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Abstract

Scanning activity is a common activity on the Internet
today, representing malicious activity such as information
gathering by a motivated adversary or automated tools
searching for vulnerable hosts (e.g., worms). Many scan
detection techniques have been developed; however, their
focus has been on smaller networks where packet-level in-
formation is available, or where internal characteristics of
the network are known. For large networks, such as those of
ISPs, large corporations or government organizations, this
information might not be available. This paper presents a
model of scans that can be used given only unidirectional
flow data. The model uses a Bayesian logistic regression,
which was developed using a combination of expert opinion
and manually-classified training data. It is shown to have
a detection rate of 95.5% with a false positive rate of 0.4%
overall when tested against a set of 300 TCP events.

1 Introduction

A scan is a reconnaissance technique aimed at multiple
targets. The goal of a scan is to determine the presence of
particular hosts, or particular services on particular hosts.
It consists of sending a probe packet to the particular tar-
get, where the response from the target indicates if the host
and/or service is present.

Scans are often indicators of malicious activity. They can
indicate the presence of particular worms, as the majority
of worms observed to date have been scanning worms [15].
Scans, particularly those generated by vulnerability scan-
ners, can also indicate that an adversary is about to perform
an attack, as was investigated by Panjwani et al. [9]. Finally,
an attack itself can appear as a scan to a defender, where the
adversary might be attempting a particular exploit against
all of the addresses on a particular subnet.

As scans can indicate malicious activity, it is important
to detect their presence. However, most scan detection ap-
proaches have focused on detecting scans on smaller net-

works, where the characteristics of the network are entirely
known or where packet-level traffic information is available.
This paper presents a novel approach to scan detection that
addresses the issue of detecting scans on a large network,
such as an ISP, where only unidirectional flow-level infor-
mation is available.

This paper is organized as follows: Section 2 provides
some background on scanning activity and other approaches
to detecting scans. Section 3 introduces the system require-
ments and constraints that arise from dealing with large net-
works. Our model of scans is presented in Section 4. In Sec-
tion 5 we compare our results to that of the Threshold Ran-
dom Walk (TRW) algorithm [6]. Section 6 provides some
concluding remarks.

2 Background

Several researchers have examined the detection of port
scans, resulting in a variety of definitions. In general, a
scan is a reconnaissance technique used to determine the
existence of multiple targets, where the targets could be
hosts or particular services on particular hosts. Scans can
be used both by adversaries in order to determine what to
attack and by system administrators to audit their network.
Scans also occur from system misconfigurations, as well
as from peer-to-peer applications searching for previously-
contacted peers. Scans can be a side effect of vulnerability
searches, such as by vulnerability scanners or worms.

Two popular intrusion detection systems — Snort [12]
and Bro [10] — use thresholding to detect scanning activ-
ity. However, both approaches have been found by Jung et
al. [6] to have low values for efficiency and/or effectivness.
Bro’s scan detection has since been modified to incorporate
a threshold random walk approach [6].

Various algorithmic approaches to detecting scans have
also been developed. For example, Graph-based Intru-
sion Detection System, GrIDS, recognizes scans based on
structures the communications form when inserted into a
graph [13]. Leckie and Kotagiri [7] use probabilistic mod-
eling to determine how likely it is that a source will contact



a particular destination IP address or port, using the con-
ditional probabilities to determine if a source is scanning.
Robertson et al. [11] developed a method based on the traf-
fic returned to a source, where no response or a RST-ACK
was indicative of scanning. Approaches based on visual
representation of connection data have also been developed
for detecting port scans (e.g., Muelder et al. [8]).

However, the threshold random walk (TRW) approach to
detecting port scans developed by Jung et al. [6] has become
the gold standard for scan detection, and has been used for
activities such as worm detection and quarantine [14]. Their
approach uses sequential hypothesis testing, where each
new connection request from an external source is evalu-
ated. If the destination exists, then there is more support
for the source being benign (or, rather, not scanning). How-
ever, if the destination does not exist, then there is more
support for the source to be scanning. Once the hypothesis
that the source is scanning has been accepted or rejected, it
is labeled with the result. The use of sequential hypothesis
testing allows the user to customize variables based on the
density of hosts on their network and on the desired detec-
tion and false positive rates.

