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Abstract. Long-lived renaming allows processes to repeatedly get distinct names
from a small name space and release these names. This paper presents two long-
lived renaming algorithms in which the name a process gets is bounded above by
the number of processes currently occupying a name or performing one of these
operations. The first is asynchronous, uses LL/SC objects, and has step complex-
ity that is linear in the number of processes, c, currently getting or releasing a
name. The second is synchronous, uses registers and counters, and has step com-
plexity that is polylogarithmic in c. Both tolerate any number of process crashes.

1 Introduction

Renaming is an interesting and widely-studied problem that has many applications in
distributed computing. For one-shot renaming, each of the n processes in the system
can perform GetName to get a distinct name from a small name space, {1, . . . ,m}. For
long-lived renaming, a process that has gotten a name, x, can also perform RelName(x),
so that it or another process can get this name later. In this more general version of the
renaming problem, each process can alternately perform GetName and RelName any
number of times (starting with GetName). After a process performs GetName, its name
stays the same until after it next performs RelName. If a process performs GetName
again, it may get the same name it got previously, or it may get a different name.

One application of long-lived renaming is the repeated acquisition and release of
a limited number of identical resources by processes [12], something that commonly
happens in most operating systems. In this case, names correspond to resources that
are acquired and released by processes. Each process that wants to acquire a resource
performs GetName to get a name, which is essentially permission for exclusive use of
the resource. When a process no longer needs the resource, it performs RelName.

Another application of renaming is to improve the time or space complexity of an
algorithm when only few processes participate [5]. For example, the time complexity
of an algorithm may depend on the maximum number of processes that could partici-
pate, because it iterates over all processes in the system. Then a faster algorithm can be
obtained by having each participating process first get a new name from a small name
space and iterating over this smaller space. For some algorithms, such as those that im-
plement shared objects, a process may participate for only short, widely spaced periods
of time. Better performance can be achieved if each process performs GetName when-
ever it begins participating and performs RelName when it has finished participating for
a while [21].



In one-shot renaming, the number of processes, k, that are getting or have gotten a
name grows as an execution proceeds. In many applications, the final value of k is not
known in advance. To avoid using an unnecessarily large name space, the size of the
name space should be small initially and grow as k grows.

In long-lived renaming, we say that a process is participating from the time it begins
a GetName operation until it completes its subsequent RelName operation. In particu-
lar, a process participates forever if it fails before releasing the last name that it got.
The number of participating processes can increase and decrease during an execution
of long-lived renaming. When the number is small, a process should get a small name,
even though other processes may have received much larger names earlier in the execu-
tion (and may still be participating).

An m(k)-renaming algorithm [5] is a renaming algorithm in which a process always
gets a name in the range {1, . . . ,m(k)}, where k is the number of processes that partici-
pate while it performs GetName. Note that, by the pigeonhole principle, m(k)-renaming
is impossible unless m(k)≥ k. The special case when m(k) = k is called strong renam-
ing.

The cost of performing renaming is also an issue. Renaming algorithms in which
the time complexities of GetName and RelName are bounded above by a function of the
number of participating processes, k, are called adaptive. A renaming algorithm whose
time complexity only depends on the number of processes, c, concurrently performing
GetName or RelName, but not on the number of names that are in use, is called fully-
adaptive. This is even better, because k can be much larger than c.

For some renaming algorithms, each process is assumed to have an identifier, which
is a name from a large original name space. Other renaming algorithms also work when
the original name space is infinite or when processes are anonymous (i.e. they have no
original names).

Related Work. The renaming problem has been studied extensively in asynchronous
systems beginning with Attiya, Bar-Noy, Dolev, Peleg, and Reischuk [5], who studied
one-shot renaming in asynchronous message passing systems. They proved that strong
one-shot renaming is impossible, even if only one process can fail. They also proved that
a process cannot decide on a new name until it has received messages (either directly
or indirectly) from at least half of the other processes. Thus, in this model, adaptive
one-shot renaming is impossible and one-shot renaming is impossible unless more than
half of the processes in the system participate. In addition, they give two algorithms for
one-shot renaming which assume that more than n/2 processes participate. The size of
the name space in their algorithms also depends on n.

