
1Faculty of Computer Science

CSCI 2132
Final Exam Solutions

Term: Fall 2018 (Sep4-Dec4)

1. (12 points) True-false questions. 2 points each. No justification necessary, but it may be helpful if
the question seems ambiguous.

a) (2 points) In the UNIX file model, a file is a stream of bytes.

Solution: True.

b) (2 points) Symbolic links and pipes are types of files in Unix.

Solution: True. (Symbolic links and pipes are types of files in Unix. The seven types of files in
Unix are: 1. regular files, 2. directory files, 3. buffered special files, 4. unbuffered special files, 5.
symbolic links, 6. pipes, and 7. sockets.)

c) (2 points) In the C programming language, the following two pairs of scanf format strings are
equivalent:
"%c,%c"

"%c ,%c"

Solution: False.

d) (2 points) In the C programming language, the following two pairs of scanf format strings are
equivalent:
"%d,%d"

"%d ,%d"

Solution: False.

e) (2 points) If there is a text file named log.txt in the current working directory, the command
date >> log.txt will append the output of the date command to the end of log.txt.

Solution: True.

f) (2 points) In a shell script, whenever we used the command exit to terminate the script, we are
always required to provide an exit code explicitly as the argument of the exit command.

Solution: False

CSCI 2132, Final Exam Solutions 2

2. (12 points) Multiple-choice. Circle the single best answer.

a) (3 points) Which of the following statements regarding streams and files in the C programming
language is INCORRECT?

A. In C, a stream is any source of input or any destination of output;

B. The following statement will output “out of memory” followed by a newline character to the standard
error channel:
fprintf(stdout, "out of memory\n");

C. The fopen function returns NULL when it fails to open a file;

D. The notion of lines does NOT apply to binary files.

Solution: B.

b) (3 points) If c is a variable of type char, which one of the following statements is illegal?

A. i += c; /* i has type int */

B. c = 2 * c - 1;

C. printf(c);

D. putchar(c);

Solution: C.

c) (3 points) Suppose that the following declarations are in effect:

int a[] = {17, 211, 10, -5, 14, 19};

int *p = &a[3];

What is the value of *(p+2)?

A. 10

B. -5

C. 14

D. 19

Solution: D.

d) (3 points) A file names contains people names. Each line contains a first name and a last name
of a person (e.g. John Smith), and the file is not sorted. Our task is to list only first names, sorted
alphabetically, and no name should be repeated in more than one line.

Which one of the following four command will complete this task correctly?

A. cut -d " " -f 1 < names | uniq | sort

B. cat names | cut -d " " -f 1 | sort | uniq

C. sort | uniq | cut -d " " -f 1 names

D. sort < names | uniq | cut -d " " -f 1

Solution: B.

CSCI 2132, Final Exam Solutions 3

3. (6 points) Program Output.

What is the output of the following program? You can justify your answer, but it is not required.

int a[10] = {1}, i;

int *p = &a[4];

int *q = p+1;

for (i=1; i<10; i++) a[i] += a[i-1]+2;

*(p++) = *(q++); q++; *(p++) = *(q++);

printf(" %d %d %d\n", *a + *q - *p, q-p, *q-*p);

for (i = 4; i < 8; i++) printf(" %d", a[i]);

Solution: Short answer:

5 2 4

11 15 13 15

[Marking scheme: 3 points each row]

After the first three lines, which start with ‘int’, we have:

0 1 2 3 4 5 6 7 8 9

a: 1 0 0 0 0 0 0 0 0 0

p q

After the first for-loop:

0 1 2 3 4 5 6 7 8 9

a: 1 3 5 7 9 11 13 15 17 19

p q

After the next line with pointer arithmetic:

0 1 2 3 4 5 6 7 8 9

a: 1 3 5 7 11 15 13 15 17 19

p q

Now, the first printf command will produce:

5 2 4

because: 1 + 17 − 13 = 5, 8 − 6 = 2, and 17 − 13 = 4.
The next for-loop prints the value of array a from 4 to 7, which are:

(i=4)11 (i=5)15 (i=6)13 (i=7)15

CSCI 2132, Final Exam Solutions 4

4. (6 points) Explain briefly.

Show the content of the standard main parameters: argc and argv when we call the compiled program
in the following way:
./a.out apple pine orange cherry

If there are any pointers or strings, show them graphically.

