
 Proceedings of the 2005 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2005

ISBN 555555555/$10.00 © 2005 IEEE

Abstract – Network administrators need to be able to quickly
synthesize a large amount of raw data into comprehensive
information and knowledge about a network system in order to
determine if there is any unusual activity occurring on that
network. This paper presents some initial results of a
simplistic baselining method applied to a class B-sized
network. These baselines are then used as the basis for an
anomaly detection system that examines unusual amounts of
activity to any one port on any one host. Thus we provide a
system that can detect changes in the activity of any one host,
regardless of whether those changes are noticeable when
observing overall traffic behavior.

Index terms – network intrusion detection

I. INTRODUCTION

Intrusion detection is an important part of an information
assurance strategy, since identifying machines that have
been compromised in turn identifies documents,
communication channels and workflows that may have
been compromised. While there are host-based intrusion
detection systems, the majority of deployed systems
operate at the network level (e.g. Snort [1], Bro [2],
MINDS [3]). The approaches used by these systems each
have their short-comings. In the case of Snort, which uses
a signature-based intrusion detection approach, a
signature for the exploit used by an adversary must
already be written and added to the rule-based. In the
case of MINDS, where a more anomaly-based approach is
taken, only network-level anomalies are detected, without
specifically identifying changes in behavior at the host
level.

This paper addresses the gap between intrusion detection
approaches. We describe an anomaly-based system built
using simple statistical tests that detects changes in host-
level behavior, while still operating at the network level.
Additionally, rather than requiring packet-level analysis,
our system is based on flow-level analysis, allowing for
high-bandwidth, high-utilization networks to more easily

 Faculty of Computer Science, Dalhousie University,
and CERT Network Situtational Awareness, Software
Engineering Institute, Carnegie Mellon University

United States Military Academy, West Point

be monitored. We base our system on the assumption that
malicious activity can be identified based on changes in
port usage at the host level (as opposed to the network
level), and that this can be used to identify possible
compromised machines.

In Section 2 we discuss related work in the intrusion
detection field. In Section 3 we describe our system in
detail, and provide experimental results from deploying
this approach on a /16 subnet in Section 4. We discuss
the limitations of this approach in Section 5, followed by
a concluding section.

II. BACKGROUND

Denning [4] was the first to propose anomaly-based
intrusion detection, based on the assumption that
malicious behavior will be anomalous in any given
system. The earliest example of this approach is
Network Security Monitor (NSM) [5]. NSM generated a
matrix of connection information, and then compared the
patterns observed in the matrix to known signatures of
malicious activity. In addition, they used a probabilistic
analysis to determine normal, and alerted on any traffic
outside of this pattern. They observed at the time that
most hosts communicated with a very small number of
hosts and services. However, it is likely that this pattern
does not exist as strongly today, especially with the
advent of the web and peer-to-peer applications.

Since NSM, several detection systems have been
developed, with a focus on applying data mining
techniques to classify network attacks [6]. In addition,
anomaly-based methods, where the focus is to detect
novel attacks, have also been developed. One example of
this is the Minnesota Network Intrusion Detection
Systems (MINDS) [3]. MINDS operates by clustering
data and then for each point calculating how far it is from
the cluster. If the point is an outlier, it is considered
anomalous and an alert is generated. One of the
challenges identified by Eilertson et al. for the MINDS
system was profiling of individual IP addresses [7]. Their
planned approach to this involved developing high-
performance computing-based solutions.

Host Anomalies from Network Data

Carrie Gates , Member, IEEE, and Cpt. Damon Becknel

 Proceedings of the 2005 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2005

ISBN 555555555/$10.00 © 2005 IEEE

Leckie and Kotagiri, in 2002, presented a novel approach
to detection that was based on probabilistic modeling of
port connection information [8]. However, they focused
on using this approach solely for scan detection and not
for more general intrusion detection. For each IP address
in the monitored network a probability is generated that
represents how likely it is that a source will contact that
particular destination IP, P(d|s) where d is the destination
and s is the source, based on how commonly that
destination IP is contacted by other sources, P(d). A
similar approach is used for each port. The probability
P(d) is based on the prior distribution of sources that have
accessed that host, which implies that if the probabilities
for this approach are generated based on a sample of
network data, that if the monitored network is scanned
regularly or heavily then the resulting distributions will
include scans as being normal traffic. This will likely
make the approach less accurate in practice.