For synchronous message passing systems, Chaudhuri, Herlihy, and Tuttle [19, 13]
gave an algorithm for one-shot strong renaming with O(logk) rounds in which a pro-
cess may send a message to any subset of other processes. They also proved a matching
lower bound for comparison-based algorithms. Attiya and Djerassi-Shintel [6] studied
the complexity of one-shot strong-renaming in semisynchronous message passing sys-
tems that are subject to late timing faults. They obtained an algorithm with O(logk)
rounds of broadcast from a synchronous message passing algorithm and proved an
Ω(logk) lower bound for comparison based algorithms or when the original name space
is sufficiently large compared to k.



Bar-Noy and Dolev [11] showed how to transform the asynchronous message pass-
ing algorithms of Attiya, Bar-Noy, Dolev, Peleg, and Reischuk [5], to shared-memory,
using only reads and writes. They obtained a one-shot k2+k

2 -renaming algorithm that
uses O(n2) steps per operation and a one-shot (2k− 1)-renaming algorithm that uses
O(n ·4n) steps per operation.

Burns and Peterson [12] proved that long-lived m-renaming is impossible in an
asynchronous shared memory system using only reads and writes unless m ≥ 2k− 1.
They also gave the first long-lived (2k− 1)-renaming algorithm in this model, but its
time complexity depends on the size of the original name space. Herlihy and Shavit
[18] proved the same lower bound on m for one-shot renaming. Herlihy and Rasjbaum
[17] extended this result to systems that also provide set-consensus primitives.

In asynchronous shared memory systems using only reads and writes, the fastest
adaptive one-shot (2k− 1)-renaming algorithm has O(k2) step complexity [3]. There
are also an adaptive one-shot (6k− 1)-renaming algorithm with O(k logk) step com-
plexity [8] and an adaptive one-shot O(k2)-renaming algorithm with O(k) step complex-
ity [22, 8]. For adaptive long-lived renaming, O(k2)-time suffices for O(k2)-renaming [1,
4, 9, 20], but the fastest (2k−1)-renaming algorithm has O(k4) step complexity [7].
There are no fully-adaptive one-shot or long-lived renaming algorithms in this model.

With a single object that supports Fetch&Increment, fully-adaptive one-shot strong
renaming is very easy: The object is initialized to 1. To get a name, a process simply
performs Fetch&Increment and uses the responses as its new name [13].

For long-lived renaming, the only fully-adaptive algorithms use much stronger prim-
itives. Moir and Anderson [22] presented a fully-adaptive long-lived strong renaming
algorithm that uses an n-bit object storing the characteristic vector of the set of oc-
cupied names. This object supports two operations, SetFirstZero and bitwise-AND.
SetFirstZero sets the first 0 bit in the object to 1 and returns the index of this bit.
This index becomes the new name of the process that performed the operation. To re-
lease this name, the process sets this bit back to 0 by performing bitwise-AND with an
n-bit string that has a single 0 in the corresponding position. A similar algorithm can be
obtained using an n-bit Fetch&Add object in a synchronous system. These algorithms
have constant time complexity. However, they use very large objects.

There are a number of adaptive, long-lived strong renaming algorithms from smaller,
standard objects. For example, consider an array of n Test&Set objects, each initial-
ized to 0. To get a name, a process performs Test&Set on the array elements, in order,
until it gets response 0. Its name is the index of the element from which it gets this re-
sponse. To release the name i, a process performs Reset on the i’th array element. This
algorithm, presented in [22], performs GetName in O(k) time and RelName in constant
time. A similar algorithm uses a dynamically allocated doubly-linked list implemented
using Compare&Swap, in which each node has a counter containing the number of larger
names that are currently occupied, being acquired or being released [16].

The same idea can be used to obtain an adaptive long-lived strong renaming algo-
rithm in a synchronous shared memory with dlog2(U +1)e-bit registers, where U is the
size of the original name space. This is because a Test&Set object can be implemented
from a dlog2(U + 1)e-bit register in a synchronous system in constant time: a process
competes for an unset Test&Set object by writing its name to a corresponding register.



