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Abstract – Network administrators need to be able to quickly 
synthesize a large amount of raw data into comprehensive 
information and knowledge about a network system in order to 
determine if there is any unusual activity occurring on that 
network.  This paper presents some initial results of a 
simplistic baselining method applied to a class B-sized 
network. These baselines are then used as the basis for an 
anomaly detection system that examines unusual amounts of 
activity to any one port on any one host.  Thus we provide a 
system that can detect changes in the activity of any one host, 
regardless of whether those changes are noticeable when 
observing overall traffic behavior.  
 
Index terms – network intrusion detection 
 
 
 

I. INTRODUCTION 

Intrusion detection is an important part of an information 
assurance strategy, since identifying machines that have 
been compromised in turn identifies documents, 
communication channels and workflows that may have 
been compromised.  While there are host-based intrusion 
detection systems, the majority of deployed systems 
operate at the network level (e.g. Snort [1], Bro [2], 
MINDS [3]).  The approaches used by these systems each 
have their short-comings.  In the case of Snort, which uses 
a signature-based intrusion detection approach, a 
signature for the exploit used by an adversary must 
already be written and added to the rule-based.  In the 
case of MINDS, where a more anomaly-based approach is 
taken, only network-level anomalies are detected, without 
specifically identifying changes in behavior at the host 
level. 
 
This paper addresses the gap between intrusion detection 
approaches.  We describe an anomaly-based system built 
using simple statistical tests that detects changes in host-
level behavior, while still operating at the network level.  
Additionally, rather than requiring packet-level analysis, 
our system is based on flow-level analysis, allowing for 
high-bandwidth, high-utilization networks to more easily 
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be monitored.  We base our system on the assumption that 
malicious activity can be identified based on changes in 
port usage at the host level (as opposed to the network 
level), and that this can be used to identify possible 
compromised machines. 
 
In Section 2 we discuss related work in the intrusion 
detection field.  In Section 3 we describe our system in 
detail, and provide experimental results from deploying 
this approach on a /16 subnet in Section 4.  We discuss 
the limitations of this approach in Section 5, followed by 
a concluding section. 
 
 

II. BACKGROUND 

Denning [4] was the first to propose anomaly-based 
intrusion detection, based on the assumption that 
malicious behavior will be anomalous in any given  
system.   The earliest example of this approach is 
Network Security Monitor (NSM) [5].   NSM generated a 
matrix of connection information, and then compared the 
patterns observed in the matrix to known signatures of 
malicious activity.  In addition, they used a probabilistic 
analysis to determine normal, and alerted on any traffic 
outside of this pattern.  They observed at the time that 
most hosts communicated with a very small number of 
hosts and services.  However, it is likely that this pattern 
does not exist as strongly today, especially with the 
advent of the web and peer-to-peer applications. 
 
Since NSM, several detection systems have been 
developed, with a focus on applying data mining 
techniques to classify network attacks [6].  In addition, 
anomaly-based methods, where the focus is to detect 
novel attacks, have also been developed.  One example of 
this is the Minnesota Network Intrusion Detection 
Systems (MINDS) [3].  MINDS operates by clustering 
data and then for each point calculating how far it is from 
the cluster.  If the point is an outlier, it is considered 
anomalous and an alert is generated.  One of the 
challenges identified by Eilertson et al. for the MINDS 
system was profiling of individual IP addresses [7].  Their 
planned approach to this involved developing high-
performance computing-based solutions. 
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Leckie and Kotagiri, in 2002, presented a novel approach 
to detection that was based on probabilistic modeling of 
port connection information [8].  However, they focused 
on using this approach solely for scan detection and not 
for more general intrusion detection.  For each IP address 
in the monitored network a probability is generated that 
represents how likely it is that a source will contact that 
particular destination IP, P(d|s) where d is the destination 
and s is the source, based on how commonly that 
destination IP is contacted by other sources, P(d).  A 
similar approach is used for each port.  The probability 
P(d) is based on the prior distribution of sources that have 
accessed that host, which implies that if the probabilities 
for this approach are generated based on a sample of 
network data, that if the monitored network is scanned 
regularly or heavily then the resulting distributions will 
include scans as being normal traffic.  This will likely 
make the approach less accurate in practice. 
 
