Benchmarking a Recurrent Linear GP Model on
Prediction and Control Problems

Xiao Luo, Malcolm Heywood, and A. Nur Zincir-Heywood

Faculty of Computer Science, Dalhousie University
Halifax, NS, BSH1W5, Canada

Abstract. In this work, a recurrent linear GP model is designed by in-
troducing the concept of internal state to the standard linear Genetic
Programming (GP), so that it has the capacity of working on temporal
sequence data. We benchmarked this model over four standard predic-
tion and control problems, which include generic even parity problem,
sun spot series prediction, Lorenz Chaotic time series prediction and
pole balance control problem. From the experimental results, the recur-
rent linear GP model appears to be very competitive compared to those
algorithms relying on spatial reasoning of the temporal problem.

1 Introduction

Genetic Programming has been applied to a wide range of supervised learning
problems, chiefly formulated as either classification or function approximation
problems [4]. They have also seen widespread application within the context of
reactive environments with delayed payoff (reinforcement learning), such as the
‘Ants’ [4] or robot control problems. In both cases, the models relay on a spatial
description of the problem. However, in this work, we are interested in prob-
lems, which have temporal descriptions. Thus, pattern sequences and capacity
of detecting or retaining the temporal relationships between the patterns of a
sequence is now important. There are two basic solutions to build models for
solving temporal problems. In the first case, the temporal dependence is encoded
by the features of each pattern using some apriori information, thus reducing
the problem to spatial reasoning alone. Examples of this might involve encoding
the temporal property of the problem using a sliding window (shift register) of
some predefined depth and resolution. Such an approach has seen wide spread
application to predictive problems [9], [10] and [11]. In the second case, a re-
current learning model is employed. This means that the model has capacity to
retain state across more than one pattern. Examples of recurrent models include
Hidden Markov Models and recurrent neural network models. In these exam-
ples, support for reasoning about temporal aspects of the problem is provided
by feedback paths internal to the model. Various evolutionary approaches have
been proposed for building such models [1] and [5].

The motivation of this work is to design and implement a recurrent linearly
structured GP (L-GP) model that falls in the second case and benchmark it on

predictive and control problems. In the following, the recurrent L-GP model is
described in section 2. Results from an experimental study are presented on four
different problems in section 3. Finally, conclusions are drawn and future work
is discussed in section 4.

2 Recurrent Linear Genetic Programming

2.1 Linear Genetic Programming

Linearly Structured Genetic Programming is based on a representation closely
related to that employed by Genetic Algorithms. Specifically, individuals are con-
structed from a (linear) sequence of integers each of which has to be decoded into
a valid instruction (syntactic closure). The decoding process effectively translates
each integer into instruction. In this work, a 2-address instruction format is em-
ployed e.g., R1 = R1+ IP3, where R1 denotes a register with index ‘1’ and I P3
is a reference to a input with index ‘3’ or 3rd feature of the current input pat-
tern. The specific form of linearly structured GP(L-GP) employed by this work
utilizes the page-based L-GP developed in an earlier work [3]. Such a scheme en-
forces a fixed length representation, the basic components of which are defined
as follows.

— Representation: Individuals take the form of a 2-address instruction format.
Individuals are described in terms of a (uniform) randomly selected number
of pages, where each page has the same fixed number of instructions.

— Initialization: Individuals are described in terms of the number of pages and
instructions. The number of pages per individual is determined through uni-
form selection over the interval [1 ...maxPages|. Defining an instruction is
a two-stage process in which the mode bit is first defined(instruction type)
using a roulette wheel(user specifies the proportions of the three instruc-
tion types). Secondly the content of the remaining fields is completed with
uniform probability.

— Selection Operators: A steady-state tournament is employed. In this case
all such tournaments are conducted with 4 individuals selected from the
population with uniform probability. The two fittest individuals are retained
and reproduce. The children over-write the worst two individuals from the
same tournament using their respective position in the population.

— Variation Operators: Three variation operators are utilized, each with a cor-
responding probability of application. Crossover selects one page from each
offspring and swaps them. Mutation has two forms. The first case is referred
to as ‘Mutation’which merely Ex-OR’s an instruction with a new instruction.
The second mutation operator is denoted as ‘Swap’ which identifies two in-
structions with uniform probability in the same individual and interchanges
them.

This represents the basic page-based L-GP scheme. However, the selection of
the page size is problem specific. As a consequence the Dynamic Page based L-
GP algorithm was introduced to modify the number of instructions per page

dynamically during the course of the training cycle [3]. Such a scheme was
demonstrated to be much more robust than that of a fixed page size over a
range of benchmark problems [3]. In this work, the Dynamic Page based L-GP
algorithm is employed.