Adaptive long-lived strong renaming can also be performed in O(logk) time. Use a
sequence of O(logn) complete binary trees. The first tree has height 1 and the height
of each subsequent tree increases by 1. The leaves of these trees correspond to the new
names and a process gets a name by acquiring a leaf. Each node in the tree contains
a counter that denotes the number of free leaves in the subtree rooted at that node. To
acquire a leaf, a process accesses the counters at the root of each tree until it finds one
with a free leaf. It then proceeds down the tree to find a free leaf, using the value of the
counter at each node to guide its search and decrementing the counters on this path as
it descends. To release its name, the process starts at the corresponding leaf and walks
up the tree, incrementing the counter in each node it visits, until it reaches the root. In
a synchronous system, each counter can be implemented by an O(logn)-bit object that
supports Fetch&Decrement and Increment. In an asynchronous system, a bounded
version of Fetch&Decrement is needed, which does not change the value of the object
when it is 0. (See [22] for details.)

Our Results. In this paper, we present two new fault tolerant and fully-adaptive algo-
rithms for long-lived strong renaming. They are the first such algorithms that do not rely
on storing a representation of the set of occupied names in a single (very large) object.
The first algorithm is asynchronous and uses Θ(logU)-bit LL/SC objects, where U is
the size of the original name space. Its step complexity is O(c), where c is the number
of processes concurrently performing GetName or RelName. The second algorithm is
synchronous, uses O(logn)-bit counters and registers, and has O(log3 c/ loglogc) step
complexity. Both algorithms tolerate any number of process crashes.

The key to both algorithms is an interesting sequential data structure that supports
GetName and RelName in constant time. We then apply a universal adaptive construction
by Afek, Dauber and Touitou [2] to obtain our fully-adaptive asynchronous renaming
algorithm. This is presented in Section 3. In Section 4, we develop our fully-adaptive
synchronous algorithm. Directions for future work are discussed in Section 5.

2 Models

We consider models of distributed systems in which n deterministic processes run con-
currently and communicate by applying operations to shared objects. Our implementa-
tions make use of (multi-writer) registers, counters, and LL/SC objects. A register stores
an integer value and supports two operations: `← read(R), which reads register R and
assigns the value to the local variable `, and write R← `, which writes the value of
` into register R. A counter, C, supports read, write, `← Fetch&Increment(C), and
`← Fetch&Decrement(C). These last two operations assign the current value of C to `
and then increment and decrement C, respectively. An LL/SC object, O, supports write
and `← Load-Linked(O), which reads the value in object O and assigns it to `. It also
supports Store-Conditional O← `, which stores the value of ` to O only if no store
to O has occurred since the same process last performed Load-Linked(O). In addition,
this operation returns a Boolean value indicating whether the store occurred. We assume
that all operations supported by these objects occur atomically.

In asynchronous systems, an adversarial scheduler decides the order in which pro-
cesses apply operations to shared objects. The adversary also decides when processes



begin performing new instances of GetName and RelName. In synchronous systems,
the order chosen by the adversary is restricted. Time is divided into rounds. In each
round, every process that is performing an instance of GetName or RelName (and has
not crashed) applies one operation. The order chosen by the adversary can be differ-
ent for different rounds. We assume that the adversary only begins new instances of
GetName or RelName in a round if no other instances are in progress. We also assume
that the adversary does not begin an instance of GetName and an instance of RelName in
the same round. These assumptions can be removed by having a flag which processes
update frequently to indicate they are still working on the current batch of operations.
Other processes wait until a batch is finished before starting a new batch. This is dis-
cussed in more detail in the full version of the paper.

In both models, we measure the complexity of an instance of GetName or RelName
by the number of operations it applies. A process that crashes simply performs no fur-
ther operations. Our algorithms tolerate any number of process crashes.

3 Asynchronous Renaming

Afek, Dauber, and Touitou [2] have shown that, using LL/SC objects, fast sequential
implementations of an object suffice for obtaining fully-adaptive implementations:

Theorem 1. If an object has a sequential implementation in which an update takes a
constant number of steps, then it also has a fully-adaptive implementation from LL/SC
objects in an asynchronous system such that an update takes O(c) steps, where c is the
number of processes that update the object concurrently.

This is a special case of their universal construction, which maintains a queue of op-
erations to be performed on the object. To perform an operation, a process records the
operation it wants to perform and enqueues its identifier. Then it repeatedly helps the
processes at the head of the queue to complete their operations, until its own operation
is completed. Processes use Load-Linked and Store-Conditional to agree on the
results of each operation and how the value of the object changes.