Kim et al. also took a statistical analysis approach to
intrusion detection, and also focused specifically on port
scanning [9]. They generated a model of normal network
traffic, and then searched for anomalous traffic that would
indicate the presence of a port scan. This was loosely
based on the footprint information that would be seen, as
this pattern of activity would result in different statistical
values. They performed four types of tests, divided into
static and dynamic tests and employing z-tests and χ2
tests. Their results indicated that these approaches were
promising. However, they have not yet tested their
approach on actual network traffic, but only through
simulations. In addition, they assume that network traffic
follows a Poisson distribution, when it is now widely
believed that network traffic has a heavy-tailed
distribution.

Iguchi and Goto perform a baseline method similar to
ours, where they baseline the activity of different ports in
order to detect anomalous activity [10]. Their baseline
consists of creating a basic profile where a frequency
distribution is stored for each port. Several distributions
are generated, such as incoming packets per session,
outgoing packets per session, incoming bytes per session
and outgoing bytes per session. In addition, these profiles
are aged over time, in order to accommodate natural
network fluctuations. However, this approach has only
been deployed at the border router, and has not been
designed for observing each host in a large network,
where scalability is more of a concern. As a result, they
might not necessarily observe unusual traffic to a single
host. In addition, they found that their approach worked
well for well-known server ports, but was unable to be
applied to ephemeral ports, whereas we are trying to
monitor both in order to detect unusual events such as
MyDoom [11] scanning.

III. OUR APPROACH

We have developed an approach to anomaly detection that
is based on simple statistical modeling at the host level.
However, we perform this analysis at the network level
and apply it to each host, thereby allowing a network
administrator to determine if any individual host is
experiencing unusual activity. Like other anomaly-
detection systems, we assume that malicious usage will
manifest itself in unusual traffic patterns.

While we are interested in identifying anomalies at the
host level, we use the network level for two reasons.
First, it cannot be assumed that users will monitor host-
based logs and alerts for signs of intrusion. While having
a network or security administrator responsible for
monitoring each host avoids this issue, the administrator
can then be overwhelmed by the number of hosts for
which there are logs. Given this, we provide an analysis
at the network level where the purpose is to identify any
hosts that exhibit some change in characteristics. Second,
a network-level viewpoint can provide more situational
awareness. At the host level, an administrator only knows
if that single host is experiencing unusual behavior.
However, at the network level an administrator can
observe if there are multiple hosts that have unusual
activity, if the unusual activity amongst the hosts is the
same or different, and if those hosts fall in some logical
group (e.g. same subnet, same department).

Unlike most other systems, we use flow data rather than
packet data. This allows us to more easily process
information in high-bandwidth high-utilization
environments as the network data has already been
aggregated for us. In particular, we extend the SiLK [12]
collection system and suite of tools (available at
SourceForge [13]), which processes Cisco NetFlow
version 5 [14]. Cisco NetFlow aggregates the traffic into
a flow record based on address and temporal similarities,
resulting in a record that contains routing information,
source and destination IP and port information, and
payload summary information (e.g. number of packets,
number of bytes). We note that our approach should be
easily extendable to packet-level analysis.

Our system consists of two phases: a training phase and
an operational phase. The training phase is required
because we assume no a priori knowledge about the hosts
on a network. Rather, we observe network traffic and
based on this information determine if a machine exists at
a particular IP address and if it exhibits behavior that is
characteristic of a server or a client. Once we have
developed a baseline of typical activity, we enter the
operational phase. This consists of comparing any given
hour of data against the current baseline to determine if
there is any unusual activity.