Kim et al. also took a statistical analysis approach to 
intrusion detection, and also focused specifically on port 
scanning [9].  They generated a model of normal network 
traffic, and then searched for anomalous traffic that would 
indicate the presence of a port scan.  This was loosely 
based on the footprint information that would be seen, as 
this pattern of activity would result in different statistical 
values.  They performed four types of tests, divided into 
static and dynamic tests and employing z-tests and χ2 
tests.  Their results indicated that these approaches were 
promising.  However, they have not yet tested their 
approach on actual network traffic, but only through 
simulations.  In addition, they assume that network traffic 
follows a Poisson distribution, when it is now widely 
believed that network traffic has a heavy-tailed 
distribution. 
 
Iguchi and Goto perform a baseline method similar to 
ours, where they baseline the activity of different ports in 
order to detect anomalous activity [10].  Their baseline 
consists of creating a basic profile where a frequency 
distribution is stored for each port.  Several distributions 
are generated, such as incoming packets per session, 
outgoing packets per session, incoming bytes per session 
and outgoing bytes per session.  In addition, these profiles 
are aged over time, in order to accommodate natural 
network fluctuations.  However, this approach has only 
been deployed at the border router, and has not been 
designed for observing each host in a large network, 
where scalability is more of a concern.  As a result, they 
might not necessarily observe unusual traffic to a single 
host.  In addition, they found that their approach worked 
well for well-known server ports, but was unable to be 
applied to ephemeral ports, whereas we are trying to 
monitor both in order to detect unusual events such as 
MyDoom [11] scanning. 

III. OUR APPROACH 

We have developed an approach to anomaly detection that 
is based on simple statistical modeling at the host level.  
However, we perform this analysis at the network level 
and apply it to each host, thereby allowing a network 
administrator to determine if any individual host is 
experiencing unusual activity.  Like other anomaly-
detection systems, we assume that malicious usage will 
manifest itself in unusual traffic patterns. 
 
While we are interested in identifying anomalies at the 
host level, we use the network level for two reasons.  
First, it cannot be assumed that users will monitor host-
based logs and alerts for signs of intrusion.  While having 
a network or security administrator responsible for 
monitoring each host avoids this issue, the administrator 
can then be overwhelmed by the number of hosts for 
which there are logs.  Given this, we provide an analysis 
at the network level where the purpose is to identify any 
hosts that exhibit some change in characteristics.  Second, 
a network-level viewpoint can provide more situational 
awareness.  At the host level, an administrator only knows 
if that single host is experiencing unusual behavior. 
However, at the network level an administrator can 
observe if there are multiple hosts that have unusual 
activity, if the unusual activity amongst the hosts is the 
same or different, and if those hosts fall in some logical 
group (e.g. same subnet, same department). 
 
Unlike most other systems, we use flow data rather than 
packet data.  This allows us to more easily process 
information in high-bandwidth high-utilization 
environments as the network data has already been 
aggregated for us.  In particular, we extend the SiLK [12] 
collection system and suite of tools (available at 
SourceForge [13]), which processes Cisco NetFlow 
version 5 [14].  Cisco NetFlow aggregates the traffic into 
a flow record based on address and temporal similarities, 
resulting in a record that contains routing information, 
source and destination IP and port information, and 
payload summary information (e.g. number of packets, 
number of bytes).  We note that our approach should be 
easily extendable to packet-level analysis. 
 
Our system consists of two phases: a training phase and 
an operational phase.  The training phase is required 
because we assume no a priori knowledge about the hosts 
on a network.  Rather, we observe network traffic and 
based on this information determine if a machine exists at 
a particular IP address and if it exhibits behavior that is 
characteristic of a server or a client.  Once we have 
developed a baseline of typical activity, we enter the 
operational phase.  This consists of comparing any given 
hour of data against the current baseline to determine if 
there is any unusual activity. 
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A. Training Phase 