Solution: The parameter argc contains the total number of arguments in the command line, in-
cluding the program name, so its value is:

argc: 5

The parameter argv is an array of pointers to the arguments, and its value can be shown graphically
as follows:

argv: ./a.out

orange

cherry

\0

apple

pine

\0

\0

\0

\0

No marks are lost if the final NULL pointer in argv is not shown.

Marking scheme: 2pt for argc, 4pt for argv.

CSCI 2132, Final Exam Solutions 5

5. (7 points) Program Output. What is the output of the following program?

#include <stdio.h>

#include <string.h>

int main() {

char s[90] = "test";

char *p = "program";

printf("%d %d\n", strlen(s), strlen(p+2));

puts(strcat(s, p));

printf("%d\n", strlen(s));

return 0;

}

Solution:

4 5

testprogram

11

CSCI 2132, Final Exam Solutions 6

6. (9 points) Single command line. For each of the following questions, write a single Unix command
line to perform the task required.

a) (3 points) Print a list of files in the directory /usr/bin whose names end with the English word
“make”. The file named make is considered one of these files.

Solution:

ls /usr/bin/*make

b) (3 points) Print out the number of six-character words in the Linux dictionary file
/usr/share/dict/linux.words starting with a or c and ending with h.

Recall that this dictionary file contains one English word per line.

Solution:

grep ’^[ac]....h$’ /usr/share/dict/linux.words | wc -l

c) (3 points) Print out a list of regular files in the directory /usr/bin whose file owner has read permission
but does not have execute permission.

Solution:

ls -l /usr/bin | grep "^-r.-"

CSCI 2132, Final Exam Solutions 7

7. (8 points) Give concise answers.

a) (4 points) Write down the full names (NOT abbreviations) of four gdb commands, i.e. those commands
that you can enter in the gdb console. For each command you put down, write a short sentence to explain
what this command is for. You are not required to explain the usage such as parameters or options of
these commands; the explanation that you write just have to be sufficient to show that you know what
these commands do.

Solution:

E.g.,

next -- executes next line of code

step -- executes the next line of code, but steps into function when a

function call is executed

continue -- continues execution until the next breakpoint or program

termination

breakpoint line -- to set a breakpoint

b) (4 points) Suppose that you are working in a directory that is a working copy of a directory in SVN.
You created a new file, named file.c in your directory. Which command lines are required to save this
file in the SVN repository?

Solution:

svn add file.c

svn commit -m’file.c added’

CSCI 2132, Final Exam Solutions 8

8. (8 points) Give concise answers.

a) (4 points) Briefly explain the keyword static when used with a variable inside a function and outside
a function.

Solution: When the keyword static is used inside a function, the declared variable is a static
variable that keeps its value from function call to function call, but it is visible only inside the
function.

When the keyword static is used outside of a function, the declared variable is static but visible
only inside the current source code file, and not from other source code files.

b) (4 points) The following is supposed to be an implementation of the strcpy function in the standard
C library, but there are two errors. Find out these errors, explain why they are incorrect, and fix these
errors by modifying the code printed below.

char* strcpy(char *s1, const char *s2) {

int i = 0;

while (s2[i] != ’\0’) {

s1[i] = s2[i];

i++;

}

return s2;

}

Solution: Error 1: s1 will not be NULL-terminated after the function call. This is an error as C
strings are terminated with NULL. Add s1[i] = ’\0’; after the loop.

Error 2: The function returns s2 instead of s1. Change return s2; to return s1;

CSCI 2132, Final Exam Solutions 9

9. (10 points) Large program organization.

(10 points) Assume that you have a project with the following files: main.c containing the main function,
llist.c containing a linked list implementation, and llist.h a header file containing all function
prototypes. The file llist.h is included in the two source files main.c and llist.c.

a) (4 points) What code you need to write in llist.h to protect it against double-inclusion?

Solution:

#ifndef LLIST_H

#define LLIST_H

/* some content ... *

#endif

b) (6 points) Write a makefile to compile the program into the executable named llist when we run the
command ‘make’ or ‘make all’. The make should do separate compilation of files main.c and llist.c.