We consider a renaming object whose value is the subset of free names in {1, . . . ,n}.
Here n is the number of processes in the system and, thus, an upper bound on the number
of names that will ever be needed. This object supports two operations, GetName and
RelName. If F is the set of free names, then an instance of GetName removes and returns
a name from F which is less than or equal to the maximum number of participating
processes at any point during the execution of the instance. RelName(x) returns x to F .
It can only be applied by the last process that received x from a GetName operation.

Next, we describe a data structure for representing F and constant time sequential
algorithms for performing GetName and RelName. From these, we get our first fully-
adaptive, long-lived, strong renaming implementation, by applying Theorem 1.

Theorem 2. In an asynchronous system in which processes communicate using LL/SC
objects, there is a fully-adaptive implementation of long-lived strong renaming which
performs GetName and RelName in O(c) steps.



The LL/SC objects used by this implementation must be able to store process iden-
tifiers. If these identifiers are from an original name space of size U , then the LL/SC
objects must have at least dlog2 Ue bits.

Data Representation. The subset F ⊆ {1, . . . ,n} of free names is represented by two
arrays of n registers, D and L, and two counters, M and F. (In the sequential imple-
mentation, which is related to Hagerup and Raman’s quasidictionary [15], the counters
M and F can be replaced by registers.) The values in M, F , and the entries of D are in
{0,1, . . . ,n}. The entries in L are in {1, . . . ,n}. The array D is used as a direct access
table. We say that name i is occupied if D[i] = 0. If i is occupied and p was the last pro-
cess that wrote 0 to D[i], then we say that p occupies name i. The following invariant
will be maintained:

At any point, if a process p has received name i as its response from
a call of GetName and, since then, has not called RelName(i), then i is
occupied by p.

(1)

A name that is neither occupied nor free is called reserved. Reserved names occur
while processes are performing GetName and RelName, and because of process failures.
A name i > M is free if and only if it is unoccupied.

The variable F is the number of free names less than or equal to M and L[1..F ] is
an unsorted list of the free names less than or equal to M. In particular,

1≤ L[ j]≤M for all 1≤ j ≤ F (2)

is an invariant of our data structure. We use L to denote the set of names in L[1..F].
Another important invariant is the following:

D
[

L[ j]
]

= j for all 1≤ j ≤ F. (3)

This ensures that all free names are unoccupied, there are F different names in L , and,
if i ∈ L , then D[i] is a pointer to a location in L, between 1 and F , that contains the
name i. The function InL(i) checks whether name i is in L using a constant number of
operations. Specifically, if i ∈ L , then InL(i) returns D[i], the unique index 1≤ j ≤ F
such that L[ j] = i. Otherwise, it returns 0.

Note that i ∈ F if and only if either (1≤ i≤M and i ∈ L) or (i > M and D[i] > 0).
There are two other invariants that are maintained by the data structure:

M ≤ the number of participating processes, and (4)

the number of occupied names+ the number of reserved names≤M. (5)

The data structure is illustrated in Figure 1. Blank entries denote arbitrary values in
{1, . . . ,n}.

Initially, M and F are both 0 and all entries of D are positive, so F = {1, . . . ,n}. Fur-
thermore, no processes are participating and there are no occupied or reserved names.
Hence, all the invariants are satisfied.

To prove correctness of GetName and RelName, we must prove that they always
maintain the invariants. Furthermore, the name a process receives as its response from
a call of GetName must be at most the maximum number of participating processes at
any point during its execution of this instance of GetName.