During the training phase, the system reads flow records 
and uses the data to calculate simple statistics.  This step 
is meant to be performed on a set of (recent) historical 
data.  The first step in the algorithm reads this set of data 
in one hour chunks and stores the number of flows 
observed for each port on each host.  In order to reduce 
the memory footprint, the data structure that we use 
consists of an array of 65536 pointers to another array of 
65536 pointers.  These pointers represent every possible 
IP address.  If a host is found to exist, then the appropriate 
pointer has space allocated to it to hold a structure that 
consists of a bitmap of 2048 32-bit integers and a pointer 
to a linked list.  Each bit in the bitmap represents one of 
the possible 65536 ports, and is turned on to indicate that 
a particular port has seen at least one flow.  The linked list 
consists of the number of flows for each port that had 
communication, where the order of the items in the list is 
the same as the order of the ports that have seen activity.  
For example, if the only ports who had any flows were 80 
and 443, then the first item in the linked list would hold 
the number of flows for port 80, and the second for port 
443. 
 
Once all of the training data has been read in, the mean 
and standard deviation for each port on each host is 
calculated.  We use the same data structure that was 
described above, however each node in the linked list now 
contains the average and standard deviation for each port 
that had flows on it.  Additionally, the sum and sum of 
squares are kept, so that the structure can be easily 
updated with new information.  The resulting data is 
saved to a file and used in the operational phase. 
 
In addition to statistical information, the node for each 
host also contains a flag indicating if the host is a server 
or a workstation.  All IP addresses receiving more than 
100 flows/hour (on average) to a port less than 1024 are 
considered servers, and all other hosts are then considered 
to be workstations by default. 

B. Operational Phase 

This phase has been designed to work on one hour 
increments of data.  One hour of NetFlow data is read into 
a structure containing a count of all flows observed by all 
ports on all hosts, the same as was used in the training 
phase.  This information is then compared against the 
baseline statistics that were calculated above.  Any port 
on any host that exhibits activity that differs by more than 
one standard deviation generates a warning, while alerts 
are generated if the traffic differs by more than two 
standard deviations.  In order to avoid false alarms from 
ephemeral port usage, one of two conditions must be met.  
Either there must be at least 50 flows to the port during 

the current hour, or the mean for the baseline must have at 
least 50 flows.  This avoids situations where the mean is 2 
flows, but 7 flows happened to be observed during the 
hour under consideration. 
 

IV. EXPERIMENTAL RESULTS 

We tested our system on a /16 subnet located in the 
United States that collected Cisco NetFlow data at the 
border of their network.  The data for this network was 
divided into two sets: inbound and outbound.  All inbound 
traffic had addresses that were sourced from locations 
outside of the network and destined for hosts inside of the 
network.  All outbound traffic had source addresses that 
were sourced from within the network and destined for 
outside the network. 
  
We established a baseline for each of incoming and 
outgoing data, using the destination and source ports 
respectively.  As network traffic tends to exhibit diurnal 
patterns representative of typical workdays, we 
established separate baselines for four different time 
periods: weekends, late nights, peak hours, and all other.  
 
We built our baseline on data from the week of January 
19 - 25.  The first baseline represents weekends and 
holidays, and uses all of the data from January 24 and 25.  
We expect traffic to drop to minimal levels during this 
time and that many of the hosts will not show any 
activity.  The next baseline represents the peak hours of 
weekday activity, and contains 15:00-19:59 GMT of 
January 19-24, 2004.  We expect to see the maximum 
number of hosts active during this period and the 
maximum amount of activity per host.  The third baseline 
is the late night weekday activity, representing hours 
05:00-10:59 GMT of 19-24 January, 2004.  These traffic 
levels should only be affected by automated processes and 
parts of the organization that are running 24 hour 
operations.  The final and fourth baseline file consists of 
the remaining hours of the weekdays.  Host behavior 
during these periods is expected to be sporadic as people 
arrive at various hours in the morning, and may leave at 
various hours during the evening. 
 