Solution:

makefile for the program llist

.PHONY: all

all: llist 2pt (must be first target)

llist: llist.o main.o 2pt

gcc -o llist llist.o main.o

llist.o: llist.c llist.h 1pt

gcc -c llist.c

main.o: main.c llist.h 1pt

gcc -c main.c

clean:

rm rpn rpn.o stack.o

Note: Including the special ‘.PHONY’ target, and the ‘clean’ target are not mandatory for full
marks.

CSCI 2132, Final Exam Solutions 10

10. (10 points) Give brief answer.

a) (5 points) Briefly describe what the malloc function does and its time efficiency.

Solution: The malloc function reserves a block of memory on the heap, of the required size and
returns a pointer to it. (Optional: The function also records the size of the block in a memory location
just before the block.) The function searches for a block of the appropriate size by traversing a linked
list of free blocks. If it does not find a block of the appropriate size, it uses a system call to request
more memory from the operating system kernel, and adds this memory to the heap. If it does not
succeed to get appropriate additional memory, it returns NULL. The malloc function is typically
fast, but it may take some time if the list of the free blocks is very long, and if it needs to execute
the system call.

Marking scheme:
1pt - reserves a block of memory
1pt - size given as parameter
1pt - returns a pointer
1pt - returns NULL if not successful
1pt - traverses a linked list of blocks, so it may take some time

- may need to call system call for more memory (if this is mentioned it is a bonus 1pt, but total
cannot go over 5pt)

b) (5 points) Briefly describe the mergesort algorithm, its advantages and disadvantages, and discuss
running time. If you want to use code, use pseudo code.

Solution: The mergesort algorithm can be applied to sort arrays, but also linked lists. The algo-
rithm works by dividing the array into two halfs, recursivelly sorting each half by invoking itself,
and then merging the sorted half into the final array. The base recursion case is when the array has
only one element. The merge operation works by reading through two sorted arrays from the start
in parallel, comparing the two next elements in the arrays, and copying and proceeding with the
element that comes first in the sorting order. The algorithm is an efficient algorithm since it has
O(n log(n)) running time. An advantage is that it works very well with linked lists (and large files).
It is also a stable sort algorithm. A disadvantage is that it may not be as efficient in practice on
arrays as the quicksort.

Marking scheme:
2pt - for showing understanding of merge sort (2 operations: recursive split, and merge
1pt for a valid advantage
1pt for a valid disadvantage
1pt for correct running time

CSCI 2132, Final Exam Solutions 11

11. (10 points) Code snippets

(10 points) Write a C program that reads a sequence of integers, one integer per line, from the standard
input. For each input integer n, such that n ≥ 1, the program must print the sum of all positive integers
k such that 1 ≤ k ≤ n. The input will contain one integer less than 1, and the program must terminate
once it reads this integer.

Solution:

#include <stdio.h>

int main() {

int n, k, sum;

while (1==scanf("%d", &n) && n>=1) {

sum = 0;

for (k=1; k<=n; k++)

sum += k;

printf("%d\n", sum);

}

return 0;

}

CSCI 2132, Final Exam Solutions 12

12. (9 points) Shell scripting

a) (3 points) Briefly explain how shell interprets double parentheses in a command, such as: ((some
expression))

Solution: The double parantheses in bash shell are interpreted as arithmetic expressions, or as an
arithmetic for-loop if preceeded with the command ‘for’.

b) (6 points) Briefly explain the lines (1), (2) and (3) in the shell script below:

if [! -d $1]; then

echo Error (1)

exit 1

fi

if [-f $1/testfile.txt]; then (2)

if [! -e tmp/testfile.txt]; then (3)

cp $1/testfile.txt tmp/testfile.txt

fi

fi

Solution: The line (1) is an ‘echo’ command used to echo an ‘Error’ message as a result of a previous
test. Additional explanation: If the first argument given to the script ($1) is not a directory, the
error will be printed and the script will exit.

The line (2) tests whether there exists a regular file with the name $1/testfile.txt.

The line (3) tests whether there does not exist a file with the name tmp/testfile.txt.

The lines (2) and (3) ensure that it is possible to copy the file $1/testfile.txt to the file
tmp/testfile.txt, without overwriting an existing file.

CSCI 2132, Final Exam Solutions 13

13. (8 points) File operations in C

(8 points) Consider the following two choices for opening a file:

FILE *fp = fopen("foo", "ab+"); /* choice A */

FILE *fp = fopen("foo", "a+"); /* choice B */

and the following two choices for writing the double variable x to the file:

fprintf(fp, "%lf\n", x); /* choice C */

fwrite(&x, sizeof(double), 1, fp); /* choice D */

a) Which choices for opening the file and writing to the file are appropriate to be used together? Why?
b) Give one advantage for each choice of writing x to the file.

