
Extracting Message Types from BlueGene/L’s
Logs

Adetokunbo Makanju, A. Nur Zincir-Heywood, Evangelos E. Milios
Faculty of Computer Science

Dalhousie University
Halifax, Nova Scotia

B3H 1W5
Canada

{makanju, zincir, eem}@cs.dal.ca

Abstract—In this paper we present the results on extracting
message types from the BlueGene/L supercomputer logs using the
IPLoM (Iterative Partitioning Log Mining) algorithm. Previous
work using IPLoM indicates that IPLoM shows promise as
message type extraction algorithm. We compared the results of
IPLoM against manually produced message types produced on
the BlueGene/L data. To provide a baseline of performance we
also perform similar experiments using SLCT (Simple Log File
Clustering Tool). The results show that IPLoM improves the
performance of SLCT by finding the infrequent patterns in the
data and is also able to achieve an F-Measure result of 91%
based on micro-average classification accuracy.

I. INTRODUCTION

Event logs consist of several independent lines of text data
which contain information about activity on a system. System
administrators therefore turn to them frequently as part of daily
routine or when they need to detect or diagnose malfunction or
misuse. However, event logs can sometimes contain such large
amounts of data that manual analysis becomes cumbersome,
leading some system administrators to ignore them all together
or to miss vital information in them when they do analyze them
manually. This fact has made the development of tools and
techniques for automatically analyzing the contents of event
log files an important area of research.

A basic task in automatic analysis of log files is message
type or event cluster extraction [1]. Extraction of message
types makes it possible to abstract the contents of event logs
and facilitates further analysis and the building of computa-
tional models. Message type descriptions are the templates on
which the individual messages in any event log are built. For
example, this line of code:
sprintf(message, Connection from %s port %d, ipaddress,
portnumber);
in a C program could produce the following log entries:
“Connection from 192.168.10.6 port 25”
“Connection from 192.168.10.6 port 80”
“Connection from 192.168.10.7 port 25”
“Connection from 192.168.10.8 port 21”.

These four log entries would form a cluster or event type
in the event log and can be represented by the message type
description (or line format):

“Connection from * port *”.
The wild-cards “*” represent message variables. The goal of
message type mining is to find the message type representa-
tions of the message clusters that exist in a log file.

Previous work on inferring structure from ad-hoc data [3]
falls short for the task of clustering event logs for a number
of reasons, the most important being the assumptions made
about the data. The algorithm outlined in [3] assumes that the
data content is the product of a single process and therefore
the events can all be described using one, possibly very
complex, format. On the other hand the assumption when
clustering event logs is that the data content is the product
of several independent and heterogeneous processes, therefore
each format must be learnt independently. Previous works
that deal specifically with log clustering include tools like
Loghound and SLCT (Simple Log File Clustering Tool) [2].

The shortcomings of Loghound and SLCT are two fold.
Firstly, they both focus on finding only frequent message
patterns in log data but not infrequent patterns. While this
might suffice most times, it may sometimes be necessary to
also find infrequent patterns for analysis. Infrequent patterns
may be more interesting to find in applications such as
anomaly detection. Secondly comes the issue of semantics.
Patterns found by Loghound and SLCT are all valid but
may not necessarily make sense to a human observer. This
observation becomes relevant if the patterns found will be
used in a visualization tool such as LogView [4]. It is therefore
important to extend the work of tools like Loghound and SLCT
by designing an algorithm that will allow the discovery of
infrequent patterns and also patterns that are meaningful to a
human observer. To this end, an algorithm such as IPLOM
(Iterative Partitioning Log Mining) [5] may help. IPLoM has
shown promise and this work extends the testing of IPLoM
to supercomputers. The aim of this work is to see how well
IPLOM scales to large and probably more complex data sets
like those produced by BlueGene/L [6].

