
CS107 Handout 15
Autumn 2002 October 14, 2002

Assignment 3: Random Sentence Generator
Assignment originated by Mike Cleron, polished off by Nick and Julie.

The Inspiration
In the past decade or so, computers have revolutionized student life. In addition to
providing no end of entertainment and distractions, computers also have also facilitated
all sorts of student work from English papers to calculus. One important area of student
labor that has been painfully neglected is the task of filling up space in papers, Ph.D.
dissertations, extension requests, etc. with important sounding and somewhat
grammatically correct random sequences. An area which has been neglected—that is,
until now.

Due: Monday, October 21 at 11:59 p.m.

The final part of the C section is to take your ADT work from the first two parts, put on
your client hat, and use these modules to construct a non-trivial C program that fills in
this gaping hole. Many of you have seen this before, but you haven’t programmed it
using the DArray and the Hashtable as implemented in CS107. I’m using it here
because the assignment is phenomenally interesting, and we’ll use it to compare
different languages throughout the quarter by showing you implementations in each.

The Random Sentence Generator is a handy and marvelous piece of technology to create
random sentences from a pattern known as a grammar. A grammar is a template that
describes the various combinations of words that can be used to form valid sentences.
There are profoundly useful grammars available to generate extension requests, generic
Star Trek plots, your average James Bond movie, "Dear John" letters, and more. You can
even create your own grammar. Fun for the whole family! Let’s show you the value of
this practical and wonderful tool:

• Tactic #1: Wear down the TA's patience.
I need an extension because I used up all my paper and then my dorm burned down and
then I didn't know I was in this class and then I lost my mind and then my karma wasn't good
last week and on top of that my dog ate my notes and as if that wasn't enough I had to finish
my doctoral thesis this week and then I had to do laundry and on top of that my karma wasn't
good last week and on top of that I just didn't feel like working and then I skied into a tree and
then I got stuck in a blizzard at Tahoe and as if that wasn't enough I thought I already
graduated and as if that wasn't enough I lost my mind and in addition I spent all weekend
hung-over and then I had to go to the Winter Olympics this week and on top of that all my
pencils broke.

• Tactic #2: Plead innocence.

2

I need an extension because I forgot it would require work and then I didn’t know I was in this
class.

• Tactic #3: Honesty.
I need an extension because I just didn't feel like working.

What is a grammar?
A grammar is just a set of rules for some language, be it English, the C programming
language, or an invented language. If you go on to study computer science, you will
learn much more about languages and grammars in a formal sense. For now, we will
introduce to you a particular kind of grammar called a Context Free Grammar (CFG).
Here is an example of a simple grammar:

The Poem grammar
{
<start>

The <object> <verb> tonight. ;
}

{
<object>

waves ;
big yellow flowers ;
slugs ;

}

{
<verb>

sigh <adverb> ;
portend like <object> ;
die <adverb> ;

}

{
<adverb>

warily ;
grumpily ;

}

According to this grammar, two possible poems are "The big yellow flowers sigh warily
tonight" and "The slugs portend like waves tonight." Essentially, the strings in brackets
(<>) are variables which expand according to the rules in the grammar.

More precisely, each string in brackets is known as a "non-terminal". A non-terminal is a
placeholder that will expand to another sequence of words when generating a poem. In
contrast, a "terminal" is a normal word that is not changed to anything else when
expanding the grammar. The name “terminal” is supposed to conjure up the image that
it is a dead-end— no further expansion is possible from here.