Function GetName
local: x, j,z
x← 1+Fetch&Increment(M)
z← read(D[x])
if z = 0 then

j← Fetch&Decrement(F)
x← read(L[ j])

end
write D[x]← 0
return(x)

6M

3F

4 5 6 7 8 9 10 11 121 2 3

0 0 0 0 00

2 5 3

D

L

Function RelName(x) /* sequential */
Input: name x
local: m, f , i, j

write D[x]← n
m← read(M)
f ← read(F)
if x≤ m then

/* append x to L[1..F] */
f ← f +1
write D[x]← f
write L[ f ]← x
write F ← f

end
j← InL(m)
if j > 0 then

/* remove name m from L */
write F ← f −1
i← read(L[ f ])
write D[i]← j
write L[ j]← i

end
write M←m−1

Fig. 1. The functions GetName and RelName and an example of the data structure

GetName. The sequential procedure for getting names is quite straightforward. First,
a process that wants to get a name, takes the tentative name M + 1 and increments M.
If this name is unoccupied, the process gets it. If it is occupied, there must be a free
name less than or equal to M, since, by Invariant 5, there are at most M names that are
occupied or reserved. Thus L is not empty. In this case, the process decrements F and
gets the name that was at the end of the unsorted list. Finally, in both cases, the process
occupies the name, x, it got by writing 0 into the corresponding entry, D[x], in the direct
access table.

Lemma 1. No step of GetName causes any invariant to become invalid. The name re-
turned by a call of GetName is bounded by the maximum number of participating pro-
cesses at any point during its execution.

The step complexity of GetName is O(1). A process that fails after incrementing M, but
before writing 0 to some element of D, may decrease the number of free names, but
does not increase the number of occupied names.

Releasing Names Sequentially. The sequential algorithm for releasing a name consists
of two phases. In the first phase, a process changes the status of its name, x, from
occupied to free. It begins this phase by writing any positive number, for example n,
into D[x]. This changes x from being occupied to being unoccupied. If x > M, then x is
now free. Otherwise, the process has to append x to the end of the list L[1..F]. This is



accomplished by writing x into L[F +1], writing F +1 into D[x] and then incrementing
F . In the second phase, M is decremented. Before doing so, if it is present, the name M
must be removed from L . Suppose that it is in location L[ j] and that L[F ] = i. First F is
decremented. Then D[i] is updated to point to location j. Finally, i is copied into L[ j],
overwriting the value M that was stored there. The order in which these operations are
performed is important to ensure that the data structure invariants are maintained.

Lemma 2. If a process occupying the name x calls the sequential version of RelName(x),
then none of its steps causes any invariant to become invalid.

The step complexity of this sequential version of RelName is O(1). A process that fails
after overwriting the 0 in the direct access table entry corresponding to its name, but be-
fore decrementing M, decreases the number of occupied names, but might not increase
the number of free names.

4 Synchronous Renaming

For synchronous renaming, the data representation is the same as in Section 3. The
sequential version of GetName also works when multiple processes begin performing
new instances at the same time. Recall that, in our model, no instances of GetName and
RelName are performed concurrently. The correctness of GetName follows, as in the
sequential case, from Lemma 1.

Unfortunately, the sequential version of RelName does not work if there are multiple
processes simultaneously trying to release their names. For example, several processes
could write their names to the same location in L. The solution to this problem is to
assign distinct ranks to the processes that want to add their names to L . Then the process
with rank i can write its name into location L[F + i].

The function Rank can be implemented using a counter, to which processes per-
form write(1) and then Fetch&Increment. Similarly, CountAlive, which counts the
number of processes that perform it simultaneously, can be implemented using a counter
which is set to 0, incremented, and then read by each of those processes.

If processes crash after they perform Rank, but before they write their names into
L, there will be garbage interspersed between the names that have been written. One
way to handle this is to write 0’s in the portion of L that will be written to before
processes write their names there. Afterwards, the names that have been written can
be compacted, by removing the 0’s that remain. To do this and to solve other similar
problems encountered when parallelizing RelName, we use three auxilliary functions,
WriteAll, Count, and Compact. They are based on the synchronous DoAll algorithm
by Georgiou, Russell, and Shvartsman [14].

WriteAll performs the set of instructions, write dest(i)← val(i), for 1 ≤ i ≤ s,
in a fault tolerant way. Here dest(i) denotes a destination register and val(i) denotes
the value to be written there. For example, WriteAll(L[i+ f ]← 0, 1≤ i≤ s) writes
0’s to the s locations following L[ f ]. Georgiou, Russell, and Shvartsman [14, Theo-
rem 8] give an implementation of WriteAll from multi-writer registers which take
O(log2 s/ loglogs) steps to complete, provided at least s/2 of the processes that are



simultaneously executing it do not fail. However, if too many processes fail, the re-
maining processes could take too long to complete all s tasks.