3 System Requirements and Constraints

Focusing on very large networks introduces a number of
system requirements and constraints that are unique to such
networks. In particular, we operate under the following as-
sumptions of operating conditions:

• Only flow level traffic collection, such as Cisco Net-
Flow, will be performed. This assumption stems from
the large volume of traffic such networks typically ob-
serve. As a result, the cost of collecting packet headers
is typically prohibitive, both in terms of the cost to the
router performing the collection and in terms of the
storage requirements. Therefore sites often use flow
data as an alternative.

• There will be multiple border routers. Thus traffic will
be collected at multiple locations and need to be aggre-
gated at a single collection site.

• There will be multiple geographic and administrative
domains. Given that we are working at the ISP level, it
is likely that the network will span multiple countries.
Additionally, the subnets within the ISP will represent
multiple administrative domains, where the ISP might
not have visibility into how the subnets have been con-
figured or what policies might be in place.

• Any flow data collected will be unidirectional. This is
the case with Cisco NetFlow, which is a popular flow
collection format. Additionally, a large organization

might have asymmetric routing policies so that bidi-
rectional flow information can not be collected.

Current approaches to scan detection do not work given all
of the above conditions.

4 Scan Model

Given that a scan consists of a collection of activity orig-
inating from a single source, regardless of the type of scan
being performed, we choose to analyse all of the flows col-
lected from a single source IP address as an event. We de-
fine an event as a collection of flows originating from the
same source surrounded by periods of inactivity. For the
purposes of our analysis, we define an event as consisting
of a minimum of 32 flows, all with the same protocol, sur-
rounded by at least 5 minutes where no flows are observed,
where the values of 32 and 5 have been chosen arbitrarily.

Each event can now be analysed to determine if it con-
tains a scan. Given the boolean nature of the decision
— yes, the event contains a scan, or no, it does not — a
Bayesian logistic regression approach is used to model the
information that informs a user if a scan is present. There
are three advantages to using a Bayesian logistic regression
in these circumstances: (1) the model will return a probabil-
ity that an event contains a scan, allowing the user to chose
cut-offs that balance their tolerance for false positives ver-
sus false negatives, (2) the logistic regression learns a model
based on labeled data rather than using general heuristics,
and (3) the Bayesian approach uses both expert opinion and
observed data.

For the TCP protocol, we identified 21 different variables
as being possible indicators of whether the event contained
scanning activity. These variables are:

1. maximum /24 subnet run length,

2. ratio of flows that do not have the ACK bit set to all
flows,

3. ratio of flows to known malware ports to all flows,

4. ratio of flows with fewer than 3 packets to all flows,

5. maximum run length of IP addresses in any one /24
subnet,

6. maximum number of IP addresses contacted in any one
/24 subnet,

7. maximum number of high destination ports contacted
on any one host,

8. maximum number of low destination ports contacted
on any one host,



9. maximum number of consecutive high destination
ports contacted on any one host,

10. maximum number of consecutive low destination ports
contacted on any one host,

11. number of unique destination IP addresses,

12. number of unique source ports,

13. average number of source ports per destination IP ad-
dress,

14. ratio of flows with “standard” flag combinations (SYN
and ACK set, along with either the FIN or RST bit set)
to all flows,

15. ratio of the number of flows with the average
bytes/packet > 60 to all flows,

16. median value of packets per destination IP address,

17. ratio of flows with “standard” combination (standard
flag combination and at least three packets and at least
60 bytes/packet on average) to all flows ,

18. ratio of flows with backscatter combination (RST,
RST-ACK, or SYN-ACK for the flag combination and
the average number of bytes/packet is ≤ 60 and the
number of packets per flow is ≤ 2) to all flows,

19. ratio of unique destination IP addresses to number of
flows,

20. ratio of unique source ports to number of flows, and

21. ratio of flows with backscatter flag combinations
(SA—RA—R) to all flows.

In some cases the variables were chosen because we sus-
pected that a high value would be a good indication of scan-
ning activity (e.g., the ratio of flows that do not have the
ACK bit set to all flows), while in other cases the vari-
ables were chosen because a high value indicated that the
event probably did not contain scanning activity (e.g., ratio
of flows with backscatter flag combinations to all flows).