3

A definition consists of a non-terminal and its set of "productions" or "expansions", each
of which is terminated by a semi-colon ';'. There will always be at least one and
potentially several productions that are expansions for the non-terminal. A production is
just a sequence of words, some of which may be non-terminals. A production can be
empty (i.e. just consist of the terminating semi-colon) which makes it possible for a non-
terminal to expand to nothing. The entire definition is enclosed in curly braces '{' '}'. The
following definition of "<verb>" has three productions:

 {
<verb>

sigh <adverb> ;
portend like <object> ;
die <adverb> ;

}

Comments and other irrelevant text may be outside the curly braces and should be
ignored (quickly advancing over the extraneous stuff outside the braces is a good use of
the Scanner's skipping functions, I might add). All the components of the input file:
braces, words, and semi-colons will be separated from each other by some sort of white
space (spaces, tabs, newlines), so you will be able to use those as delimiters when parsing
the grammar. And you can discard the white-space delimiter tokens since they are not
important. No token will be larger than 128 characters long, so you have an upper
bound on the buffer needed when reading a word; however, when you store the words,
you should not use such an excessive amount of space, use only what's needed. In order
to read the grammar files, you will find the Scanner routines from HW1 quite handy.1

Once you have read in the grammar, you will be able to produce random expansions
from it. You begin with the single non-terminal <start>. For a non-terminal, consider its
definition, which will contains a set of productions. Choose one of the productions at
random. Take the words from the chosen production in sequence, (recursively)
expanding any which are themselves non-terminals as you go. For example:

<start>
The <object> <verb> tonight. — expand <start>
The big yellow flowers <verb> tonight. — expand <object>
The big yellow flowers sigh <adverb> tonight. — expand <verb>
The big yellow flowers sigh warily tonight. — expand <adverb>

Since we are choosing productions at random, doing the derivation a second time might
produce a different result and running the entire program again should also result in
different patterns.

1 In fact, re-read this last paragraph again to be sure you don't miss the hints about how to set up the
scanner.

4

Designing Your Approach
Before you start any coding, you should sketch out your plans for the data structures
and algorithms you will use to solve the task at hand. We're not going to give you a lot
of specific advice, we want you to consider the options and make good choices on your
own. Take the time to make quality decisions—there are various paths to choose from,
and you want to be sure to choose the options that make the job easier.

Parsing the grammar files
Once you have your attack outlined, start by reading the grammar file into your data
structure leveraging as much of HW1a and b as you can. Parsing the file should come
out fairly cleanly using the Scanner. Be sure to decompose the various steps in reading
the file into small reasonable routines that you can develop and test in stages. You
should do all of the parsing work during the file-reading phase— your goal is to put the
grammar into a format that makes it very easy to traverse and print expansions later
without doing any further manipulations on the grammar.

Storing The Grammar
You should definitely use your handy ADTs to store and manipulate the various
components of the grammar. Store the terminals and non-terminals as strings allocated
to appropriate size (i.e. do not store using a large fixed-size buffer). You will use the
DArray and HashTable ADTs to organize the productions, definitions, and the outer
collection of all the definitions. Remember that a hash table is particularly good for
doing quick lookups, so data you often need to search would best be organized in a hash
table. To help you choose good allocation sizes, the number of different non-terminals
in a grammar is on the order of 10 to 20, and the number of words per production is
often small, say just one or two, but sometimes can be as long as 20 or 30. Be sure to use
good variable and field names to distinguish the various types of arrays and tables in
your program—the compiler's type checking will not distinguish among them at all and
vacuous names like array, word, table don't provide much context for the reader.
You also will want to #define useful names for the punctuation characters used to
delimit the grammar markers parts, it is much easier for the reader to interpret a name
like ProductionEndMarker that looking for characters like '}' and ';' within C code
which itself heavily uses those punctuation characters.

Expanding the grammar
Once the grammar is loaded up, begin with the <start> production and expand it to
generate a random sentence. Be sure to use your earlier work from HW2 to enable easy
lookup and straightforward mapping over your collections. Note that the algorithm to
traverse the data structure and print the terminals is naturally recursive.

The grammar will always contain a <start> non-terminal to begin the expansion. It will
not necessarily be the first definition in the file, but it will always be defined eventually.
Your code can assume that the grammar files are syntactically correct (i.e. have a start

5

definition, have the correct punctuation and format as described above, a non-terminal
has only one definition, don't have some sort of endless recursive cycle in the expansion,
etc.). The one error condition you should catch reasonably (an assert is fine) is the case
where a non-terminal is used but not defined. It is fine to catch this when expanding the
grammar and encountering the undefined non-terminal rather than attempting to check
the consistency of the entire grammar while reading it.