In order to generate the baseline files, hourly files 
containing port counts had to be generated first.  These 
hourly files were then aggregated to generate the baseline 
files containing the statistical information on each port.  
For instance, the late night activity baseline consisted of 
one file for each of the 6 hours in the period.  Given that 
our baselines used 5 weekdays of activity, we needed to 
create 30 files of intermittent data.  The next step 
calculated the mean and standard deviation of each 
characterized flow.  For instance, host 192.168.1.10 using 
port 443 may occur a total of 100 times over the course of 
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the 30-hour baseline window.  We calculate the mean and 
standard deviation for this host and port on a per hour 
basis.  These statistics are then recorded into a file that 
will serve as the baseline for that generic time period.  
Generating the baseline from the intermittent data takes 
approximately 1.25 minutes, and generating the 
intermittent files varies greatly depending on the number 
of records to be processed.  The same process is run for 
each generic time period baseline. 
 
The results from plotting the peak and late night baselines 
are illustrated in Figures 1 and 2 respectively.   We 
represent this information in graphical form to allow an 
administrator to glance quickly at a graph and see if there 
are any alerts.  By presenting this information graphically, 
rather than just as textual alerts, the administrator might 
notice patterns of activity, such as groups of hosts 
demonstrating unusual activity, or persistent unusual 
activity on the same set of hosts.  The graphs represent 
/16 addresses only, and plot the third octet on the Y-axis 
and the fourth octet on the X-axis.  Thus each /24 subnet 
is a horizontal line, with different symbols for servers and 
workstations.  As we expected, there is a significant 
difference in address space densities between the peak 
and non-peak hours. 
 
Once the baseline was established for the network, we ran 
experiments for a day that was not part of the baseline 
window in order to test the abilities and applicability of 
the system.  One of the experiments was run with peak 
hour traffic, and one of the experiments was run with late 
night data.  The experiment was performed against both 
incoming and outgoing data sets.  All experiments used 
data collected on January 29, 2004. 
 
 

 
Figure 1.  Baseline Activity for Peak Hours 

 
 

 
Figure 2.  Baseline Activity for Night Hours 

 
 

 
In our first experiment, we compared our late night 
baseline to the hour of data 1000-1100 GMT on January 
29, 2004.  We illustrate our findings in Figure 3 using the 
same graphical approach specified earlier, and with 
warning and alerts using a different shape and color. 
We also enumerate the program’s output in Table 1.  As 
can be seen, there are 5 alerts for 4 IP addresses during 
this hour.  As identified in the section on the training 
phase, we ignore traffic to all ports that is less than some 
minimum amount per hour.  In this example we used 50 
as our cut-off value. 
 
 
 
 

 
Figure 3.  Activity for 1000-1100 GMT January 29, 

2004 
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Address Port Notification Actual 
Measurement 

Mean + 
Standard 
Deviation 

1.0.8.166 1175 Alert 0 54 + 11 
1.0.8.166 3123 Alert 60 0 

1.0.23.219 5101 Alert 53 0 
1.0.28.244 3127 Alert 2058 0 
1.0.61.88 443 Alert 0 58 + 59 

 
Table 1.  Alert Summary of Activity for 1000-1100 

GMT January 29, 2004 
 
The first four alerts involve ports greater than 1024 which 
would normally be considered ephemeral ports.  In the 
first case, there is no traffic to a particular ephemeral, 
when it normally sees more than 50 flows per hour on 
average.  It is unusual that an ephemeral port should 
encounter so much traffic in a single hour, as normally 
traffic to ephemerals is more distributed.  Because of the 
lasting persistence during the baseline window, this is 
likely some custom application that was being run during 
the baseline window.  Alternatively, it could have been a 
back-door system that was in regular use during the 
baseline period.  This highlights one of the limitations of 
an anomaly detection approach - there is no way to 
determine normal activity versus malicious other than 
through more detailed investigations.  In either case, the 
sudden disappearance of the regular traffic on this port 
likely warrants further investigation. 
 
The next three alerts involve seeing a large amount of 
traffic directed at ports to which traffic had not previously 
been observed.  Of particular interest is the traffic to port 
3127.  This particular sample hour was taken during the 
spread of the MyDoom worm.  This shows that this 
approach can clearly distinguish when there is unusual 
activity.  In this case, the number of flows to that 
particular port on that particular machine might  
indicate that it has been compromised.  This provides 
evidence that our approach may be quite powerful in 
enumerating hosts that are using common new ports to 
communicate, often indicative of new worm activity. 
 