 Proceedings of the 2005 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2005

ISBN 555555555/$10.00 © 2005 IEEE

A. Training Phase

During the training phase, the system reads flow records
and uses the data to calculate simple statistics. This step
is meant to be performed on a set of (recent) historical
data. The first step in the algorithm reads this set of data
in one hour chunks and stores the number of flows
observed for each port on each host. In order to reduce
the memory footprint, the data structure that we use
consists of an array of 65536 pointers to another array of
65536 pointers. These pointers represent every possible
IP address. If a host is found to exist, then the appropriate
pointer has space allocated to it to hold a structure that
consists of a bitmap of 2048 32-bit integers and a pointer
to a linked list. Each bit in the bitmap represents one of
the possible 65536 ports, and is turned on to indicate that
a particular port has seen at least one flow. The linked list
consists of the number of flows for each port that had
communication, where the order of the items in the list is
the same as the order of the ports that have seen activity.
For example, if the only ports who had any flows were 80
and 443, then the first item in the linked list would hold
the number of flows for port 80, and the second for port
443.

Once all of the training data has been read in, the mean
and standard deviation for each port on each host is
calculated. We use the same data structure that was
described above, however each node in the linked list now
contains the average and standard deviation for each port
that had flows on it. Additionally, the sum and sum of
squares are kept, so that the structure can be easily
updated with new information. The resulting data is
saved to a file and used in the operational phase.

In addition to statistical information, the node for each
host also contains a flag indicating if the host is a server
or a workstation. All IP addresses receiving more than
100 flows/hour (on average) to a port less than 1024 are
considered servers, and all other hosts are then considered
to be workstations by default.

B. Operational Phase

This phase has been designed to work on one hour
increments of data. One hour of NetFlow data is read into
a structure containing a count of all flows observed by all
ports on all hosts, the same as was used in the training
phase. This information is then compared against the
baseline statistics that were calculated above. Any port
on any host that exhibits activity that differs by more than
one standard deviation generates a warning, while alerts
are generated if the traffic differs by more than two
standard deviations. In order to avoid false alarms from
ephemeral port usage, one of two conditions must be met.
Either there must be at least 50 flows to the port during

the current hour, or the mean for the baseline must have at
least 50 flows. This avoids situations where the mean is 2
flows, but 7 flows happened to be observed during the
hour under consideration.

IV. EXPERIMENTAL RESULTS

We tested our system on a /16 subnet located in the
United States that collected Cisco NetFlow data at the
border of their network. The data for this network was
divided into two sets: inbound and outbound. All inbound
traffic had addresses that were sourced from locations
outside of the network and destined for hosts inside of the
network. All outbound traffic had source addresses that
were sourced from within the network and destined for
outside the network.

We established a baseline for each of incoming and
outgoing data, using the destination and source ports
respectively. As network traffic tends to exhibit diurnal
patterns representative of typical workdays, we
established separate baselines for four different time
periods: weekends, late nights, peak hours, and all other.

We built our baseline on data from the week of January
19 - 25. The first baseline represents weekends and
holidays, and uses all of the data from January 24 and 25.
We expect traffic to drop to minimal levels during this
time and that many of the hosts will not show any
activity. The next baseline represents the peak hours of
weekday activity, and contains 15:00-19:59 GMT of
January 19-24, 2004. We expect to see the maximum
number of hosts active during this period and the
maximum amount of activity per host. The third baseline
is the late night weekday activity, representing hours
05:00-10:59 GMT of 19-24 January, 2004. These traffic
levels should only be affected by automated processes and
parts of the organization that are running 24 hour
operations. The final and fourth baseline file consists of
the remaining hours of the weekdays. Host behavior
during these periods is expected to be sporadic as people
arrive at various hours in the morning, and may leave at
various hours during the evening.