In this paper we present our work done in testing IPLoM on
the BlueGene/L data set, a publicly available high performance
computing log data set. The BlueGene/L supercomputer is
a well known HPC machine designed by IBM and located

at Lawrence Livermore National Labs (LLNL) in Livermore,
CA, USA. According to the Top-500 supercomputing site
BlueGene/L ranked #4 in its list of the fastest supercomputers
in the world [7]. We compare our results against manually
produced message types and produce similar results using
SLCT to provide a baseline of performance. The results show
IPLoM improves the performance of SLCT by finding the
infrequent patterns and is able to achieve an F-Measure of
91% based on micro-average classification accuracy.

The rest of this paper is organized as follows: section 2
discusses previous work in event type pattern mining and au-
tomatic analysis of BlueGene/L’s data. Section 3 gives details
of our novel algorithm and the methodology to evaluate its
performance. Section 4 describes the results whereas section
5 presents the conclusion and the future work.

II. BACKGROUND AND PREVIOUS WORK

A. Definitions

We begin this section by first defining some of the termi-
nology used in this paper.

• Event Log: A text based audit trail of events that occur
within the system or application processes on a computer
system.

• Event: An independent line of text within an event log
which details a single occurrence on the system. An event
typically contains not only a message but other other
fields of information like a Date, Source and Tag e.g
as defined in the syslog RFC (Request for Comment)
[8]. For message type extraction we are only interested
in the message field of the event. This is why events
are sometimes referred to in literature as messages or
transactions.

• Token: A single word delimited by white space within
the message field of an event.

• Event Size: The number of individual tokens in the
message field of an event.

• Event Cluster/Message Type: These are message fields
of entries within an event log produced by the same print
statement.

• Cluster Description/Message Type Description/Line
Format: A textual template containing wild-cards which
represents all members of an event cluster.

• Constant Token: A token within the message field of an
event which is not represented by a wild-card value in its
associated message type description.

• Variable Token: A token within the message field of an
event which is represented by a wild-card value in its
associated message type description.

B. Previous Work

Data clustering as a technique in data mining or machine
learning is a process whereby entities are sorted into groups
called clusters, where members of each cluster are similar
to each other and dissimilar from members of other groups.
Clustering can be useful in the interpretation and classification
of large data-sets, which may be overwhelming to analyze

manually. Clustering therefore can be a useful first step in the
automatic analysis of event logs.

If each textual line in an event log is considered a data
point and its individual words considered attributes, then the
clustering task reduces to one in which similar log messages
are grouped together. For example the log entry Command
has completed successfully can be considered a 4-dimensional
data point with the following attributes “Command”, “has”,
“completed”, “successfully”. However, as stated in [9], tradi-
tional clustering algorithms are not suitable for event logs for
the following reasons:

1) The event lines do not have a fixed number of attributes.
2) The data point attributes i.e. the individual words or to-

kens on each line, are categorical. Most conventional clus-
tering algorithms are designed for numerical attributes.

3) Traditional clustering algorithms also tend to ignore the
order of attributes. In event logs the attribute order is
important.

For these reasons several algorithms and techniques for au-
tomatic clustering and/or categorization of log files have been
developed. Moreover, some researchers have also attempted to
use techniques designed for pattern discovery in other types of
textual data to the task of clustering event logs. Algorithms like
SLCT [9] and Loghound [10] and IPLoM [5] are algorithms,
which were designed specifically for automatically clustering
log files, and discovering event formats. While Teiresias,
a bio-informatics pattern discovery algorithm developed by
IBM [11] was applied to the task of event log clustering
[1]. Recent work which compared IPLoM, SLCT, Loghound
and Teiresias [5] suggests that IPLoM is the most accurate
algorithm at clustering event logs to match human output,
achieving an average F-Measure result of 78% compared to
the closest algorithm SLCT which achieved 10%. We therefore
test the BlueGene/L data set against IPLoM and SLCT in our
experiments.