4.1 Model Development

The classical approach to developing a logistic regres-
sion model consists of choosing an appropriate training set
and then generating the model based on the data in the train-
ing set. However, we use instead a Bayesian approach to
logistic regression modeling. The Bayesian approach seeks
to assign priors to each of the co-efficients based on expert
opinion of the contribution each variable makes. A prior can
be loosely thought of as a weighting on the co-efficients.
This process is followed in order to develop a model that

is based on a combination of expert opinion and the mod-
els generated by the data itself. It has the advantages of
requiring less training data and can reduce errors caused by
choosing a training set that is not representative of the entire
data space.

Two data sets were gathered — one for the elicitation
process and one for the training process. Events were gen-
erated based on flow data collected during a one hour pe-
riod on a large network. The elicitation period was 17:00-
18:00 GMT on May 4, 2005, where 129,191 events were
collected. The training set consisted of 130,062 events gath-
ered during the subsequent hour. The values for each of
the 21 variables were calculated for each event in both sets.
These values were then used to choose appropriate subsets
from each set for manual inspection.

We made the assumption that each variable would have
a linear relationship with the dependent variable, where the
dependent variable is the probability that an event repre-
sents scanning activity. Based on this assumption, the val-
ues that provide the most information in determining appro-
priate co-efficients for a general linear model are the values
located at the extremes [3]. This is because the variance
in the estimated dependent variable ŷ is proportional to the
variance of each of the co-efficients, and so reducing the
variance of the co-efficients also reduces the variance in ŷ.
This is achieved by maximizing the value for the sum of
squares for each variable, since there is an inverse relation-
ship between the sum of squares and the variance. The sum
of squares is maximized by choosing values that are furthest
from the mean [16, p. 13-15], and so the extreme values are
chosen for generating the model.

Our aim was to identify the 100 most extreme observa-
tions in X-space. With 21 variables, we needed to seed our
X matrix with at least 21 observations so that it is invertible.
Thus each row in X represents a single observation, while
each column represents a single variable. We use the fact
that the variance of any additional observation v is propor-
tional to vT (XT X)−1v, where vT is the transpose of the
vector v, XT is the transpose of matrix X and (XT X)−1

is the inverse of the matrix XT X . Therefore, we randomly
select observations to include in our matrix X until we have
enough cases to invert the matrix. For our experiments, we
arbitrarily chose 30 samples to initially seed our matrix X .
Then, for each remaining observation not yet selected, we
calculate its variance. The next observation added to X will
be the observation with highest variance. This procedure
is repeated until X contains 100 rows, and each new set of
calculations are performed using the new, larger X matrix.

For the elicitation set, the first 100 cases in the X matrix
(so 30 randomly chosen observations plus the 70 observa-
tions with the largest variance) were selected for manual
analysis. An analyst was provided with the values for each
of the 21 variables, but was not allowed to use any addi-



tional information. Based on these values, she provided her
estimate of the probability that the event contained a scan.
These probabilities provided the values for y used to then
determine the priors for the logistic regression. The priors
are calculated by first converting each probability yi onto
the logit scale log( yi

1−yi
) and then using a linear regression

to determine the prior values for each co-efficient.
The training set consisted of 200 observations chosen

using the same procedure that was used to select the elic-
itation set. In this instance, however, a manual analysis
was performed using the event data itself. All of the flows
were provided to the expert, who flagged each event with a
boolean value indicating if the event contained a scan. Of
the 200 observations, 53 were flagged as containing scan-
ning activity. A Bayesian logistic regression model was
generated that incorporated the priors obtained during the
elicitation process. The posterior distribution for each of
the co-efficients is proportional to the product of the sam-
pling distribution, or likelihood, and the prior distribution
for each observation [4, p. 65-88]. This process assumes
that the priors for the co-efficients follow a normal distri-
bution, which is generally not the case. Therefore the val-
ues required were calculated using a Markov Chain Monte
Carlo simulation [5]. The result is a logistic regression
model where the posterior co-efficients have been informed
by both expert option (via the priors) and the sample train-
ing data.