In order to generate the baseline files, hourly files
containing port counts had to be generated first. These
hourly files were then aggregated to generate the baseline
files containing the statistical information on each port.
For instance, the late night activity baseline consisted of
one file for each of the 6 hours in the period. Given that
our baselines used 5 weekdays of activity, we needed to
create 30 files of intermittent data. The next step
calculated the mean and standard deviation of each
characterized flow. For instance, host 192.168.1.10 using
port 443 may occur a total of 100 times over the course of

 Proceedings of the 2005 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2005

ISBN 555555555/$10.00 © 2005 IEEE

the 30-hour baseline window. We calculate the mean and
standard deviation for this host and port on a per hour
basis. These statistics are then recorded into a file that
will serve as the baseline for that generic time period.
Generating the baseline from the intermittent data takes
approximately 1.25 minutes, and generating the
intermittent files varies greatly depending on the number
of records to be processed. The same process is run for
each generic time period baseline.

The results from plotting the peak and late night baselines
are illustrated in Figures 1 and 2 respectively. We
represent this information in graphical form to allow an
administrator to glance quickly at a graph and see if there
are any alerts. By presenting this information graphically,
rather than just as textual alerts, the administrator might
notice patterns of activity, such as groups of hosts
demonstrating unusual activity, or persistent unusual
activity on the same set of hosts. The graphs represent
/16 addresses only, and plot the third octet on the Y-axis
and the fourth octet on the X-axis. Thus each /24 subnet
is a horizontal line, with different symbols for servers and
workstations. As we expected, there is a significant
difference in address space densities between the peak
and non-peak hours.

Once the baseline was established for the network, we ran
experiments for a day that was not part of the baseline
window in order to test the abilities and applicability of
the system. One of the experiments was run with peak
hour traffic, and one of the experiments was run with late
night data. The experiment was performed against both
incoming and outgoing data sets. All experiments used
data collected on January 29, 2004.

Figure 1. Baseline Activity for Peak Hours

Figure 2. Baseline Activity for Night Hours

In our first experiment, we compared our late night
baseline to the hour of data 1000-1100 GMT on January
29, 2004. We illustrate our findings in Figure 3 using the
same graphical approach specified earlier, and with
warning and alerts using a different shape and color.
We also enumerate the program’s output in Table 1. As
can be seen, there are 5 alerts for 4 IP addresses during
this hour. As identified in the section on the training
phase, we ignore traffic to all ports that is less than some
minimum amount per hour. In this example we used 50
as our cut-off value.

Figure 3. Activity for 1000-1100 GMT January 29,

2004

 Proceedings of the 2005 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2005

ISBN 555555555/$10.00 © 2005 IEEE

Address Port Notification Actual
Measurement

Mean +
Standard
Deviation

1.0.8.166 1175 Alert 0 54 + 11
1.0.8.166 3123 Alert 60 0

1.0.23.219 5101 Alert 53 0
1.0.28.244 3127 Alert 2058 0
1.0.61.88 443 Alert 0 58 + 59

Table 1. Alert Summary of Activity for 1000-1100

GMT January 29, 2004

The first four alerts involve ports greater than 1024 which
would normally be considered ephemeral ports. In the
first case, there is no traffic to a particular ephemeral,
when it normally sees more than 50 flows per hour on
average. It is unusual that an ephemeral port should
encounter so much traffic in a single hour, as normally
traffic to ephemerals is more distributed. Because of the
lasting persistence during the baseline window, this is
likely some custom application that was being run during
the baseline window. Alternatively, it could have been a
back-door system that was in regular use during the
baseline period. This highlights one of the limitations of
an anomaly detection approach - there is no way to
determine normal activity versus malicious other than
through more detailed investigations. In either case, the
sudden disappearance of the regular traffic on this port
likely warrants further investigation.

The next three alerts involve seeing a large amount of
traffic directed at ports to which traffic had not previously
been observed. Of particular interest is the traffic to port
3127. This particular sample hour was taken during the
spread of the MyDoom worm. This shows that this
approach can clearly distinguish when there is unusual
activity. In this case, the number of flows to that
particular port on that particular machine might
indicate that it has been compromised. This provides
evidence that our approach may be quite powerful in
enumerating hosts that are using common new ports to
communicate, often indicative of new worm activity.

