
Machine Learning Based Encrypted Traffic Classification:
Identifying SSH and Skype

Riyad Alshammari and A. Nur Zincir-Heywood

Abstract— The objective of this work is to assess the ro-
bustness of machine learning based traffic classification for
classifying encrypted traffic where SSH and Skype are taken as
good representatives of encrypted traffic. Here what we mean
by robustness is that the classifiers are trained on data from
one network but tested on data from an entirely different
network. To this end, five learning algorithms – AdaBoost,
Support Vector Machine, Naı̈ve Bayesian, RIPPER and C4.5
– are evaluated using flow based features, where IP addresses,
source/destination ports and payload information are not em-
ployed. Results indicate the C4.5 based approach performs
much better than other algorithms on the identification of both
SSH and Skype traffic on totally different networks.

I. INTRODUCTION

Many network management tasks such as managing band-
width budget and ensuring quality of service objectives
for critical applications rely on accurate classification of
network traffic. Moreover, network engineering problems
such as traffic shaping or workload modeling also require
classification of network traffic.

Traditionally, one approach to classifying network traffic
is to inspect the payload of every packet. This technique can
be extremely accurate when the payload is not encrypted.
However, encrypted applications such as SSH (Secure Shell)
or Skype imply that the payload is opaque. Another approach
to classifying applications is using well-known TCP/UDP
port numbers. However, this approach becomes increasingly
inaccurate when applications use non-standard ports to by-
pass firewalls or circumvent operating systems restrictions.
Moreover, ports can be dynamically allocated as needed,
i.e. the same port number can be used to transmit multiple
applications, most notably port 80. Thus, other techniques
are required to increase the accuracy of network traffic
classification.

One possibility is to identify specific features of the
network traffic and use these to guide the traffic classification.
Recent research in this area focuses on the classification of
efficient and effective classifiers. Different research groups
have employed expert systems or various machine learning
techniques such as Hidden Markov models, Naive Bayesian
models, AdaBoost, or Maximum Entropy methods to this
problem [1], [2], [3], [4], [5]. However, having an encrypted
payload and being able to run different applications in an
encrypted channel makes it a challenging problem to classify

R. Alshammari is with Dalhousie University, Faculty of Computer Sci-
ence, Halifax, NS B3H 1W5, Canada. (e-mail: riyad@cs.dal.ca)

A. N. Zincir-Heywood is with Dalhousie University, Faculty of Computer
Science, Halifax, NS B3H 1W5, Canada (phone: 902-4943157; fax: 902-
4921517;e-mail: zincir@cs.dal.ca)

encrypted traffic from a given traffic log file. Encrypted traffic
implies that performing payload analysis is not useful. More-
over port number based classification cannot be accurate
given that non-standard ports can be used to avoid detection
or bypass firewalls.

In this work, we have focused on the identification of
two types of encrypted traffic SSH and Skype. SSH is
typically used to login to a remote computer but it also
supports tunneling, file transfers and forwarding arbitrary
TCP ports over a secure channel. On the other hand, Skype
is a proprietary P2P (Peer to Peer) VoIP network. Skype
is widely known for its broad range of features, including
free voice and video conferencing, and its ability to use P2P
technology to overcome common firewall and NAT problems.
It is a versatile method of synchronous and asynchronous
communication. Indeed, covering a collection of such dif-
ferent encrypted behavior makes it difficult to distinguish
both SSH traffic from non-SSH and Skype from non-Skype
traffic. Thus, the goal of this work is to develop a model that
distinguishes SSH traffic from non-SSH traffic and Skype
from non-Skype traffic without using IP addresses, port
numbers or payload information. We believe that this will
not only enable our model to generalize from one network
to another well but also potentially will enable us to employ
such an approach for the classification of other encrypted
applications. In order to classify/identify SSH and Skype
traffic; five different machine learning algorithms will be
employed. These are AdaBoost, Support Vector Machine,
Naı̈ve Bayesian, RIPPER and C4.5.

The rest of this paper is organized as follows. Related work
is discussed in Section II. Section III details the data sets,
features and machine learning algorithms employed. Section
IV presents the experimental results. Conclusions are drawn
and future work is discussed in Section V.

II. RELATED WORK

Most of the existing research in the literature focuses on
automatic application recognition in general, i.e. classifica-
tion of well known applications such as HTTP, SMTP, FTP
etc. However, not much attention is paid to the classification
of encrypted traffic. Thus, to the best of our knowledge, most
of the previous work require either payload inspection or em-
ploy information about the flows including the port numbers
and IP addresses to automate the application recognition.

In the literature, Zhang and Paxson present one of the
earliest studies of techniques based on matching patterns in
the packet payloads [6]. Dreger et al. [7] and Moore et al.
[4] applied more sophisticated analyses, which still require

payload inspection. Early et al. employed a decision tree
classifier on n-grams of packets for distinguishing flows [8].
Moore et al. used Bayesian analysis to classify flows into
broad categories such as bulk transfer, P2P or interactive
[3], [4]. Haffner et al. employed AdaBoost, Hidden Markov,
Naı̈ve Bayesian and Maximum Entropy models to classify
network traffic into different applications [2]. Their results
showed AdaBoost performed the best on their data sets;
with an SSH detection rate of 86% and false positive rate of
0.0%, but they employed the first 64 bytes of the payload.
Since the encryption of SSH data starts after the handshake,
analyzing the first 64 bytes of the payload (includes the not-
encrypted part) provided them a good signature to classify
SSH. However, if the encryption algorithm is changed, this
system will not work correctly. Moreover, it is not generic
enough to apply for other encrypted applications such as
Skype or Virtual Private Networks tunnels.