The BlueGene/L data set is described in [6] is one of five
supercomputer logs which have been recently made available
to the research community. For this reason its logs have been
used in recent works on the analysis of supercomputer logs. An
Adaptive Semantic Filter algorithm was designed for failure
analysis in BlueGene/L logs in [12]. While message types
were not used in that study, the fact that the authors developed
a semantic filter as a replacement for their previous work
which used Spatio-Temporal filtering [13], [14] highlights the
importance of semantic analysis of the contents of log files.
Clustering log files to find message types is a form of semantic
analysis as message types represent semantic groups of the
messages in a log file. Time To Interrupt (TTI) estimation
was carried out in [15]. This work utilized message types that
were generated manually, this again highlights the importance
of tools and techniques that can find these message types
automatically to be developed.

III. METHODOLOGY

In this section we describe the BlueGene/L data set, give
an overview of IPLoM and then we describe in detail our

TABLE I
LOG DATA STATISTICS

Start Data Days Size(GB) Messages
2005-06-03 215 1.207 4,747,963

methodology for testing its performance and that of SLCT
against the BlueGene/L data set.

A. BlueGene/L dataset

The BlueGene/L data set is one of several failure data sets
available in the USENIX Computer Failure Data Repository
(CFDR) [16]. A detailed description of the BlueGene/L com-
puter architecture can be found in [13].

The characteristics of the BlueGene/L log are described in
Table I. Each line in the log data contains an actual event
from the BlueGene/L logs plus four additional fields which are
added to ease parsing. The four fields represent alert category
(a “-” meaning no alert category), the Unix time-stamp, date
and the name of the device that generated the event. After these
four fields comes the actual event as reported in the logs, the
event consists of six fields, the first field represents the time-
stamp, next comes the message source, the event type (the
mechanism through which the event is reported), the event
facility (the reporting component), the severity and the free
form event description or message. In our work we are only
interested in the event description or message field of the logs.

The IPLoM algorithm is designed as a log data clustering
algorithm. It works by iteratively partitioning a set of log
messages used as training exemplars. At each step of the
partitioning process the resultant partitions come closer to
containing only log messages which are produced by the
same line format. At the end of the partitioning process the
algorithm attempts to discover the line formats that produced
the lines in each partition. These discovered partitions and line
formats are the output of the algorithm.

An outline of the four steps of the algorithm is given in
Fig. 2. The algorithm is designed to discover all possible
line formats in the initial set of log messages. As it may
be sometimes required to find only line formats that have
a support that exceeds a certain threshold, the File Support
Threshold is incorporated into the algorithm, which plays a
similar role to the support threshold used in other log data
clustering algorithms like SLCT and Loghound. By removing
the partitions that fall below the threshold value at the end of
each partitioning step, we are able to produce only message
type descriptions that meet the desired support threshold at the
end of the algorithm.

A more detailed description of the IPLoM algorithm can be
found in [5]. We however give a summary of each step of the
algorithm in the following sub-sections.

B. Step 1: Partition by event size.

The intuition for the first step of IPLoM’s partitioning
process is that log messages that have the same message
type description are likely to have the same event size. For

Fig. 2. Overview of IPLoM processing steps.

this reason IPLoM’s first step uses the event size heuristic
to partition the log messages. So IPLoM’s first step is to
simply group messages with the same event size before they
are processed further. By partitioning our data first by event
size we are taking advantage of the property of most cluster
instances of having the same event size, therefore the resultant
partitions of this heuristic are likely to contain the instances
of the different clusters which have the same event size.

C. Step 2: Partition by token position.

This step of the algorithm works on the assumption that
the token position with the least number of variables (unique
words) is likely to contain words which are constant in that
position of the message type descriptions that produced them.
Our heuristic is therefore to find the token position with the
least number of unique values and further split each partition
using the unique values in this token position i.e. each resultant
partition will contain only one of those unique values in the
token position discovered.

It may work out that the token position with least number
of variables actually contains words that are variables. To mit-
igate this problem we introduce a partition support threshold
into the algorithm, it is essentially a threshold that controls
backtracking. When IPLoM completes the partitioning of a
group of messages at its second step, it checks to find those
newly created partitions that have instances that fall below the
partition support threshold in respect to the original group of
messages. Those partitions with instances that fall below the
threshold are regrouped into one partition.