The last alert was for a Secure Sockets Layer (SSL) server
running on port 443 that experiences very sporadic traffic.
We have noticed in our testing that some SSL servers
have a large variance in their activity. During the 30-hour
baseline sample, this port on this host saw between 4 and
198 flows per hour. This variance is indicated in the
standard deviation. Therefore, while it is flagged as an
alert, it can probably be ignored. Obviously this data
point is within one standard deviation; however, it was
flagged because it saw no traffic, which was considered
unusual. We flag any port that had seen some minimum
amount of activity (e.g. 50 flows) in the baseline window,
but that did not see activity in the tested window.

In our next experiment, we compared our peak hour
baseline to the hour of data 1500-1600 GMT January 29,
2004. We illustrate our findings in Figure 4 and
enumerate the program’s output in Table 2. As can be
seen, there are 8 alerts and 3 warnings for 10 unique IP
addresses during this hour.

Figure 4. Activity for 1500-1600 GMT January 29,

2004

Table 2. Alert Summary of Activity for 1500-1600
GMT January 29, 2004

What is interesting about this is that it shows clear
patterns of activity that should be investigated. First, we
see the continued large number of connections to port
3127 on 1.0.28.244. This is a strong indication that this
host is continuing to demonstrate MyDoom activity.
Second, there seems to be a sudden rise in activity

Address Port Notification Actual
Measurement

Mean +
Standard
Deviation

1.0.8.83 1151 Alert 107 0
1.0.20.170 113 Alert 103 0
1.0.28.244 113 Alert 182 0
1.0.28.244 3127 Alert 3127 0
1.0.28.245 113 Alert 56 0

1.0.46.100 443 Warning 2818 1431 +
716

1.0.46.103 443 Warning 155 97 + 53
1.0.46.201 80 Alert 0 57 + 127
1.0.61.82 113 Alert 0 83 + 60
1.0.61.88 443 Warning 79 599 + 316

1.0.61.97 443 Alert 0 2014 +
1942

 Proceedings of the 2005 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2005

ISBN 555555555/$10.00 © 2005 IEEE

associated with port 113, which should likely be
investigated. This sudden appearance of port 113
demonstrates the need for the ability to modify the
baseline to account for changing traffic patterns or for
missed patterns in the original window. Third, port 443
seems to be seeing unusual traffic, although for the most
part this is just a warning and can probably be ignored. A
characteristic of SSL servers seems to be this sporadic
nature; however, 1.0.61.97 seems to be a popular SSL
server that is no longer seeing any traffic. This could be
do to an outage and may be cause for further
investigation. The administrator would likely ignore the
alert on 1.0.46.201 port 80 since the average is only 57
with a very large standard deviation. There is currently
no explanation for the traffic on port 1151 for 1.0.8.83.

Figure 5. Outbound Activity for 1000-1100 GMT

January 29, 2004

Table 3. Alert Summary of Outbound Activity for

1000-1100 GMT January 29, 2004

A means of ensuring that earlier problems are actually
occurring and are not due to the fact that we use a
unidirectional flow of packets is to run the same approach
on the outbound that we did on the inbound traffic. Figure
5 and Table 3 depict the results from the same late night
outbound traffic, and Figure 6 and Table 4 depict the
results from the same peak hour outbound traffic.

When compared with the traffic in the inbound data set,
we see that largely the same machines and ports get
flagged. Incoming traffic to 3127 to 1.0.28.244 is missed
in the evening, however is suddenly present during the
day. This is indicative of a possibly successful
compromise of the monitored system. Further
investigation would be required to draw more certain
conclusions. The host 1.0.61.88 shows lots of activity out
on port 443 during the late night test, but there was
nothing incoming to the same port and address pair. This
type of one-way traffic may be due to some error in the
data collection, or might be indicative of a compromise or
covert channel. In the peak hours, many of the same
machines get flagged as showing unusual activity. Again,
we see ephemeral ports broken up across multiple
NetFlow records. This might be due to normal activity
(in which case we might want to adjust our cut-off from
50 to something higher), or might indicate traffic that
should be investigated further.