To ensure that RelName remains fully-adaptive, we modify the function
WriteAll(dest(i)← val(i), 1≤ i≤ s) so that it returns whenever fewer than s/2 pro-
cesses remain. This is accomplished by having processes perform “if CountAlive <
s/2 then return” after every constant number of steps. If WriteAll terminates in this
way, there are no guarantees about which, if any, of the s tasks have been performed. In
this case, the call returns ∞ and we say that it fails. Otherwise, WriteAll returns s.

Note that it does not suffice for processes to wait for a convenient place in the
code, such as the end of a phase, to check whether too many processes have crashed.
For example, if there is one process that wants to perform GetName just after all but
one of the s processes performing RelName crash, then the number of participating
processes, c, is 2. If the process has to wait to start performing GetName until the one
surviving process completes a phase (whose complexity depends on s), the resulting
implementation will not be fully-adaptive.

The function Count(z(i),1≤ i≤ s) returns the number of values of i ∈ {1, . . . ,s}
for which the predicate z(i) is true, provided that at least s/2 of the processes that
simultaneously begin executing this function, complete it. Otherwise, it returns ∞ and
we say that it fails. All processes that complete a particular instance of Count return the
same value. The implementation of Count is very similar to WriteAll and it has the
same performance [23, Theorem 5.9].

The function Compact(A,z(i),1≤ i≤ s) compacts the elements A[i] of the array
A[1..s] such that the predicate z(i) is true, so that these elements are stored contiguously
starting from the beginning of A. If at least s/2 of the processes that simultaneously
begin executing this function, complete it, then the processes return the number of i ∈
{1, . . . ,s} for which z(i) is true. If not, the call fails, returning the value ∞, and the
contents of A[1..s] can be arbitrary. Compact has the same performance as WriteAll.

Lemma 3. If val(i), dest(i), and z(i) can be computed by a process in a constant
number of steps, then there are implementations of Compact(A,z(i),1≤ i≤ s),
Count(z(i),1≤ i≤ s), and WriteAll(dest(i)← val(i), 1≤ i≤ s) that have
O(log2 s/ loglogs) step complexity and return within a constant number of steps
when fewer than s/2 of the processes which simultaneously began executing the same
instance remain.

4.1 Releasing Names.

The procedure for releasing names consists of two phases. In the first phase, a process
changes the status of its name x. If x > M, then it can simply write n (or any other
value larger than 0) into D[x] and the name becomes free right away. Otherwise, the
process has to insert the name into list L . This is achieved by a call to the procedure
InsertInL(x). If several processes call InsertInL, but some of them fail, then the
number of names that are inserted into L will be at least the number of these processes
that complete their calls. Each name inserted into L will be a name that was occupied
by one of the calling processes. However, it is not necessarily the case that the inserted
names include all those that were occupied by the processes completing their calls.



Function RelName(x)
/* synchronous */

Input: name x
local: m, success

m← read(M)
if x≤ m then

InsertInL(x)
else

write D[x]← n
end
RemoveLargeNames

Function InsertInL(x)
Input: name x
local: f , i, s
register: R

f ← read(F)
repeat

s← CountAlive
WriteAll(L[ f + i]← 0, 1≤ i≤ s)
i← Rank
write L[ f + i]← x
a← Compact(L[ f +1.. f + s], L[ f + i] > 0,

1≤ i≤ s)
WriteAll

(

D
[

L[ f + i]
]

← f + i, 1≤ i≤ a
)

until CountAlive ≥ a/2
write F ← f +a

In the second phase, the processes fix the invariants that involve M. For the upper
bound on M in Invariant (4), we have to reduce M by at least s, if s processes complete
their call to RelName (and thus stop participating). To avoid violating the lower bound
on M in Invariant (5), we cannot reduce M by more than `, if ` processes successfully
complete the first phase. Moreover, before we can reduce M from m to m′, we have
to remove all names in {m′+ 1, . . . ,m} from the list L to maintain Invariant (2). This
procedure of removing the desired names from L and reducing M is performed by the
procedure RemoveLargeNames. The implementation guarantees that if ` processes call
RemoveLargeNames during their call to RelName and s of them finish, then M is reduced
by at least s and at most `.