- 1118394102 2005.06.10 R10-M0-N1-C:J14-U11 2005-06-10-02.01.42.286586 R10-M0-N1-C:J14-U11 RAS KERNEL FATAL guaranteed instruction cache block touch.0

- 1118394102 2005.06.10 R10-M0-N1-C:J14-U11 2005-06-10-02.01.42.468969 R10-M0-N1-C:J14-U11 RAS KERNEL FATAL guaranteed data cache block touch........1

- 1118394102 2005.06.10 R10-M0-N1-C:J14-U11 2005-06-10-02.01.42.763059 R10-M0-N1-C:J14-U11 RAS KERNEL FATAL force load/store alignment...............0

- 1118394102 2005.06.10 R10-M0-N1-C:J14-U11 2005-06-10-02.01.42.943318 R10-M0-N1-C:J14-U11 RAS KERNEL FATAL icache prefetch depth....................0

- 1118394103 2005.06.10 R10-M0-N1-C:J14-U11 2005-06-10-02.01.43.150959 R10-M0-N1-C:J14-U11 RAS KERNEL FATAL icache prefetch threshold................0

- 1118394103 2005.06.10 R10-M0-N1-C:J14-U11 2005-06-10-02.01.43.351206 R10-M0-N1-C:J14-U11 RAS KERNEL FATAL general purpose registers:

- 1118394103 2005.06.10 R10-M0-N1-C:J14-U11 2005-06-10-02.01.43.526568 R10-M0-N1-C:J14-U11 RAS KERNEL FATAL 0:00000002 1:1fea8640 2:1eeeeeee 3:fe9bc000

- 1118394103 2005.06.10 R10-M0-N1-C:J14-U11 2005-06-10-02.01.43.816703 R10-M0-N1-C:J14-U11 RAS KERNEL FATAL 4:00439430 5:ffff96e0 6:fffbccf0 7:0f554c48

- 1118394104 2005.06.10 R10-M0-N1-C:J14-U11 2005-06-10-02.01.44.018605 R10-M0-N1-C:J14-U11 RAS KERNEL FATAL 8:0f4c4108 9:0d563fc0 10:0d7679b8 11:05681130

- 1118394104 2005.06.10 R10-M0-N1-C:J14-U11 2005-06-10-02.01.44.285613 R10-M0-N1-C:J14-U11 RAS KERNEL FATAL 12:0d7007b8 13:1eeeeeee 14:00000015 15:fe9bc000

- 1118394104 2005.06.10 R10-M0-N1-C:J14-U11 2005-06-10-02.01.44.460384 R10-M0-N1-C:J14-U11 RAS KERNEL FATAL 16:00364380 17:00440000 18:05fb0d70 19:05f6da60

- 1118394104 2005.06.10 R10-M0-N1-C:J14-U11 2005-06-10-02.01.44.661736 R10-M0-N1-C:J14-U11 RAS KERNEL FATAL 20:004d96ac 21:0d6323c0 22:07bd4840 23:0567a810

- 1118394104 2005.06.10 R10-M0-N1-C:J14-U11 2005-06-10-02.01.44.836451 R10-M0-N1-C:J14-U11 RAS KERNEL FATAL 24:09218840 25:00000001 26:004e0000 27:0a154900

- 1118394105 2005.06.10 R10-M0-N1-C:J14-U11 2005-06-10-02.01.45.010366 R10-M0-N1-C:J14-U11 RAS KERNEL FATAL 28:0007d000 29:0b798900 30:00067200 31:00090b40

- 1118394105 2005.06.10 R10-M0-N1-C:J14-U11 2005-06-10-02.01.45.347698 R10-M0-N1-C:J14-U11 RAS KERNEL FATAL special purpose registers:

- 1118394105 2005.06.10 R10-M0-N1-C:J14-U11 2005-06-10-02.01.45.526659 R10-M0-N1-C:J14-U11 RAS KERNEL FATAL lr:00118244 cr:42424844 xer:20000002 ctr:00000001