The last alert was for a Secure Sockets Layer (SSL) server 
running on port 443 that experiences very sporadic traffic.  
We have noticed in our testing that some SSL servers 
have a large variance in their activity.  During the 30-hour 
baseline sample, this port on this host saw between 4 and 
198 flows per hour.  This variance is indicated in the 
standard deviation.  Therefore, while it is flagged as an 
alert, it can probably be ignored.  Obviously this data 
point is within one standard deviation; however, it was 
flagged because it saw no traffic, which was considered 
unusual.  We flag any port that had seen some minimum 
amount of activity (e.g. 50 flows) in the baseline window, 
but that did not see activity in the tested window.   

 
In our next experiment, we compared our peak hour 
baseline to the hour of data 1500-1600 GMT January 29, 
2004.  We illustrate our findings in Figure 4 and 
enumerate the program’s output in Table 2.  As can be 
seen, there are 8 alerts and 3 warnings for 10 unique IP 
addresses during this hour.  
 
 

 
Figure 4.  Activity for 1500-1600 GMT January 29, 

2004 
 
 

Table 2.  Alert Summary of Activity for 1500-1600 
GMT January 29, 2004 

 

 
 
What is interesting about this is that it shows clear 
patterns of activity that should be investigated.  First, we 
see the continued large number of connections to port 
3127 on 1.0.28.244.  This is a strong indication that this 
host is continuing to demonstrate MyDoom activity.  
Second, there seems to be a sudden rise in activity 

Address Port Notification Actual 
Measurement 

Mean + 
Standard 
Deviation 

1.0.8.83 1151 Alert 107 0 
1.0.20.170 113 Alert 103 0 
1.0.28.244 113 Alert 182 0 
1.0.28.244 3127 Alert 3127 0 
1.0.28.245 113 Alert 56 0 

1.0.46.100 443 Warning 2818 1431 + 
716 

1.0.46.103 443 Warning 155 97 + 53 
1.0.46.201 80 Alert 0 57 + 127 
1.0.61.82 113 Alert 0 83 + 60 
1.0.61.88 443 Warning 79 599 + 316 

1.0.61.97 443 Alert 0 2014 + 
1942 
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associated with port 113, which should likely be 
investigated.  This sudden appearance of port 113 
demonstrates the need for the ability to modify the 
baseline to account for changing traffic patterns or for 
missed patterns in the original window.  Third, port 443 
seems to be seeing unusual traffic, although for the most 
part this is just a warning and can probably be ignored.  A 
characteristic of SSL servers seems to be this sporadic 
nature; however, 1.0.61.97 seems to be a popular SSL 
server that is no longer seeing any traffic.  This could be 
do to an outage and may be cause for further 
investigation.  The administrator would likely ignore the 
alert on 1.0.46.201 port 80 since the average is only 57 
with a very large standard deviation.  There is currently 
no explanation for the traffic on port 1151 for 1.0.8.83. 
 

 
Figure 5.  Outbound Activity for 1000-1100 GMT 

January 29, 2004 
 

 
Table 3.  Alert Summary of Outbound Activity for 

1000-1100 GMT January 29, 2004 
 
A means of ensuring that earlier problems are actually 
occurring and are not due to the fact that we use a 
unidirectional flow of packets is to run the same approach 
on the outbound that we did on the inbound traffic. Figure 
5 and Table 3 depict the results from the same late night 
outbound traffic, and Figure 6 and Table 4 depict the 
results from the same peak hour outbound traffic. 

When compared with the traffic in the inbound data set, 
we see that largely the same machines and ports get 
flagged.  Incoming traffic to 3127 to 1.0.28.244 is missed 
in the evening, however is suddenly present during the 
day.  This is indicative of a possibly successful 
compromise of the monitored system.  Further 
investigation would be required to draw more certain 
conclusions.  The host 1.0.61.88 shows lots of activity out 
on port 443 during the late night test, but there was 
nothing incoming to the same port and address pair.   This 
type of one-way traffic may be due to some error in the 
data collection, or might be indicative of a compromise or 
covert channel.  In the peak hours, many of the same 
machines get flagged as showing unusual activity.  Again, 
we see ephemeral ports broken up across multiple 
NetFlow records.  This might be due to normal activity 
(in which case we might want to adjust our cut-off from 
50 to something higher), or might indicate traffic that 
should be investigated further.  
 