Lemma 4. Suppose a set of processes, each occupying a name with value at most M,
simultaneously call InsertInL. If ` of these processes complete that call, then at least `
names are added to L . The invariants remain true throughout the execution of the call.
At any point during the execution, if `′ of these processes have not failed, then the call
terminates within O(log3 `′/ loglog`′) steps.

Lemma 5. Suppose a set of ` processes simultaneously call RemoveLargeNames. If s
of these processes complete their call, then m−`≤m′ ≤m− s, where m and m′ are the
values of M immediately before and after the call to RemoveLargeNames. The invariants
remain true throughout the execution of the call. At any point during the execution, if `′

of these processes have not failed, then the call terminates within O(log3 `′/ loglog`′)
steps.

The correctness of RelName follows from these lemmas. In the remainder of this
section, we show how to implement InsertInL and RemoveLargeNames.

Inserting into L . In Procedure InsertInL, processes first write their names to distinct
locations following the end of the list L[1..F] and update the entries in the direct access



table D to point to these names. Multiple attempts may be needed, due to process fail-
ures. Once they succeed, the processes increment register F , which moves these names
into L .

In each attempt, a process first uses CountAlive to find the number of surviving
processes, s, that want to free their names. Then, using WriteAll, array elements L[F +
1], . . . ,L[F + s] are initialized to 0. Next, each of these processes writes its name into
L[F + i], where i is a unique rank between 1 and s assigned to it by Rank. Since some
of these processes may have failed prior to writing their names, a, the number of names
that were written, may be less than s. Compact is performed to compact L[F + 1..F +
s], so that these a names are stored in L[F + 1..F + a]. Finally, another WriteAll is
performed, setting D

[

L[F + i]
]

= F + i, for i = 1, . . . ,a, to ensure that Invariant (3) will
hold after F is increased to F + a. If fewer than a/2 processes complete the attempt,
another attempt is made with s decreased by at least a factor of 2.

If at least a/2 processes complete the attempt, then neither of the calls to WriteAll
nor the call to Compact failed. In this case, F is incremented by a, moving the a names
that were appended to L into L . Note that a is the number of processes that write their
names into L[F + 1..F + s] during the last attempt and, hence, it is an upper bound on
the number of processes that complete the call.

By Lemma 3, each attempt that starts with s processes takes O(log2 s/ loglogs)
steps. Since s decreases by at least a factor of 2 each subsequent attempt, there are at
most logs attempts, for a total of O(log3 s/ loglogs) steps, from this point on. If, at
any point during an attempt, more than three quarters of the processes that started the
attempt have failed, then within a constant number of steps, the attempt will fail.

Removing Large Names from L . Procedure RemoveLargeNames is called simultane-
ously by every process performing RelName, after they no longer occupy their names.
Thus, processes with names greater than M must wait before they begin RemoveLargeNames,
until the processes that are performing InsertInL are finished.

First, consider an execution in which s processes call RemoveLargeNames and none
of them crash. In this case, M will be reduced to M− s after all the large names, that is,
those which are greater than M− s, are removed from L . Names M− s or less will be
called small.

After processes store the value of F in their local variable f , they determine the
number, a, of large names in L[1.. f ] using Count. Next, they copy the last a names in
L[1.. f ] to a temporary array H1 using WriteAll. Then, they remove the large names
from H1 using Compact. At this point, H1[1..b] consists of all the small names in the
last a locations of L[1.. f ]. When F is decreased to f − a, these small names are no
longer in L and become reserved, instead of free.

The number of large names that remain in L is exactly equal to b, the number of
small names in H1. These large names are all between M− s + 1 and M, so they and
their locations in L[1.. f − a] can be found from D[M− s + 1..M] using WriteAll and
Compact. They are stored in the temporary arrays H2[1..b] and G[1..b], respectively.

The final steps are to overwrite each of the b large names in L[1.. f − a] with a
different name in H1[1..b] and then decrement M by s. But, to ensure that Invariant (3)
is not violated, the direct access table entries, D[ j], of the names j ∈ H1[1..b] should
first point to the b different locations in L[1.. f − a] that contain large names. This is



done using WriteAll. Then each name j ∈ H1[1..b] can be written to location L[D[ j]],
also using WriteAll.