Solution: a) The appropriate choices are: A-D and B-C, because in A-D we assume that the file
is binary, and in B-C we assume that the file is a textual file. [4pt = 2pt for choices, 2pt for
explanation]

b) An advantage of binary file is that we save on disk space (memory) because the representation is
more compact. (Another advantage is that we do not loose on precision.) [2pt]

An advantage of textual file is that the representation is more clear and easy to inspect externally.
(Another advantage is that the representation is more portable because it does not depend on an
internal memory representation of floating-point numbers.) [2pt]

CSCI 2132, Final Exam Solutions 14

14. (32 points) Write a C program.

(32 points) Assume that you are working on a program to process product prices. The data will be
stored in a linked list where the structure of a node is given in C as follows:

struct node {

char prod[50]; /* prod is product name */

double price; /* price is product price */

struct node *next; /* next is pointer to next node */

};

(a) (4 marks) Write a C function printprod that takes a pointer to the above node structure and prints
a line with the following: the product name, a comma (,), the product price, another comma, and a
newline character to the standard output. An output example is: office desk, 356.78,

The function prototype must be: void printprod(struct node *n);

Solution:

void printprod(struct node *n) {

printf("%s, %lf,\n", n->prod, n->price);

}

CSCI 2132, Final Exam Solutions 15

(b) (10 marks) Write the C function readprod which allocates a node structure, and fills it with a
product name, price, and sets member next to NULL. The product name and price are read from the
standard input. The input format is as follows:
orange juice, 5.95,

so, the product name consists of some characters that are not comma, followed by a comma, followed by
product price, followed by comma, and some other optional characters in a line. You can assume that
product name is not longer than 49, and the function should also read all characters to the end of line
but not store them anywhere. You do not need to do much error checking except that if you cannot
read input in required format the function should return NULL. The function returns a pointer to the
structure created like this. The function prototype is: struct node* readprod();

Solution:

struct node* readprod() {

struct node *r = malloc(sizeof(struct node)); /* 2pt */

if (2 != scanf("%[^,],%lf", &(r->prod[0]), &(r->price))) { /* 4pt */

free(r); return NULL; /* 1pt */

}

r->next = NULL; /* 1pt */

scanf("%*[^\n]\n"); /* 2pt */

return r;

}

CSCI 2132, Final Exam Solutions 16

(c) (10 marks) Write the C function insert which inserts a node into a linked list. You can assume that
list has products sorted by price from high to low, and after inserting the node, the list should remain
sorted. The first argument head is the pointer to the first element of the list, or NULL if the list is empty.
The second argument newnode is the new node to be inserted. The function returns the new head of the
list. The function prototype is: struct node* insert(struct node *head, struct node *newnode);

Solution:

struct node* insert(struct node *head, struct node *newnode) {

struct node *prev, *p;

if (head==NULL) return newnode; /* 1pt */

if (newnode->price > head->price) { /* 2pt */

newnode->next = head; return newnode;

}

prev = head; p = head->next; /* 1pt */

while (p != NULL && p->price > newnode->price) { /* 3pt */

prev = prev->next; p = p->next;

}

prev->next = newnode; newnode->next = p; /* 2pt */

return head; /* 1pt */

}

CSCI 2132, Final Exam Solutions 17

(d) (8 marks) Write a C program that reads a sequence of products and prints them out sorted by their
price from high to low. The program must read the the products using the function readprod defined
in (b), insert them into a linked list using the function insert defined in (c). The products must be
printed using the function printprod defined in (a). Write a complete program with includes and the
function main, but you can assume that the functions printprod, readprod, and insert are already
defined and their prototypes included, and struct node already defined.

Solution:

#include <stdio.h> /* 1pt */

int main() {

struct node *head=NULL, *h; /* 1pt */

while (NULL != (h = readprod())) /* 2pt */

head = insert(head, h); /* 1pt */

for (h = head; h!=NULL; h = h->next) /* 2pt */

printprod(h); /* 1pt */

return 0;

}

A tentative marking scheme is included on the side. An include such as stdio or stdlib is required
for NULL to be defined.

