
Modeling User Behaviors from FTP Server Logs

Yeming Hu, A. Nur Zincir-Heywood
Dalhousie University, Faculty of Computer Science

hu@dal.ca, zincir@cs.dal.ca

Abstract

In this paper, a modeling toolkit is proposed for
modeling user behavior from FTP server log files. This
toolkit can develop analytical models from the data at
hand with minimum assumptions. Analytic models are
intended to be data driven, which means users are not
required to be experts on mathematics or statistics.
Moreover, the toolkit provides a simple yet practical way
to generate simulated traffic from the analytic models.

1. Introduction

Computer hackers are always one step ahead in finding
security holes in current systems. Therefore dynamic
defense mechanisms such as intrusion detection systems
(IDSs) should be deployed to fortify the networks and the
connected hosts. Current IDSs are far from being perfect;
therefore systematic analysis and benchmarking of IDSs
can provide researchers valuable information that can lead
to improvements. Obtaining test data for IDS
benchmarking is not a straightforward task. In general,
two approaches are available: (1) First approach is to
employ the traffic captured from a live network for
benchmarking. However, due to disk space limitations
and privacy concerns, captured data cannot be shared.
Without the careful analysis of the captured data,
benchmarking effort reveals very little about the
performance of IDSs. (2) Second approach is to generate
synthetic data by performing simulations. Simulations are
based on analytic models; therefore researchers can
conduct further analysis on the performance of the IDSs.
Furthermore, since the synthetic data does not contain any
sensitive information, benchmarking details can be
publicly shared thus creating a certain degree of
repeatability. Because of its advantages, majority of the
IDS benchmarking efforts such as methodology developed
by Puketza et. al [1], IBM IDS testing workbench [2] and
MIT DARPA 99 corpus [3] adopt synthetic data
approach. The most important shortcoming of these
efforts is that benchmarking was regarded as a “black box”
process and tools or frameworks employed in the
benchmark were not made available to other researchers.
In Kayacik et. al. [4] authors proposed an open framework
for generating synthetic data. They believed that such a
framework would be useful to IDS researchers to generate
normal behavior to benchmark IDS systems. Our
objective in this work is using Kayacik e t . al.’s

framework to develop a toolkit for modeling normal user
behavior from File Transfer Protocol (FTP) server log
files.

2. Modeling user behavior

The proposed framework in [4] composed of five
components. In our work, we employed the five
components as follows: First component constructs ftp
session from the ftp server log files. Second component
builds the probabilistic models of file download/upload
transitions. Third component utilizes the probabilistic
models to build synthetic sessions. Fourth component
validates the synthetic sessions in terms of sequence
similarity and transition delay similarity. Finally fifth
component employs the synthetic sessions and uses an ftp
server to generate traffic.

2.1. Discrete Markov Models

In this work, a Markov Model [5] based approach is
employed to model the user behavior. Markov Models are
useful to build the probabilistic models of event
sequences evolving in time. In a first order Markov
model, next state is dependent on only the current state.
A Markov model is defined by the state space, I,
transition probability matrix, P, and the probability
distribution of the states, λ.

Let I be a countable set of states, where i, j ∈ I
represent states. If there are N states in I, a first order
Markov model can be represented as a two-dimensional N
x N matrix P = (pij | i, j ∈ I). Let Xt define the state at
step t. From the training data, probability of transition
from state i to j pij can be calculated as follows;

€

pij =
C(Xt = j,Xt−1 = i)

C(Xt−1 = i)
i
∑

€

C(Xt = j,Xt−1 = i) is the number of times state j
follows state i in the training data. The ith row of the P is
the probability distribution of moving to all states from
state i. This probability distribution is also called λi.

2.2. Methodology

Depending on the OS used and the software used, FTP
log files can take different forms. In this work, we used

the FTP log files of the FTP server on one of the
Dalhousie FCS Sun unix servers. In this case, we had
two files, namely: (i) ftp_auth and (ii) ftp_trans.

ftp_auth file is used to collect the timestamp (session)
and username information and ftp_trans file is used to get
the operation (upload, download or delete) of the
corresponding user at the given timestamp.

It should be noted here that this FTP server we
modeled does not permit anonymous connections but
instead each user has his/her username and password on
the server and therefore, can only access his/her own
space.

2.3. Building transition models

In this work, it is assumed that the order the users
connect to the FTP server is random but the operations
each user performs in a session have relationships with
each other. Thus, Markov models are employed to model
this relationship. In other words, each operation, a user
performs, is considered as a state. In addition, a special
purpose state is introduced to start and end a session.

Transition probabilities in matrices P and Q are
utilized to generate sessions based on the HMM
probabilistic models. The first matrix is composed of the
probability of transferring from one state to another state.
The other one is composed of the probability of
transferring from one state to another with different
transition delays. Each new session starts from the start
state and the next state is selected stochastically until the
end state is reached. Figure 1 summarizes the session
generation algorithm.