KERNRTSP 1118394105 2005.06.10 R10-M0-N1-C:J14-U11 2005-06-10-02.01.45.845479 R10-M0-N1-C:J14-U11 RAS KERNEL FATAL rts panic! - stopping execution

- 1118394112 2005.06.10 R16-M1-N2-C:J17-U01 2005-06-10-02.01.52.670449 R16-M1-N2-C:J17-U01 RAS KERNEL INFO 255 ddr errors(s) detected and corrected on rank 0, symbol 2, bit 4

- 1118394112 2005.06.10 R17-M0-NA-C:J13-U01 2005-06-10-02.01.52.696028 R17-M0-NA-C:J13-U01 RAS KERNEL INFO 1 ddr errors(s) detected and corrected on rank 0, symbol 22, bit 6

- 1118394112 2005.06.10 R10-M0-N7-C:J17-U01 2005-06-10-02.01.52.713289 R10-M0-N7-C:J17-U01 RAS KERNEL INFO 30 ddr errors(s) detected and corrected on rank 0, symbol 14, bit 7

- 1118394112 2005.06.10 R17-M1-N7-C:J11-U11 2005-06-10-02.01.52.739543 R17-M1-N7-C:J11-U11 RAS KERNEL INFO 7 ddr errors(s) detected and corrected on rank 0, symbol 7, bit 2

- 1118394112 2005.06.10 R07-M0-N6-C:J11-U01 2005-06-10-02.01.52.799196 R07-M0-N6-C:J11-U01 RAS KERNEL INFO 1 ddr errors(s) detected and corrected on rank 0, symbol 18, bit 0

- 1118394112 2005.06.10 R01-M0-N7-C:J07-U01 2005-06-10-02.01.52.842376 R01-M0-N7-C:J07-U01 RAS KERNEL INFO 2 ddr errors(s) detected and corrected on rank 0, symbol 6, bit 1

- 1118394112 2005.06.10 R03-M0-NB-C:J10-U11 2005-06-10-02.01.52.867680 R03-M0-NB-C:J10-U11 RAS KERNEL INFO 2 ddr errors(s) detected and corrected on rank 0, symbol 12, bit 0

Fig. 1. Sample events from the BlueGene/L data set. In our work we are only interested in clustering the portion of the events after the severity field.

D. Step 3: Partition by search for bijection

The third step of IPLoM’s partitioning process is the most
complex. It works by searching for bijective relationships
between the set of unique tokens in two token positions, which
are selected using a heuristic. We live the possibility that Step-
2 of the partitioning process may be skipped, so the heuristic is
different for partitions that have gone through Step-2 and does
that have not. For partitions coming direct from Step-1 the
heuristic is to select the token positions with the least number
of unique tokens, while the heuristic for partitions coming
from Step-2 is to select the first two token positions with the
most frequently occurring event size value greater than 1. It
should be noted that partitions that are formed as result of
regrouping using the partition support threshold at Step-2 are
treated like they are coming from Step-1 and not Step-2. A
bijective function is a 1-1 relation that is both injective and
surjective. When a bijection exists between two elements in the
sets of tokens, this usually implies that a strong relationship
exists between them and log messages that have these token
values in the corresponding token positions are separated into
a new partition.

To avoid unnecessary partitioning at this step a cluster
goodness threshold is introduced. Partitions coming from Step-
2 which have a cluster goodness value (which is calculated as
the ratio of the number of token positions with only one unique
value over the event size of the partition) above the threshold
are not partitioned any further.

E. Step 4: Discover message type descriptions (line formats)
from each partition.

In this step of the algorithm partitioning is complete and
we assume that each partition represents a cluster i.e. every
log message in the partition has the same message type
description. This is done by counting the number of unique
tokens in each token position of a partition. If a token position
has only one unique value then it is considered a constant value
in the message type description, if it has more than one unique
value then it is considered a variable.