 
Figure 6.  Outbound Activity for 1500-1600 GMT 

January 29, 2004 
 

 
Table 4.  Alert Summary of Outbound Activity for 

1500-1600 GMT January 29, 2004 

Address Port Notification Actual 
Measurement 

Mean + 
Standard 
Deviation 

1.0.8.166 1175 Alert 0 51 + 19 
1.0.8.166 3123 Alert 60 0 

1.0.23.219 5101 Alert 50 0 
1.0.61.82 53709 Alert 82 0 
1.0.61.88 443 Alert 208 65 + 59 

Address Port Notification Actual 
Measurement 

Mean + 
Standard 
Deviation 

1.0.20.14 25 Warning 129 186 + 54 
1.0.28.244 113 Alert 183 0 
1.0.28.244 3127 Alert 2476 0 
1.0.28.245 113 Alert 56 0 
1.0.61.82 33632 Alert 66 2 + 1 
1.0.61.82 39932 Alert 58 2 + 2 
1.0.61.82 42635 Alert 50 3 + 4 
1.0.61.82 59000 Alert 97 2 + 3 
1.0.61.82 59016 Alert 91 2 + 3 

1.0.61.97 443 Warning 4383 2409 + 
1895 
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V. LIMITATIONS 

Our approach has two known limitations.  The first is that 
we need a better model for recognizing servers.  For 
example, servers seem to appear and disappear between 
the late night baseline and the peak hour baseline.  A 
possible solution to this is to determine the appropriate 
values for detecting the presence of a server (perhaps 100 
flows/hour on average is too high), or to determine that a 
machine is a server based on day time traffic and then to 
maintain that information across baselines.  Future work 
is required to test the effectiveness of other models.   
 
Related to this limitation is the use of standard deviation 
calculations, which are very sensitive to outliers.  As a 
result, it was not uncommon to see values where the 
standard deviation was larger than the mean, e.g. a mean 
of 157 and a standard deviation of 199.  One method to 
address this would be to use quantiles instead of the 
standard deviation. That is, use a set of data for 
baselining, calculating both the interquartile range (the 
values at 25% and at 75%), flagging anything outside this 
range in yellow, and then using the 2.5% and 97.5% 
quantiles as the cut-off for flagging anything in red.  
Additionally, we could use higher order statistics to better 
describe the distribution; however, a discussion of this is 
beyond the scope of this paper. 
 
The second issue is the current lack of scalability.  This 
approach does not scale well to networks larger than a 
class B with the current data structures.  First, the 
performance would decrease rapidly due to heavy usage 
of memory and disk storage.  For instance, a heavily 
populated class B at peak hours requires 1 Gigabyte of 
memory to generate the baseline.  Additionally, the 
process is CPU intensive because of the numerous 
searches needed to match records to the baseline model.  
The process requires duration on the order of minutes 
rather than seconds.  Further, it is unclear if the 
visualization of larger networks would be possible using 
the fairly coarse grained techniques discussed in this 
paper.  The performance of this approach on a class A-
sized network or larger is an open question. 

VI. CONCLUSIONS 

This paper contributes a novel approach to detecting the 
possible compromise of individual hosts by analyzing 
their behavior at the network level.  This approach is 
based on very simple statistical models, yet experimental 
results indicate that even these models can yield very 
useful information.  For example, during the peak hour 
investigated, only five hosts were identified as exhibiting 
unusual behavior on a /16 subnet.  It is believed that even 
if the system has a high false positive rate, that alerting on 

such a small number of machines still results in a 
manageable workload for the security administrator. 
 
We have identified a number of ways that our approach 
could be improved in the future.  First, we would like to 
match inbound and outbound anomalies and display the 
results in one report.  A simple algorithm could be 
implemented to sort the list based on some fundamental 
importance criteria, such as severity of deviation, bi-
directional occurrence, and a focus on a port watch list.  
Second, the server model could be improved by 
enumerating a list of traditional server ports, which 
includes a number of ports greater than the 1024 currently 
implemented.  Ideally, we would be able to incorporate 
domain knowledge about the network rather than rely 
upon an interpretation of the network traffic to indicate 
which hosts are servers and which are workstations.  
Third, we would like to see the inclusion of more 
sophisticated statistical models that could be used to give 
a better view of the nature of the anomalies detected.   

