
1Faculty of Computer Science

CSCI 2132
Midterm 2 Solutions

Term: Fall 2018 (Sep4-Dec4)

1. (10 points) True-false questions: 2 points each. Justification is not necessary, but brief justification
may be helpful if correct.

a) (2 points) In the C programming language, the following two pairs of scanf format strings are
equivalent: "%c:%c" and "%c: %c"

Solution: False. If the input is ‘4: 5’ (with space after colon), the result would be different.

b) (2 points) The -g option of gcc is used to produce object code only from a C source file.

Solution: False. The option -g is used to add symbolic information to the code. The option -c

will produce object code only from a source file.

c) (2 points) The following C code is valid: int i; double d=5.1; i = d;

Solution: True. The code is valid and the value of i will be 5 due to implicit type conversion.

d) (2 points) The function parameters and function local variables are stored on the call stack.

Solution: True.

e) (2 points) After executing ‘int a[10]={1};’ the value of a[10] is not defined.

Solution: True. The value of a[10] is not defined and should not be used because it is out of
range.

CSCI 2132, Midterm 2 Solutions 2

2. (12 points) Multiple-choice. Circle the correct answer to the question.

a) (3 points) Which of the following statements is FALSE about processes?

A. We can start a process in background by using character ‘&’ in the command line.

B. A foreground process can print to the terminal.

C. A background process can read input from the keyboard.

D. A foreground process can run in the same time (concurrently) as a background process.

Solution: C. is False. A background process cannot read from the keyboard. The other state-
ments are true.

b) (3 points) Which phase is NOT part of the Waterfall Model of software development life cycle?

A. Verification

B. Requirement Analysis

C. Prototype Development

D. Design

Solution: C. The Prototype Development is a part of the different model: the Rapid Prototyping,
not the Waterfall Model.

c) (3 points) After the following code:
int a[10]={10,20,30}; int *p; p=&a[2]; p -= 1; --(*--p);

the array a will start with the following values or an error is generated:

A. {9,19,29}

B. {10,20,27}

C. Invalid pointer operation (possibly Segmentation-fault error)

D. {9,20,30}

Solution: D. After p=&a[2]; p is pointing to a[2], after p -= 1; p is pointing to a[1], and after
--(*--p); p will point to a[0] and decrease it by 1.

d) (3 points) The fork system call is used in the following situation:

A. Creation of a new process.

B. Creation of a new sub-directory.

C. Execution of a conditional statement.

D. Creation of a new stack frame.

Solution: A. The other statements are not true.

CSCI 2132, Midterm 2 Solutions 3

3. (12 points) Give concise answers.

a) (4 points) Briefly describe gdb commands break, step, and next.

Solution: The gdb command break is used to set up a breakpoint; i.e., a place where program will
pause execution and give us a chance to examine the variable values and other elements of program
state.

The gdb command step is used to step execution of a program line by line. When execution comes
across a function call, the step will step into the function call.

The next command is similar to step, however when a function call is executed, the next command
will step over it; i.e., it will execute it as one step instead of going into the function.

b) (4 points) If we have the declarations ‘int *p, a[10] = {1};’ briefly explain the meaning of the
statement: ‘p = a+2;’. Is there another way to write this statement?

Solution: (2 points) The meaning of the statement ‘p = a+2;’ is the same as ‘p = &a[2];’, which
means that we set the pointer p to point to the third element of the array a.

(2 points) Another way to write the statement is: ‘p = &a[2];’

c) (4 points) If we execute MergeSort on array {4,1,3,7,6,2,5,8}, how many times will the function
‘merge’ be executed? What will be sub-arrays that are merged during the last execution of the ‘merge’
function? (List the values of sub-arrays.)

Solution: (1 points) The function would be executed 7 times in total.

(3 points) During the last execution of merge, the following sub-arrays would be merged: (1,3,4,7)
and (2,5,6,8).

CSCI 2132, Midterm 2 Solutions 4

4. (8 points) Code snippets.

a) (4 points) What is the output of the following code:

int a[] = {1,10,20}, *p=a, i=1, j=2;

for (i=0, p=a; i < 2; i++) {

int j = *p; p++; *p = *p + j;

printf("in: i=%d j=%d a=%d,%d,%d\n", i, j, a[0], a[1], a[2]);

}

printf("out: i=%d j=%d a=%d,%d,%d\n", i, j, a[0], a[1], a[2]);

Solution:

in: i=0 j=1 a=1,11,20 [1.3 points approx.]

in: i=1 j=11 a=1,11,31 [1.3 points approx.]

out: i=2 j=2 a=1,11,31 [1.3 points approx.]

a: 20

p:

i: 1

j: 2

in: i=0 j=1 a=1,11,20

in: i=1 j=11 a=1,11,31

10

11 31
Output:

inner j: 1 11

1

out: i=2 j=2 a=1,11,31
0 1 2

b) (4 points) Write a C function sort2 which can be used to do a “mini-sort” of two integer variables,
by swapping their values only if the first variable is larger than the second. For example, after executing
the following code: int a=78, b=51; sort2(&a, &b); the values of the variables would be a=51 b=78,
but if we execute sort2(&a, &b); again, the values would not be changed.

Solution:

void sort2(int *pa, int *pb) {

if (*pa > *pb) {

int t = *pa; *pa = *pb; *pb = t;

}

}

CSCI 2132, Midterm 2 Solutions 5

5. (10 points) C Program.

We will call a sequence of integers a slow-changing sequence if difference between any two consecutive
numbers in sequence is at most 1. Write a C program that reads a positive integer n and prints all
slow-changing sequences of non-negative integers that start with 0 and have length n. For example, for
n = 3, the program should print sequences: 0 0 0, 0 0 1, 0 1 0, 0 1 1, and 0 1 2. You do not need
to check for errors in input.

(5 point option): For a partial solution of 5 points, write a function that checks whether an array is a
slow-changing sequence.

Solution:

#include <stdio.h>

void f(int k, int n, int a[n]);

int main() {

int n;

scanf("%d", &n);

int a[n];

a[0] = 0;

f(1, n, a);

return 0;

}

void f(int k, int n, int a[n]) {

int i;

if (k == n) {

int i;

for (i=0; i < n; i++)

printf(" %d", a[i]);

printf("\n");

return;

}

if (a[k-1] > 0) {

a[k] = a[k-1] - 1;

f(k+1, n, a);

}

a[k] = a[k-1];

f(k+1, n, a);

a[k] = a[k-1] + 1;

f(k+1, n, a);

}

A 5-point solution:

int check_slow(int n, int a[n]) {

int i;

for (i=0; i<n-1; i++) {

if (a[i] - a[i+1] < -1) return 0;

if (a[i] - a[i+1] > 1) return 0;

}

return 0;

}

CSCI 2132, Midterm 2 Solutions 6

Another 5-point solution: If we want to check that the sequence is non-negative as well, that is also
a valid solution:

int check_slow(int n, int a[n]) {

int i;

for (i=0; i<n-1; i++) {

if (a[i] < 0 || a[i+1] < 0) return 0;

if (a[i] - a[i+1] < -1) return 0;

if (a[i] - a[i+1] > 1) return 0;

}

return 0;

}