F. Experiments

In order to evaluate the performance of IPLoM in finding
the message types in the BlueGene/L data set, we produced

ciod: Missing or invalid fields on line * of node map file *

CE sym * at * mask *

dbcr0=* dbsr=* ccr0=*

idoproxy communication failure: socket closed

NFS Mount failed on * slept * seconds, retrying *

Fig. 3. Examples of the message type descriptions produced manually.

message type descriptions from the data manually1, examples
of the message type descriptions found manually are shown
in Figure 3. We then produced message types on the same
data using IPLoM algorithm and compare against the manual
message types found as gold standard. To provide a baseline
for performance we also compare message types produced
by SLCT against the manual message types. As described in
Section III-A, only the portion of the log after the severity
field were used in both manual and automatic analysis.

Our performance evaluation metrics are Recall, Precision
and F-Measure which are described by Eqs. (1), (2) and
(3) respectively. The terms TP, FP and FN in the equations
are the number of True Positives, False Positives and False
Negatives respectively. Their values are derived by comparing
the set of manually produced message type descriptions to
the set of retrieved formats produced by each algorithm. In
our evaluation a message type description is still considered
an FP even if matches a manually produced message type
description to some degree, the match has to be exact for it
to be considered a TP.

For completeness we evaluated our Precision, Recall and
F-Measure values using three different methods. In the first
two methods we evaluated the results of the algorithms as
a classification problem. Using the manually produced event
types as classes we evaluated how effectively the automati-
cally produced classification matched the manually produced
labels. It should be noted that using the manually produced
message types as classes leads to a scenario where none
of the class members will be mis-classified if an automatic
algorithm gets the message type description right and where
the class members will all be mis-classified if the automatic
algorithm does not get the message type description. This
classification evaluation produced Micro-average and Macro-

1Full list of manual descriptions are available for download from
http://torch.cs.dal.ca/˜makanju/iplom

average results. These results are referred to as “Micro”
and “Macro” in the results section. In the third method the
manually produced message type descriptions are compared
against the automatically produced message type descriptions.
This evaluation method is called “IR” in the results section.
We however believe that what we called the “IR” method
evaluation satisfies our goals better as it tests the goodness
of the clusters produced. The next section gives more details
about the results of our experiments.

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

F −Measure =
2 ∗ Precision ∗Recall

Precision + Recall
(3)

IV. RESULTS

In our experiments we tested SLCT and IPLoM on the
BlueGene/L data set. The parameter values used in running
the algorithms are provided in Tables II and III. SLCT was
chosen as a baseline for performance as it showed the best
performance behind IPLoM in previous work [5] and the
support threshold provided is based on an absolute line count
and not a percentage value. The file support threshold for
IPLoM was set to its lowest possible value which is its default
value i.e. a line count of 1. IPLoM’s other values were set
as specified in previous work [5], except in the case of the
partition support threshold which was set to 0.1%. We suggest
as good practice to always set the partition support threshold
so it can mitigate errors when they occur. Its value was set
very low in this case due to the large number of exemplars
in our data 4.7m, this implies that the value of the partition
support threshold should be set such that it scales to size of
the data set but should normally not exceed 5% .

TABLE II
SLCT PARAMETERS

Parameter Value
Support Threshold (-s) (Absolute) 20
Seed (-i) 5

TABLE III
IPLOM PARAMETERS

Parameter Value
File Support Threshold (Absolute) 1
Partition Support Threshold 0.001
Lower Bound 0.1
Upper Bound 0.9
Cluster Goodness Threshold 0.34

The number of message types found by algorithms com-
pared to those found manually are shown in Table IV. Already
we can see an advantage of IPLoM, while it does not produce
the exact number of message types produced manually, the

TABLE IV
MESSAGE TYPES PRODUCED ON BLUEGENE/L DATA

Manual SLCT IPLoM
394 33,343 332

number of types it produces falls within a relatively close
range to those produced manually. The Precision, Recall and
F-Measure results of comparing these message types listed in
Table V. We see IPLoM producing better F-Measure scores
for all our evaluation methods.