Figure 6. Outbound Activity for 1500-1600 GMT

January 29, 2004

Table 4. Alert Summary of Outbound Activity for

1500-1600 GMT January 29, 2004

Address Port Notification Actual
Measurement

Mean +
Standard
Deviation

1.0.8.166 1175 Alert 0 51 + 19
1.0.8.166 3123 Alert 60 0

1.0.23.219 5101 Alert 50 0
1.0.61.82 53709 Alert 82 0
1.0.61.88 443 Alert 208 65 + 59

Address Port Notification Actual
Measurement

Mean +
Standard
Deviation

1.0.20.14 25 Warning 129 186 + 54
1.0.28.244 113 Alert 183 0
1.0.28.244 3127 Alert 2476 0
1.0.28.245 113 Alert 56 0
1.0.61.82 33632 Alert 66 2 + 1
1.0.61.82 39932 Alert 58 2 + 2
1.0.61.82 42635 Alert 50 3 + 4
1.0.61.82 59000 Alert 97 2 + 3
1.0.61.82 59016 Alert 91 2 + 3

1.0.61.97 443 Warning 4383 2409 +
1895

 Proceedings of the 2005 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2005

ISBN 555555555/$10.00 © 2005 IEEE

V. LIMITATIONS

Our approach has two known limitations. The first is that
we need a better model for recognizing servers. For
example, servers seem to appear and disappear between
the late night baseline and the peak hour baseline. A
possible solution to this is to determine the appropriate
values for detecting the presence of a server (perhaps 100
flows/hour on average is too high), or to determine that a
machine is a server based on day time traffic and then to
maintain that information across baselines. Future work
is required to test the effectiveness of other models.

Related to this limitation is the use of standard deviation
calculations, which are very sensitive to outliers. As a
result, it was not uncommon to see values where the
standard deviation was larger than the mean, e.g. a mean
of 157 and a standard deviation of 199. One method to
address this would be to use quantiles instead of the
standard deviation. That is, use a set of data for
baselining, calculating both the interquartile range (the
values at 25% and at 75%), flagging anything outside this
range in yellow, and then using the 2.5% and 97.5%
quantiles as the cut-off for flagging anything in red.
Additionally, we could use higher order statistics to better
describe the distribution; however, a discussion of this is
beyond the scope of this paper.

The second issue is the current lack of scalability. This
approach does not scale well to networks larger than a
class B with the current data structures. First, the
performance would decrease rapidly due to heavy usage
of memory and disk storage. For instance, a heavily
populated class B at peak hours requires 1 Gigabyte of
memory to generate the baseline. Additionally, the
process is CPU intensive because of the numerous
searches needed to match records to the baseline model.
The process requires duration on the order of minutes
rather than seconds. Further, it is unclear if the
visualization of larger networks would be possible using
the fairly coarse grained techniques discussed in this
paper. The performance of this approach on a class A-
sized network or larger is an open question.

VI. CONCLUSIONS

This paper contributes a novel approach to detecting the
possible compromise of individual hosts by analyzing
their behavior at the network level. This approach is
based on very simple statistical models, yet experimental
results indicate that even these models can yield very
useful information. For example, during the peak hour
investigated, only five hosts were identified as exhibiting
unusual behavior on a /16 subnet. It is believed that even
if the system has a high false positive rate, that alerting on

such a small number of machines still results in a
manageable workload for the security administrator.

