Faculty of Computer Science

Midterm 2

Term: Fall 2018 (Sep4-Dec4)

Student ID Information					
Last name:		First name:			
Student ID #:		CS.Dal.Ca userid:			
Course ID:		CSCI 2132	Grade Table		
			Que	stion	Score
Course Title:		Software Development	1		/10
Instructor:		Vlado Keselj	2		/12
Date of Exam:		8 Nov 2018	3		/12
Date of Exam.		0 NOV 2010	4		/8
Time Period:	Start:	19:35			,
	End:	20:25	5		/10
Duration of Exam:		50 minutes	\sum		/52
Exam Location:					
Number of Exam Pages: 8 pages (including this cover sheet)					
Exam Type:		Closed Book			
Additional Materials Allowed:		One letter-format paper (8.5"×11") with anything written or printed on it (both sides). No textbooks, computers, calculators, or other aids are			

Note: There are numerous questions in this examthat cover material we cover later. They are marked and will have no equivalent in Monday's exam.

allowed.

- 1. (10 points) True-false questions: 2 points each. Justification is not necessary, but brief justification may be helpful if correct.
 - a) (2 points) In the C programming language, the following two pairs of scanf format strings are equivalent: "%c:%c" and "%c: %c"

b) (2 points) The $\neg g$ option of gcc is used to produce object code only from a C source χ file.

c) (2 points) The following C code is valid: int i; double d=5.1; i = d;

d) (2 points) The function parameters and function local variables are stored on the call stack.

e) (2 points) After executing 'int a[10]={1};' the value of a[10] is not defined.

- 2. (12 points) Multiple-choice. Circle the correct answer to the question.
 - a) (3 points) Which of the following statements is FALSE about processes?
 - A. We can start a process in background by using character '&' in the command line.
 - B. A foreground process can print to the terminal.
 - C. A background process can read input from the keyboard.
 - D. A foreground process can run in the same time (concurrently) as a background process.
 - b) (3 points) Which phase is NOT part of the Waterfall Model of software development life cycle?
 - A. Verification
 - B. Requirement Analysis
 - C. Prototype Development
 - D. Design
 - c) (3 points) After the following code:

```
int a[10]={10,20,30}; int *p; p=&a[2]; p -= 1; --(*--p);
```

the array a will start with the following values or an error is generated:

- A. {9,19,29}
- B. {10,20,27}
- C. Invalid pointer operation (possibly Segmentation-fault error)
- D. {9,20,30}
- d) (3 points) The fork system call is used in the following situation:
- A. Creation of a new process.
- B. Creation of a new sub-directory.
- C. Execution of a conditional statement.
- D. Creation of a new stack frame.

3. (12 points) Give concise answers.

a) (4 points) Briefly describe gdb commands break, step, and next.

b) (4 points) If we have the declarations 'int *p, a[10] = {1};' briefly explain the meaning of the statement: 'p = a+2;'. Is there another way to write this statement?

c) (4 points) If we execute MergeSort on array {4,1,3,7,6,2,5,8}, how many times will the function 'merge' be executed? What will be sub-arrays that are merged during the last execution of the 'merge' function? (List the values of sub-arrays.)

4. (8 points) Code snippets.

a) (4 points) What is the output of the following code:

```
int a[] = {1,10,20}, *p=a, i=1, j=2;
for (i=0, p=a; i < 2; i++) {
  int j = *p; p++; *p = *p + j;
  printf("in: i=%d j=%d a=%d,%d,%d\n", i, j, a[0], a[1], a[2]);
}
printf("out: i=%d j=%d a=%d,%d,%d\n", i, j, a[0], a[1], a[2]);</pre>
```

b) (4 points) Write a C function sort2 which can be used to do a "mini-sort" of two integer variables, by swapping their values only if the first variable is larger than the second. For example, after executing the following code: int a=78, b=51; sort2(&a, &b); the values of the variables would be a=51 b=78, but if we execute sort2(&a, &b); again, the values would not be changed.

5. (10 points) C Program.

We will call a sequence of integers a *slow-changing sequence* if difference between any two consecutive numbers in sequence is at most 1. Write a C program that reads a positive integer n and prints all slow-changing sequences of non-negative integers that start with 0 and have length n. For example, for n=3, the program should print sequences: 0 0 0, 0 0 1, 0 1 0, 0 1 1, and 0 1 2. You do not need to check for errors in input.

(5 point option): For a partial solution of 5 points, write a function that checks whether an array is a slow-changing sequence.

(extra blank page 1 provided)

(extra blank page 2 provided)