TABLE V
CLUSTER DESCRIPTION PERFORMANCE OF ALGORITHMS

PRECISION PERFORMANCE
SLCT IPLoM

Micro 0.24 0.91
Macro 0.29 0.50

IR 0.00 0.60
RECALL PERFORMANCE

SLCT IPLoM
Micro 0.24 0.91
Macro 0.29 0.50

IR 0.29 0.50
F-MEASURE PERFORMANCE

SLCT IPLoM
Micro 0.24 0.91
Macro 0.29 0.50

IR 0.01 0.54

Due to the problem of insufficient information in data as
highlighted in Figure 4, it is pertinent to highlight that results
in Table V do not show the complete picture of IPLoM’s
performance, as in certain cases IPLoM is able to produce the
right partitioning of a message type but is not able to come up
with the right cluster description. Fig. 5 show the F-Measure
results for all our evaluation methods.

Fig. 4. Example: Insufficient Information in Data. When a message type
contains exact exemplars or only one exemplar in the data, it is possible for
IPLoM to get the right partitioning of the data but end up with the wrong
message type description.

We would also like to highlight the fact that while in
some cases the message types and partitions produced by
IPLoM might not match those produced manually they are still
meaningful clusters. Consider this message type produced by
IPLoM on the data:
"ciod: Error reading message prefix on CioStream socket to

* * * * *"

This message type did not match any of those produced
manually, however looking at the manual types we discover
two types which are similar:
"ciod: Error reading message prefix on CioStream socket to

* Link has been severed"

F-Measure Performance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Micro Macro IR

Evaluation Methods

F
-
M

e
a
s
u

r
e

SLCT

IPLoM

Fig. 5. Comparing Algorithm F-Measure performance across evaluation
methods.

"ciod: Error reading message prefix on CioStream socket to

* Connection reset by peer"

It is clear that IPLoM produced a message type that encom-
passes these two manually produced message types. While it
does not match them exactly, it still forms a meaningful cluster
at a higher level of abstraction compared to the manual types.

V. CONCLUSION AND FUTURE WORK

Due to the size and complexity of sources of information
used by system administrators, it has become imperative to
find ways to manage these sources of information automati-
cally. Application logs are one of such sources of information.

In this work, we present a novel message type extraction
and partitioning algorithm, IPLoM on the BlueGene/L data
set. We validate our results by comparing them to message
types produced manually and produce similar results using
SLCT to provide a baseline for performance. The results
show IPLoM improves the performance of SLCT by not just
finding the frequent patterns but also by finding the infrequent
patterns, this fact is highlighted by the fact that it achieved
an F-Measure of 91% based on Micro-average classification
accuracy, improving on the performance of SLCT which had
24% accuracy. From the results we ascertain that IPLoM
produces cluster descriptions that can match human output
very closely and can scale to large and complex data sets like
those produced by BlueGene/L.

Message types are fundamental units in any application log
file. Determining what message types can be produced by
an application accurately and efficiently is therefore a fun-
damental step in the automatic analysis of log files. Message
types, once determined, provide groups for categorizing and
summarizing log data, which simplifies further processing
steps like visualization or mathematical modeling. Specific
case studies on how message types can be applied to misuse
detection and flow analysis can be found in [2].

Future work with IPLoM will involve using the information
derived from the results of IPLoM in other automatic log
analysis tasks and optimization of its parameters to improve
its accuracy.

ACKNOWLEDGEMENTS

This research is supported by a Natural Science and En-
gineering Research Council of Canada (NSERC) Strategic

Project Grant. This work is conducted as part of the Dalhousie
NIMS Lab at http://www.cs.dal.ca/projectx/.

REFERENCES

[1] J. Stearley, “Towards Informatic Analysis of Syslogs,” in Proceedings of
the 2004 IEEE International Conference on Cluster Computing, 2004,
pp. 309–318.