State index i = 0
Set state si = START
Set delay di = 0
Loop Until si = END
 Increment i
 Probability proportional selection
 of si and di
End Loop

Figure 1. Pseudo-code session generation

Probability proportional selection in Figure 1 implies
that if a state has a high probability of being the next
state, it will have more chance. This is achieved by
converting all probability distribution functions to
cumulative distribution functions. A cumulative
distribution function (CDF) is the summation of a
probability distribution function (PDF). CDFs
monotonically converge to 1 (i.e. it increases up to 1 but
never decreases). After conversion, each state will have a
probability slot allocated to it within the CDF; therefore
slots will be allocated between 0 and 1. The higher the
probabilities, the larger slots allocated. Probability
proportional selection involves generating a random
number between 0 and 1 and determining, which slot the
random number belongs to. The state, which the slot

belongs to, is selected as the next state. Process continues
until the generated random number belongs to end state.

2.4. Validating sessions

In this work, we develop a toolkit in order to generate
synthetic data that represents a given normal behavior (i.e.
a server log file). Once, such a data set is generated, it can
be used for training/testing machine learning based
intrusion detection systems as well as benchmarking any
intrusion detection system.

As discussed in section one, there are other efforts in
the literature in order to generate such benchmarking data
sets. However, the lack of validation methods is one of
the shortcomings of those previous intrusion detection
system benchmarking efforts. Thus, in this work, in order
to validate the synthetic data we generate, we will
compare it against the original data based on the operation
characteristics, i.e. session counts and session lengths.

3. Results

In our experiments, we used the ftp server log files of
one of the Unix hosts at Dalhousie University, Faculty of
Computer Science. Since this file was small with 1700
user sessions. Only 1700 synthetic sessions were
generated synthetically for this data set. Five criteria have
been used to express results: Mean, median, number of
actions, number of sessions and session duration. Number
of actions is further divided into three parts: Number of
Upload actions, Number of Download actions and
Number of Deletion actions.

As seen in figure 2 and table 1 synthetic data
represents the original data set very similarly. However, it
should be noted here that there is one user on this ftp
server, which creates half of the actions in the log file.
Thus, this affects some of the statistics of the original
data file.

Original vs Synthetic

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Action number

S
es

si
o

n
 n

u
m

b
er Original upload session No

Synthetic upload session No.
Original download session No.
Synthetic download session No.
Original deletion session No
Synthetic deletion session No.

Figure 2. Comparison of original data vs.
synthetic data in terms of actions (log-
scale)

Table 1. Comparison of the original data
set vs. the synthetic data set in terms o f
mean and median

In both the figure and the table above, Session counts
means the number of actions in one session; Session
icounts is the number of upload actions in one session;
Session ocounts is the number of download actions in
one session; Session dcounts is the number of deletion
actions in one session; and Session duration is the length
of the session (in seconds).

4. Discussion

In this paper, we presented a probabilistic modeling
approach to build user models from the ftp server log
files. Our contribution is the distinctive use of Discrete
Markov models to model the user behavior from the ftp
server logs. To the best of our knowledge, this is the first
attempt to model ftp server log files. The set of
components that we developed within the framework
comprise a comprehensive ftp toolkit, which can develop
and validate usage models and generate synthetic data.
Furthermore, the results show that this toolkit can be

used to model user behavior from ftp log files since the
synthetic sessions are comparable to the sessions in the
original data. Thus, our system can be used to generate
normal behavior in order to train/test machine learning
based IDSs or used as a benchmarking data set for any
given IDS. Given the difficulty of obtaining real traffic
for benchmarking IDSs, we believe this work performs a
valid contribution. For future work, we want to expand
the toolkit so that it can be used on any type of ftp server
log file as well as test it on more data sets.

References

[1] Puketza N.J., Zhang K., Chung M., Mukerjee B., "A
Methodology for Testing Intrusion Detection Systems", In
IEEE Transaction on Software Engineering v 22 no 10, pp
7 1 9 - 7 2 9 , O c t 1 9 9 6 .
http://citeseer.ist.psu.edu/puketza96methodology.html
[2] Debar, H., Dacier, M., Wespi, A. and Lampart, S. 1998. “An
experimentation workbench for intrusion detection
systems”, Res. Rep. RZ 2998 (#93044) (Sept.). Research
Division, IBM, New York, NY.
[3] Haines J. W., Lippmann R. P., Fried D. J., Tran E., Boswell
S., Zissman M. A., “1999 DARPA Intrusion Detection System
Evaluation: Design and Procedures”, MIT Lincoln Laboratory
T e c h n i c a l R e p o r t ,
http://www.ll.mit.edu/IST/ideval/pubs/2001/TR-1062.pdf
[4] Kayacik H. G., Zincir-Heywood A. N., “Generating
Representative Traffic for Intrusion Detection System
Benchmarking”, Proceedings of the IEEE CNSR’2005,
pp.112-117 Halifax, Canada, May 2005.
[5] Rabiner L. R., Juang B. H., “An Introduction to Hidden
Markov Models”, IEEE ASSP Magazine, vol. 3, issue 1, pp.4-
15, Jan 1986.