2.2 Recurrent L-GP

The only modification necessary to change a standard L-GP model into a recur-
rent model is to retain register values between sequential pattern presentations.
Thus within the context of a prediction problem, the registers are never reset
until the last pattern of the input sequence is reached. The prediction read from
the predefined ‘output’ register(s) is to predict the next pattern following the
last pattern that input into L-GP. In the case of a control problem in which a
failure state might be explicitly reached, the model would be allowed to run until
such a state occurs and then the registers are reset before a new initial condition
is selected and the process is repeated.

3 Experiments and Results

A total of four benchmark problems are considered from a recurrent modeling
context: Generic solution to the even parity problem; predictor for the Lorenz
chaotic attractor; predictor for the sun spot series problem, and a controller
for the pole balance problem. The GP learning parameters are summarized in
Table 1.

Table 1. GP Learning Parameters

Data set Parity, Sun Spot, Pole Balance| Lorenz
Pop. Size 125

Max. Instr. 128 512
Max Tournaments 50000 500000
Num. Reg. 4 8
Function Set +, -, %%

Terminal Set {0, ..., 255} J{input index}
P(Xover) 0.9

P(Mutation) 0.5

P(Swap) 0.9

Runs 50(25 on second pole balance problem)

3.1 Generic Even Parity

The even parity problem is a well-known early benchmark in which the basic
objective was to derive a specific even parity instance using 2 input logical op-

erators that excluded Ex-OR [4]. Here, our objective is to derive 6- and 7-parity
from a training set consisting of 2-, 3-, 4- and 5-parity. The input sequence con-
sists of bits associated with the parity case. The bits are input into recurrent
L-GP one after another. On presentation of the last bit in the sequence the value
of register RO which acted as “output” register is compared to the label for that
sequence. Fitness function is the sum square error of all training sequences.

The simplest(and most typical) solution generated by recurrent L-GP to this
problem consisted of only two instructions: RO(t) = RO(t — 1) — X (t); RO(¢) =
R(t) x R(t). X is the input sequence and X (¢t = 1...n) corresponds the input
bit in the sequence. RO is initialized to 0 (R0(0) = 0). It is worth to mention that
not only this solution is a very concise solution for 6- and 7-parity sequences but
also for all n-parity sequences.

3.2 Sun Spot Time Series

The Sun Spot time series has been a benchmark prediction problem in a number
of studies. The typical approach has been to use a sliding window with length
n to go through the whole sequence to construct a spatial presentation of the
sequence, then a predictive model f is built to predict the next time step n + 1,
ie . z(t+n+1) = f(x(t),...,z(t+n)). In our system, no ‘n’ is predefined, all the
patterns before x(t+1) are input to predict the x(¢t+1). Thus, ¢ is dynamic. This
leaves the selection of relevant previous time steps to the recurrent L-GP model.
In line with previous work, the dataset is divided into training(221 patterns
representing the years 1700-1920), and two test sets (Test set 1 has 35 patterns
(1921-1955), Test set 2 has 24 patterns (1956-1979)). Fitness function takes the
form of a normalized mean square error as shown in formula 1.

P
1
NMSE(P) = =3P Z (desired(p) — GPout(p))? (1)

Where o2 = 1535 and P is the pattern count for the dataset [9]. The best
solution for this problem consists of 35 instructions. Table 2 provides a compar-
ison of recurrent L-GP with other predictors identified in previous works on the
same dataset based on their best performance. The other models provide lower
errors on training and the first test partition, but degrade significantly on the
second test partition, which represents the period most distant from the training
partition. It is important to notice that recurrent L-GP is more consistent over
the training and 2 test sets than the other approaches.

3.3 Lorenz Chaotic Attractor

Prediction of a chaotic time series has also been widely used benchmark for
predictive models. Same as the case of the Sun Spot benchmark, the typical ap-
proach for this problem is to build a predictor based on the sliding window [7].
Lorenz Chaotic time series is defined over three variables by the discrete differ-
ential system,

Table 2. Comparative Results on Sun Spot Problem

Model NMSE NMSE NMSE
(train) (testl) (test2)
Recurrent L-GP 0.1077 0.1655 0.1708
NN [11] 0.082 0.086 0.35
TAR [9] 0.097 0.097 0.28
Recurrent NN [5]]0.1006 0.0972 0.4361
GP [10] 0.125 £ 0.006 |0.182 £ 0.037|0.370 = 0.06
t=o0(y—2)y=pr—y—yzi=ay—bz (2)

where o = 10, p = 28,and b = 8/3.