[2] R. Vaarandi, “Mining Event Logs with Slct and Loghound,” in Pro-
ceedings of the 2008 IEEE/IFIP Network Operations and Management
Symposium, April 2008, pp. 1071–1074.

[3] K. Fisher, D. Walker, K. Q. Zhu, and P. White, “From dirt to shovels:
Fully automatic tool generation from ad hoc data,” in POPL ’08:
Proceedings of the 35th annual ACM SIGPLAN-SIGACT symposium on
Principles of programming languages. New York, NY, USA: ACM,
2008, pp. 421–434.

[4] A. Makanju, S. Brooks, N. Zincir-Heywood, and E. E. Milios, “Logview:
Visualizing Event Log Clusters,” in Proceedings of Sixth Annual Con-
ference on Privacy, Security and Trust. PST 2008, October 2008, pp. 99
– 108.

[5] A. Makanju, A. N. Zincir-Heywood, and E. E. Milios, “Clustering Event
Logs Using Iterative Partitioning,” in 15th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining (KDD 2009)., July 2009.

[6] A. Oliner and J. Stearley, “What Supercomputers say: A Study of Five
System Logs.” in 37th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, 2007 (DSN ’07)., June 2007, pp.
575–584.

[7] TOP500.Org, “Top500 supercomputing sites,” Published to the web.
http://www.top500.org/. Last Accessed June 2009. [Online]. Available:
http://www.top500.org/

[8] C. Lonvick, “The BSD Syslog Protocol,” RFC3164, August 2001.
[9] R. Vaarandi, “A Data Clustering Algorithm for Mining Patterns from

Event Logs,” in Proceedings of the 2003 IEEE Workshop on IP Oper-
ations and Management (IPOM), 2003, pp. 119–126.

[10] ——, “A Breadth-First Algorithm for Mining Frequent Patterns from
Event Logs,” in Proceedings of the 2004 IFIP International Conference
on Intelligence in Communication Systems (LNCS), vol. 3283, 2004, pp.
293–308.

[11] I. Rigoutsos and A. Floratos, “Combinatorial Pattern Discovery in Bi-
ologcal Sequences: The Teiresias Algorithm,” in BioInformatics, vol. 14.
Oxford University Press, 1998, pp. 55–67.

[12] Y. Liang, Y. Zhang, H. Xiong, and R. Sahoo, “An adaptive semantic filter
for blue gene/l failure log analysis,” in IEEE International Parallel and
Distributed Processing Symposium., March 2007, pp. 1–8.

[13] Y. Liang, Y. Zhang, A. Sivasubramaniam, R. Sahoo, J. Moreira, and
M. Gupta, “Filtering Failure Logs for a BlueGene/L Prototype,” in
International Conference on Dependable Systems and Networks., July
2005 2005, pp. 476–485.

[14] Y. Liang, Y. Zhang, M. Jette, A. Sivasubramaniam, and R. Sahoo,
“BlueGene/L Failure Analysis and Prediction Models,” in International
Conference on Dependable Systems and Networks., Philadelphia, PA.,
June 2006, pp. 425–434.

[15] N. Taerat, N. Naksinehaboon, C. Chandler, J. Elliott, C. Leangsuksun,
G. Ostrouchov, S. Scott, and C. Engelmann, “Blue Gene/L Log Analysis
and Time to Interrupt Estimation,” in International Conference on
Availability, Reliability and Security, 2009, pp. 73–180.

[16] “Usenix - the computer failure data repository,” Published to the web.
http://cfdr.usenix.org/data.html. Last Accessed June 2009. [Online].
Available: http://cfdr.usenix.org/data.html

http://www.top500.org/
http://cfdr.usenix.org/data.html

	Introduction
	Background and Previous Work
	Definitions
	Previous Work

	Methodology
	BlueGene/L dataset
	Step 1: Partition by event size.
	Step 2: Partition by token position.
	Step 3: Partition by search for bijection
	Step 4: Discover message type descriptions (line formats) from each partition.
	Experiments

	Results
	Conclusion and Future Work
	References

