points) Write a C function sort2 which can be used to do a "mini-sort" of two integer variables, by swapping their values only if the first variable is larger than the second. For example, after executing the following code: int $a=78, b=51$; sort2 (\&a, \&b); the values of the variables would be $a=51 \mathrm{~b}=78$, but if we execute sort2 (\&a, \&b); again, the values would not be changed.

## 5. (10 points) C Program.

We will call a sequence of integers a slow-changing sequence if difference between any two consecutive numbers in sequence is at most 1 . Write a C program that reads a positive integer $n$ and prints all slow-changing sequences of non-negative integers that start with 0 and have length $n$. For example, for $n=3$, the program should print sequences: 000 , $001,010,011$, and 012 . You do not need to check for errors in input.
( 5 point option): For a partial solution of 5 points, write a function that checks whether an array is a slow-changing sequence.
(extra blank page 1 provided)
(extra blank page 2 provided)