Given that the resulting logistic regression model con-
tains 21 variables we wanted to reduce the number of vari-
ables in order to reduce the overhead associated with cal-
culating the values for each of the different variables and
to therefore reduce the processing time for each event. We
used the Akaike Information Criterion (AIC) [1] to deter-
mine what variables could be removed without significantly
affecting the model’s fit to the data. The final result was the
following model, consisting of six variables:

P̂ (event contains a scan) =
eŷ

1 + eŷ

where

ŷ = −2.83835 + 3.30902x2 − 0.15705x4 − 0.00232x13 −
1.04741x15 + 3.16302x19 − 3.26027x21

where x2 is the ratio of flows with no ACK bit set to all
flows, x4 is the ratio of flows with fewer than three pack-
ets to all flows, x13 is the average number of source ports
per destination IP address, x15 is the ratio of the number of
flows that have an average of 60 bytes/packet or greater to
all flows, x19 is the ratio of the number of unique destina-
tion IP addresses to the total number of flows, and x21 is
the ratio of the number of flows where the flag combination
indicates backscatter to all flows.

4.2 Model Validation

This model was validated using a third set of data.
This data was collected from the same network on May 4,
2005, from 19:00-20:00 GMT. This hour contained 127,873
events, from which 300 events were drawn randomly. These
300 events were analysed by the same expert who analysed
the elicitation and training set. The expert was provided
with the flow data for each of the events, and asked to label
each event as either containing a scan or not.

Each of the 300 events were evaluated by the logistic re-
gression model. Given that the model returns a probability
that the event contained a scan, we set the threshold so that
anything greater than or equal to 0.5 was considered a scan,
while anything less than that was not. These values were
compared to the expert assessment. Of the 300 events, there
were 22 scans and 278 non-scans. The model correctly rec-
ognized 21 scans and 277 non-scans. The detection rate
and false positive rate, using the conditional probability def-
initions provided by Axelsson [2], are therefore 95.5% and
0.4% respectively. The one false positive had a probabil-
ity of being a scan of 60.74% — the lowest probability of
any of the scans. This non-scan consisted of 62 flows to
three destinations. Two flows consisted of completed con-
nections to two of the addresses. The remaining 60 flows
were to a single IP address and consisted of four packets
with a SYN-RST flag combination. The one false negative
had a probability of being a scan of 41.04% — the high-
est probability of any of the non-scans. This scan consisted
of 70 flows to seven unique destination IP addresses, all of
which were one to three packet SYN-only flows.

4.3 Analysis of Variables

The sign of the co-efficients indicates if the probability
of a scan increases or decreases as the value of the variable
increases. Thus as variables x2 (the ratio of flows with no
ACK bit set to all flows) and x19 (the ratio of the number
of unique destination IP addresses to the total number of
flows) increases, so too does the probability that the event
being examined contains a scan. This result is intuitive in
both cases. In the first case, the ACK flag generally indi-
cates that information has been exchanged during a com-
munication, whereas a high proportion of flows where the
ACK flag is not present indicates communication attempts
that lack any connection and exchange of information. In
the second case, a high ratio of destination IP addresses to
the number of flows indicates that the source IP address is
communicating with a large number of different destination
IP addresses, but with few flows to each destination. In iso-
lation, this does not necessarily indicate scanning behaviour
(e.g., external web servers might display similar connection
patterns), however it can be a good indicator when com-



bined with the other indicators, such as the proportion of
flows with the ACK bit set (e.g., web server traffic would
largely have the ACK bits set indicating completed connec-
tions, whereas scan traffic likely will not).

Four of the variables have negative co-efficients, indi-
cating that as their value increases, the probability that the
event contains a scan decreases. These variables are: the
ratio of flows with fewer than three packets to all flows
(x4), the average number of source ports per destination
IP address (x13), the ratio of flows with an average of 60
bytes/packet or greater to all flows (x15), and the ratio of
flows with a backscatter flag combination to all flows (x21).
It is not surprising that a high value for x13 indicates that a
scan is less likely, since a high number of source ports per
destination IP address indicates multiple connections to the
same machine, which is more likely to occur given normal
communications then it is during horizontal or strobe scans.
A high value for x15 indicating normal activity is also not
surprising, given that finding 60 bytes/packet or more indi-
cates that data was likely exchanged. Given that a blind scan
has a low likelihood of finding machines running the target
service, the majority of flows will not show that data was ex-
changed. A high value for x21 indicates that the majority of
flags have backscatter combinations (SYN-ACK, RST-ACK
or RST). Finally, variable x4 is surprising. This variable in-
dicates that if a large number of flows have fewer than three
packets then it is less likely to be a scan. We believe that
this is the case for two reasons: (1) that a high value here
was often observed to be associated with backscatter traf-
fic, which is a common occurrence on our network, and (2)
that a large number of scans use the TCP stack implementa-
tion where a lack of response to a SYN results in two more
attempts before considering the connection to have failed.