The names of non-terminals should be considered case-insensitively, <NOUN> matches
<Noun> and <noun>, for example.

Printing The Result
When generating the output, you do not need to store the result in some intermediate
data-structure— just print the terminals as you expand. Each terminal should be
preceded by a space when printed except the terminals that begin with punctuation like
periods, comma, dashes, etc. which look dumb with leading spaces.2 In order to make
your output neatly wrap in regular line breaks, we provide you with a PrintWithWrap
utility function to assist with this. The function keeps track of the number of characters
printed so far on the current line and starts a new line (breaking at a space character
rather than in the middle of a word) as it gets close to the right margin. You need to be
sure to do all your output printing through this function. If you accidentally
intermingle direct uses of printf, you will get strange line-wrapping behavior.

Choosing The Grammar File
Your program should take one argument, which is the name of the grammar file to
read. As with all UNIX programs, you can give a full or relative path as an argument; the
relative path will save you typing. For example, to read from the dump.g grammar file
which is the grammars subdirectory of the current directory:

% rsg grammars/dump.g

Your program should create three random expansions from the grammar and exit.
Before exit, your program should free all its dynamically allocated memory.

Living in the Land of the ADT Client
The RSG makes good use of all the ADTs you constructed in part a and b, and if you
really "grokked" the void * memory manipulations and how to use the DArray and
HashTable in the search client, then putting them to work in this final piece is pretty
straightforward. But even with fully working and thoroughly debugged ADTs, it still

2 You can use the ANSI ispunct() function to check if a character is a punctuaction mark. This rule about leading spaces is just a

rough heuristic, because some punctuation (quotes for example) might look better with spaces. Don't stress about the minor details,

we're looking for something simple that is right most of the time and it's okay if it is little off for some cases.

6

easy to make little slip-ups in using them as a client, so be careful and don't wait until the
last minute to tackle this assignment.

As we recommended for the HW2 search client, force yourself to stay in the role of
client. Use only the description in the .h files and don't think too much about what you
know is going on behind the wall, since often that only serves to confuse you.

During the process of writing this program, try to evaluate how your generic ADTs help
or hinder the construction of this program. Does the C language support or discourage
this kind of modular construction? Do you think that you will have a need in the future
for something like the DArray or Hashtable again? Would you look forward to using
them again? Why or why not?

A few other suggestions
• Don't forget to leverage earlier work from your HW2's search.c when you find

yourself in need of a hash function.
• For random numbers, we recommend the random function since it has better

randomizing behavior that the standard ANSI rand function. However, you are free
to use either, as long as your program produces random results between runs. See
the man pages for srandom/srand for seeding the generator, you can use the
current time (man –s2 time) as the seed. Revisit Chapter 8 of your 106A text if you
don't recall the steps used to convert a random result into an integer within some
range. (There is a Purify issue involving random you can ignore.)

• We will test your RSG with your version of the Scanner, DArray, and Hashtable
ADTs. However while in development, you might find it helpful to work with our
known good versions if you are suspicious of yours. In the hw3_sample directory,
there are compiled .o's that you can use. See the README file in that directory for the
instructions about how to use them instead of your versions.

• As always, we expect that your code compile cleanly— i.e. without any warnings—
and that it run under Purify without finding any errors.

Getting Started
The starting project is in the leland directory /usr/class/cs107/assignments/hw3.
This directory contains a skeleton rsg.c file, a Makefile that builds the project, and
subdirectory of grammar files (files named with the extension ".g"). You want to make
your own copy of the project directory and will need to add your previous Scanner,
DArray, and HashTable files. You can also get the starting files from the class Web site
http://cs107.stanford.edu.