Function RemoveLargeNames

local: f , a, b, e, e′, i, j, m
register: G[1 . . .n], T [1 . . .n], H1[1 . . .n], H2[1 . . .n]

m← read(M)
f ← read(F)
repeat

s← CountAlive
a← Count

(

InL(m− s+1) > 0, 1≤ i≤ s
)

WriteAll(H1[i]← L[ f −a+ i], 1≤ i≤ a)
b← Compact(H1, H1[i]≤ m− s, 1≤ i≤ a)

until b 6= ∞
write F← f −a
repeat

repeat
s← CountAlive
WriteAll(G[i]← D[m− s+ i], 1≤ i≤ s)
b← Compact(G, InL(m− s+ i) > 0, 1≤ i≤ s)
WriteAll

(

H2[i]← L
[

G[i]
]

, 1≤ i≤ b
)

e← WriteAll
(

D
[

H1[i]
]

←G[i], 1≤ i≤ b
)

until e 6= ∞
e← WriteAll

(

L
[

G[i]
]

←H1[i], 1≤ i≤ b
)

if e = ∞ then
repeat

s← CountAlive
WriteAll(T [i]←H1[i], 1≤ i≤ s)
h← Compact(T, InL(G[i]) = 0, 1≤ i≤ s)
WriteAll(T [h+ i]←H2[i], 1≤ i≤ s)
Compact(T [h+1..h+ s], InL(G[i]) = 0, 1≤ i≤ s)
e′← Compact(T, T [i]≤ m− s, 1≤ i≤ s)

until e′ 6= ∞
repeat

s← CountAlive
b← WriteAll(H1[i]← T [i], 1≤ i≤min{e′,s})

until b 6= ∞
end

until e 6= ∞
write M←m− s

Difficulties arise when processes crash. One problem is that this changes s and,
hence, some large names become small names. If too many processes fail when the
small names in L[ f − a + 1.. f ] are copied into H1[1..b], the phase is simply repeated
with s decreased by at least a factor of 2. The same is true for the second phase, in
which large names in L[1.. f − a] are copied into H2, their locations are copied into G,
and the direct entry table entries for elements in H1 are made to point to these locations.

However, a failure of the call to WriteAll, in which small names in H1 overwrite
large names in L[1.. f −a] means that an unknown subset of these writes have occurred.



In this case, H1 has to be fixed up before starting again from the beginning of the second
phase, with s decreased by at least a factor of 2.

Only the small name H1[ j] can overwrite the large name H2[ j] in L. Therefore,
exactly one of H1[ j] and H2[ j] is in L[1.. f −a]. So, to fix up H1, the first s elements of
each of H1 and H2 are copied to a temporary array T , using WriteAll. Then names in
L[1.. f −a] and large names are removed from T using Compact. Because processes can
fail during the construction of T , all this has to be repeated, with s decreased by at least
a factor of 2, until none of the calls to WriteAll and Compact fail.

Finally, a sufficiently long prefix of T is copied back into H1. This is also repeated,
with s decreased by at least a factor of 2, until it does not fail.

Theorem 3. In a synchronous system in which processes communicate using counters
and registers, there is a fully-adaptive implementation of long-lived strong renaming
which performs GetName and RelName in O(log3 c/ loglogc) steps.

5 Conclusions

In this paper, we described the first fault-tolerant fully-adaptive implementations of
long-lived strong renaming that do not use base objects with Ω(n) bits. One algorithm
is asynchronous and uses LL/SC objects in addition to registers. Because processes help
one another to get new names, the original names of processes are used for identifi-
cation purposes. The other algorithm is synchronous, but uses counters and registers.
Moreover, its step complexity is substantially smaller: polylogarithmic instead of linear
in c. This algorithm never uses the original names of processes, so it also works for
systems of anonymous processes.

Fully adaptive one-shot renaming is very easy to implement using a counter. Hence,
it was natural to use a shared memory system with counters when trying to get a fully-
adaptive long-lived renaming implementation. Two specific open questions arise from
this work: First, can more efficient or simpler fully-adaptive long-lived renaming algo-
rithms be obtained using other strong memory primitives, for example Compare&Swap?
Second, are there fully-adaptive renaming algorithms or more efficient adaptive renam-
ing algorithms using only registers?
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