VII. REFERENCES 

[1] Martin Roesch.  Snort - lightweight intrusion 
detection for networks. In Proceedings of LISA '99: 
13th Systems Administration Conference, 1999. 
Seattle, Washington, USA, November 7-12, 1999.  

 
[2] Vern Paxson.  Bro: A system for detecting network 

intruders in real-time. In Proceedings of the 7th 
USENIX Security Symposium.  San Antonio, Texas. 
January 26-29, 1998.  

 
[3] Levent Ertoz, Eric Eilertson, Aleksandar Lazarevic, 

Pang-Ning Tan, Paul Dokas, Vipin Kumar and 
Jaideep Srivastava.  Detection of novel network 
attacks using data mining.  In Proceedings of the 
2003 ICDM Workshop on Data Mining for Computer 
Security.  Melbourne, Florida, USA.  November 19, 
2003. 

 
[4] D.E. Denning.  An intrusion-detection model.  IEEE 

Transactions on Software Engineering.  1987.  Vol. 
13, no. 2, pages 222-232. 

 
[5] Todd Heberlein, Gihan Dias, Karl Levitt, Biswanath 

Mukherjee, Jeff Wood, and David Wolber.  A 
network security monitor.  In Proceedings of the 
1990 IEEE Symposium on Research in Security and 
Privacy.  Oakland, California, USA.  7-9 May 1990. 

 
[6] Aleksandar Lazarevic, Levent Ertoz, Vipin Kumar, 

Aysel Ozgur and Jaideep Srivastava.  A comparative 
study of anomaly detection schemes in network 
intrusion detection.  In Proceedings of the Third 



 Proceedings of the 2005 IEEE 
 Workshop on Information Assurance 
 United States Military Academy, West Point, NY  June 2005 
 

ISBN 555555555/$10.00  © 2005 IEEE 

SIAM Conference on Data Mining.  San Francisco, 
May 2003. 

 
[7] E.E. Eilertson, L. Ertoz and V. Kumar.  MINDS: A 

new approach to the information security process.  In 
Proceedings of the 24th Army Science Conferece.  
November 1999. 

 
[8] C. Leckie and R. Kotagiri.  A probabilistic approach 

to detecting network scans.  In Proceedings of the 
2002 IEEE Network Operations and Management 
Symposium.  Florence, Italy.  April 2002. 

 
[9] Hyukjoon Kim, Surrey Kim, Michael A. Kouritzin 

and Wei Sun.  Detecting network portscans through 
anomaly detection.  In Proceedings of SPIE: Signal 
Processing, Sensor Fusion, and Target Recognition 
XIII.  Vol. 5429.  Pages 254-263. 

 
[10] M. Iguchi and S. Goto.  “Detecting Malicious 

Activities through Port Profiling.”  IEICE 
Transactions on Information and Systems, Volume 
E82-D, Number 4, April 1999.  Pages 784-792. 

 
[11] McAfee Security. 

http://us.mcafee.com/virusInfo/default.asp?id=helpCe
nter&hcName=mydoom&cid=9547.  Last visited: 16 
March 2004. 

 
[12] Carrie Gates, Michael Collins, Michael Duggan, 

Andrew Kompanek, and Mark Thomas. More 
NetFlow tools: For performance and security.  In 
Proceedings of the 18th Large Installation Systems 
Administration Conference (LISA 2004). Pages 121 - 
132. Atlanta, Georgia. November 14 - 19, 2004. 

 
[13] A. Kompanek and M. Thomas. “SiLK Analysis 

Suite”.   http://sourceforge.net/projects/silktools/.  
Last visited: 16 March 2004. 

 
[14] Cisco Systems.  Cisco CNS NetFlow Collection 

Engine.  
http://www.cisco.com/en/US/products/sw/netmgtsw/
ps1964/products_user_guide_chapter09186a00801ed
569.html Last visited: 5 April 2004. 

 
 