The time series is built from an initial condition of (0, 0.01, 0) and a step size of
0.01. A total of 4000 samples from the sequence are constructed with the first 2000
discarded to avoid any start up properties. The remaining 2000 samples are then divided
equally between training and test. The fitness function is the normalized mean square
error as shown in formula 1. The best results for this problem are NMSE(training)=
1.38 x 1075 and NMSE(test)= 1.09 x 10™°. The best solution for this problem consists
of 48 instructions. In comparison, the SOM based Dynamic Learning architecture of
Principe et al., produced training errors of the order 0.0011 [7], obviously worse than
the performance of the recurrent L-GP model.

3.4 Pole Balance

The pole balance or inverted pendulum problem places the learning system within the
role of a bang-bang controller [6]. The controller supplies a control force of £10N to a
cart on which an inverted pendulum is connected. Cart behavior is described in terms
of x - the distance from the center of a track on which the cart travels -, and 6 - the
angle of the pendulum relative to the vertical. The state of the cart can be described
in the form of a binary fail (unbalanced)/no fail (balanced) metric, where the failure
state is defined by the condition,

IF (|6 >12) OR (|z| >2.4) THEN (fail) ELSE (no fail)

The objective here is to evolve recurrent L-GP to produce a controller to supply
force to the cart so as to keep the cart balanced as long as possible. Given a force
produced by a controller, the behavior of the cart is described by a series of differential
equations, modeled as an Euler discrete event simulation at a step size of 0.01 [6].

We set up two sets of experiments. One has two 2 inputs (x and), the other has 4
inputs (x, 0 and their corresponding velocities). In line with previous GP solutions to
this problem, for the training process, we set the 10 initial states of the cart (x, 8 and
their corresponding velocities) randomly over the interval £0.2. We did 25 different
random seed runs, all of them converged. The pole could last 8 seconds under all
10 random initializations without failure in training for both conditions of 2 and 4
inputs. In comparison with the controller evolved by Chellapilla using a macro-mutation

operator based Tree structured variant of GP, the mean time a pole was balanced
during training was 2.7228 seconds, with no controller solving the problem [2]. Hence,
our system is significantly better.

4 Conclusions

In this paper, we describe a recurrent linearly structured GP model and benchmark it
on a series of prediction and control problems. This model works on sequence directly
instead of using a sliding window to map the temporal data representation into spatial
data representation. The results show that this model is more consistent on both the
training and the test sets than the sliding window based model. Moreover, the evolved
rule generated by the recurrent linear GP is a set of instructions, which are very simple.
Future work will investigate the inter-relationships between solution lengths and the
size of the register set and new fitness functions, which are able to express the temporal
nature of the problem. We are also interested in applying such a model to text sequence
analysis, and bio-oriented sequence analysis.

References

1. Angeline, P.J., Saunders, G.M., Pollack, J.B.: An Evolutionary Algorithm that
Constructs Recurrent Neural Networks, IEEE Transactions on Neural Networks.
5(1), (1994) 54-64.

2. Chellapilla, K., Evolving Compuer Programs Without Subtree Crossover. IEEE
Transactions on Evolutionary Computation. 1(3), (1997) 209-216.

3. Heywood, M.I., Zincir-Heywood, A.N.: Dynamic Page-Based Linear Genetic Pro-
gramming, IEEE Transactions on Systems, Man and Cybernetics - PartB: Cyber-
netics. 32(3), (2002)380-388.

4. Koza, J.R.: Genetic Programming: ON the Programming of Computers by Means
of Natural Selection, MIT Press, MA, (1992)

5. McDonnell, J.R., Waagen, D.: Evolving recurrent Perceptrons for Time-Series
Modeling, IEEE Transactions on Neural Networks. 5(1), (1994) 24-38.

6. Miller, W.T., Sutton, R.S., Werbos, P.J.: Neural Networks for Control. MIT
Press,(1990)

7. Oakley H.: Two Scientific Applications of Genetic Programming: Stack Filters and
Non-Linear equation Fitting to Chaotic Data. In Advances in Genetic Program-
ming. Chapter 17. K.E. Kinnear (ed). MIT Press, MA, (1994) 369-390.

8. Teller, A.: The Evolution of Mental Models. In Advances in Genetic Programming.
Chapter 9. K.E. Kinnear (ed). MIT Press, MA, (1994)198-219.

9. Tong, H., Lin, K.S.: Threshold autoregression, limit cycles and cyclical data. J. of
the Royal Statistical Society. B 42,(1980) 245.

10. Vallejo, E.E., Ramos R.: Evolving Turing Machines for Biosequence Recognition
and Analysis. In Proceedings of the 4th European Conference on Genetic Program-
ming (EuroGP 01). Springer Verlag, Berlin,(2001) 192-203.

11. Weigend, A.S., Huberman, B.A., Rumelhart, R.E.: Predicting the Future: A Con-
nectionist Approach. Int. J. of Neural Systems. 1(3), (1990) 193-209.