We have identified a number of ways that our approach
could be improved in the future. First, we would like to
match inbound and outbound anomalies and display the
results in one report. A simple algorithm could be
implemented to sort the list based on some fundamental
importance criteria, such as severity of deviation, bi-
directional occurrence, and a focus on a port watch list.
Second, the server model could be improved by
enumerating a list of traditional server ports, which
includes a number of ports greater than the 1024 currently
implemented. Ideally, we would be able to incorporate
domain knowledge about the network rather than rely
upon an interpretation of the network traffic to indicate
which hosts are servers and which are workstations.
Third, we would like to see the inclusion of more
sophisticated statistical models that could be used to give
a better view of the nature of the anomalies detected.

VII. REFERENCES

[1] Martin Roesch. Snort - lightweight intrusion
detection for networks. In Proceedings of LISA '99:
13th Systems Administration Conference, 1999.
Seattle, Washington, USA, November 7-12, 1999.

[2] Vern Paxson. Bro: A system for detecting network

intruders in real-time. In Proceedings of the 7th
USENIX Security Symposium. San Antonio, Texas.
January 26-29, 1998.

[3] Levent Ertoz, Eric Eilertson, Aleksandar Lazarevic,

Pang-Ning Tan, Paul Dokas, Vipin Kumar and
Jaideep Srivastava. Detection of novel network
attacks using data mining. In Proceedings of the
2003 ICDM Workshop on Data Mining for Computer
Security. Melbourne, Florida, USA. November 19,
2003.

[4] D.E. Denning. An intrusion-detection model. IEEE

Transactions on Software Engineering. 1987. Vol.
13, no. 2, pages 222-232.

[5] Todd Heberlein, Gihan Dias, Karl Levitt, Biswanath

Mukherjee, Jeff Wood, and David Wolber. A
network security monitor. In Proceedings of the
1990 IEEE Symposium on Research in Security and
Privacy. Oakland, California, USA. 7-9 May 1990.

[6] Aleksandar Lazarevic, Levent Ertoz, Vipin Kumar,

Aysel Ozgur and Jaideep Srivastava. A comparative
study of anomaly detection schemes in network
intrusion detection. In Proceedings of the Third

 Proceedings of the 2005 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2005

ISBN 555555555/$10.00 © 2005 IEEE

SIAM Conference on Data Mining. San Francisco,
May 2003.

[7] E.E. Eilertson, L. Ertoz and V. Kumar. MINDS: A

new approach to the information security process. In
Proceedings of the 24th Army Science Conferece.
November 1999.

[8] C. Leckie and R. Kotagiri. A probabilistic approach

to detecting network scans. In Proceedings of the
2002 IEEE Network Operations and Management
Symposium. Florence, Italy. April 2002.

[9] Hyukjoon Kim, Surrey Kim, Michael A. Kouritzin

and Wei Sun. Detecting network portscans through
anomaly detection. In Proceedings of SPIE: Signal
Processing, Sensor Fusion, and Target Recognition
XIII. Vol. 5429. Pages 254-263.

[10] M. Iguchi and S. Goto. “Detecting Malicious

Activities through Port Profiling.” IEICE
Transactions on Information and Systems, Volume
E82-D, Number 4, April 1999. Pages 784-792.

[11] McAfee Security.

http://us.mcafee.com/virusInfo/default.asp?id=helpCe
nter&hcName=mydoom&cid=9547. Last visited: 16
March 2004.

[12] Carrie Gates, Michael Collins, Michael Duggan,

Andrew Kompanek, and Mark Thomas. More
NetFlow tools: For performance and security. In
Proceedings of the 18th Large Installation Systems
Administration Conference (LISA 2004). Pages 121 -
132. Atlanta, Georgia. November 14 - 19, 2004.

[13] A. Kompanek and M. Thomas. “SiLK Analysis

Suite”. http://sourceforge.net/projects/silktools/.
Last visited: 16 March 2004.

[14] Cisco Systems. Cisco CNS NetFlow Collection

Engine.
http://www.cisco.com/en/US/products/sw/netmgtsw/
ps1964/products_user_guide_chapter09186a00801ed
569.html Last visited: 5 April 2004.