5 Comparison to TRW

Given that the Threshold Random Walk (TRW) [6] is the
current gold standard for detecting port scans, we wanted to
use it for a basis of comparison. However, TRW requires
either bi-directional flow information (so that the response
to a connection request is known) or an oracle that knows
if an internal host exists. Under our operating conditions,
neither is available.

We were able, however, to modify the TRW algorithm to
perform a two-step process that emulates having an oracle
available. For a given hour all of the outgoing data was used
to create a set containing every source IP observed. The as-
sumption is that if a source IP address was observed in the
outgoing traffic, then that host exists, otherwise it does not.
The TRW algorithm was then used on the incoming traf-
fic, with this set of IPs used for the oracle. We used the
same values from the original paper — θ0 = 0.8, θ1 = 0.2,
α = 0.01, and β = 0.99. This assumes that the network

density is 20%, and that the false positive rate should be
less than 1%. Given that we use unidirectional flow data,
we do not know if the external source originated the con-
versation. Additionally, we know that there are backdoors
on our network that have not been instrumented, and so our
list of known existing hosts is not complete. In order to
avoid any false positives that these constraints might gener-
ate, the TRW algorithm was further modified so that a flow
to a non-existing destination was considered a miss only if
both the destination IP address was not in the set of hosts
known to exist and the flag combination for the flow was a
SYN only.

We compare the results for TRW and our model on both
the training set and testing set. This was done because the
data for the testing set was randomly chosen, whereas the
data for the training set was specifically chosen to repre-
sent the more extreme cases. Of the 200 observations in the
training set, 53 were identified as scans via expert analy-
sis. Our model correctly recognized all 53, however it also
had three false positives. The probabilities of the event con-
taining a scan for each of the three false positives were all
between 50% and 60%. Given the same set, TRW correctly
identified 50 of the 53 scans, with only one false positive.
The three scans that were not identified by TRW were: (1)
a vertical scan of a single IP address, (2) a horizontal scan
of port 53 on 14 IP addresses, all of which were known to
exist, and (3) a horizontal scan of port 3389 on 3,389,187
IP addresses, 12,405 of which were known to exist. The
one false positive consisted of 47 SYN-only flows to five
IP addresses, with each IP address contacted on a differ-
ent, high-numbered port (specifically, ports 1166, 19592,
27947, 43525, and 61519). This traffic is certainly unusual,
but the expert analyst felt that it represented some other type
of activity other than a scan. The TRW algorithm, however,
performed much better on the testing set, correctly identify-
ing all of the scanners with no false positives. Interestingly,
it did not identify any of the non-scanners as benign, but
rather all of them were still in a state pending a decision as
to whether they represented scanning or non-scanning ac-
tivity.

It should be noted at this point that the comparisons made
above are based on source IP addresses that are associated
with at least 32 flows. One of the advantages to using TRW
is that it can accept or reject the hypothesis that a source is
scanning given very few connection attempts (the average
case given the parameters from the paper is 5.4 connection
requests performed before the hypothesis is accepted or re-
jected [6]). Thus for any scans consisting of fewer than 32
flows, TRW will outperform our detection approach. The
value of 32 flows was chosen arbitrarily for our data, and in
the future we intend to investigate the minimum number of
flows required to detect a scan using our model.



6 Conclusions and Future Work

In this paper we presented a new approach to scan de-
tection. Unlike previous approaches, ours requires only
unidirectional flow data and is thus suitable for very large
networks such as ISPs, large corporations and government
organizations. Our approach is based on the concept of
analysing all of the traffic from each source over a partic-
ular time period. Several key characteristics of the traffic
are extracted and a logistic regression model is applied to
determine the probability that the traffic contains scanning
activity. This approach is currently in operational use on
an ISP network, processing more than 10 Tb of data across
more than two billion flows per day.

Three hundred events were randomly chosen from a pool
of over 100,000 TCP events, and these were manually char-
acterized by an expert analyst into scans and non-scans. The
results from the logistic regression model were then com-
pared against this assessment. We compared our approach
to a modified threshold random walk (TRW) [6] using the
same training and testing sets. We had a classification accu-
racy of 98.5% on the training set and 99.3% on the testing
set, while TRW’s accuracy was 98.0% and 100.0% respec-
tively. Thus our results are comparable.
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