Karagiannis et al. proposed an approach that does not
use port numbers or payload information on traffic that
is not encrypted [9]. However, their approach relies on
information about the behavior of the hosts on the network.
Thus, they cannot identify applications and cannot classify
individual flows or connections. More recently, Wright et
al. investigate the extent to which common application
protocols can be identified using only packet size, timing
and direction information of a connection [1], [10]. They
employed a k-Nearest Neighbor (kNN) and Hidden Markov
Model (HMM) learning systems to compare the performance.
Even though their approach can classify distinct encrypted
applications, their performance on SSH classification is only
76% detection rate and 8% false positive rate. Bernaille
et al. employed first clustering and then classification to
the first few packets in each connection to identify SSL
connections [11]. They use the first four packets of a TCP
connection and represent it using 5-tuple (Destination/Source
IP address, Destination/Source port numbers and Protocol)
and the packet size. However, they have to wait for the
connection to end to identify the first four packets. Even
though this representation can enable early identification of
an application, port numbers were used for classification in
their work. Thus, not only its performance will drop when
port numbers are changed but also it is not robust since it
requires new training each time it is evaluated on a different
network.

Another recent work by Williams et al. [5] compared five
different classifiers namely, Bayesian Network, C4.5, Naı̈ve
Bayes (with discretisation and kernel density estimation)
and Naı̈ve Bayes Tree, on the task of traffic flow classi-
fication. They found that C4.5 performed better than the
others. However, rather than giving classification results per
application, they give overall accuracy results per machine
learning algorithm. Unfortunately, this may be misleading
especially on unbalanced data sets where, say, only 10% of
the data set is in-class (SSH) and 90% out-class (non-SSH).
Thus, by labeling everything as the major class, a classifier
can achieve 90% accuracy. More recently, Alshammari et al.

employed RIPPER and AdaBoost algorithms for classifying
SSH traffic from offline log files without using any payload,
IP addresses or port numbers [12]. In that work, public traces
from MAWI and AMP repositories as well as testbed traces
generated at authors’ lab were employed. Results showed
that RIPPER based classifier achieved 99% detection rate
and 0.7% false positive rate at its best performance in the
detection of SSH traffic.

On the other hand, Montigny-Leboeuf, from Communica-
tions Research Centre Canada (CRC), developed a number
of indicators (attributes) that aim to portray essential com-
munication dynamics based solely on information that can
be gathered from monitoring packet headers in a traffic flow
[27]. Based on these attributes rules are formed to classify
different application traffic. A tool is developed at CRC to
demonstrate the relevance of these rules and flow indicators
in characterizing network traffic. Results reported on SSH
traffic classification showed 79% detection rate and 5% false
positive rate (and 13% of flows were unrecognized) [27].
These were achieved on a private data set at CRC where
the applications are labelled using port numbers. Recently,
it is shown that when such a heuristic based semi-automatic
system is compared to a machine learning based fully au-
tomatic system, the machine learning based classification
system outperformed the heuristics based one [29].

On the other hand, Skype analysis become very popular
in the last few years, too. Baset et al present an analysis
of the Skype behaviour [30]. Suh et al monitored Skype
traffic using relay nodes [31]. Ehlert et al studied skype
traffic to find signatures [32]. Bonfiglio et al adopted two
techniques to detect skype traffic. These were Chi-Square
test and Naive Bayesian classifier. However the results
were evaluated with a payload-based classification scheme
which gave the best results when the two detection methods
combined [33]. Perenyi et al proposed Skype identification
algorithm based on observable parts of Skype protocol. First
candidate Skype host are detected using traditional IP and
port-based identification together with a special signaling
flow identification method. Then Skype calls are discovered
exploiting the properties of speech flows, timing of voice
packet and candidate hosts found in the first step [34].
Freire et al studied detecting skype flows in web traffic and
achieved 100% detection rate with 5% false positive rate
[35]. In contrast to the related work, our proposed system
can potentially be applied to any encrypted application since
it applies only flow based statistics without using the ip
addresses, port numbers and payload data. Last but not the
least, none of the previous work employing machine learning
techniques to detect different application traffic investigated
the robustness of such techniques to different encrypted
applications and different network traces.

III. METHODOLOGY

As discussed earlier, in this work machine learning based
classifiers are going to be employed in order to identify the
most robust model/rules to the problem of SSH/Skype traffic
classification. We believe that the robustness can be very

important especially for forensic analysis where classifiers
are naturally trained on a different network than the ones
they are used to test/investigate.

A. Data Collection

In our experiments, the performance of the different ma-
chine learning algorithms is established on four different
network data sources: Dalhousie traces, public traces (AMP
and MAWI [13], [14]) and DARPA99 traces. The properties
of the data sources are as follows:

• Public traces naturally have no reference to payload
or network configuration. We used several public data
sets from NLANR (National Laboratory for Applied
Network Research - AMP data traces) [13] and MAWI
(Measurement and Analysis on the WIDE Internet) [14]
web sites. Brief statistics on the traffic data collected are
given in Table I.

• Dalhousie traces were captured on the Dalhousie Uni-
versity Campus network by the University Computing
and Information Services Centre (UCIS) in January
2007. Dalhousie is one of the biggest universities in
the Atlantic region of Canada. There are more than
15000 students and 3300 faculty and staff. The UCIS is
responsible for all the networking on the campus which
includes more than 250 servers and 5000 computers.
Moreover, the wireless network is enabled on the cam-
pus where thousands of users (students and staff) are
connected daily. Dalhousie network is connected to the
Internet via a full-duplex T1 fiber link. Full-duplex traf-
fic on this connection was captured for 8 hours. Given
the privacy related issues university may face, data is
filtered to scramble the IP addresses and each packet is
further truncated to the end of the IP header so that all
payload is excluded. Moreover, the checksums are set
to zero since they could conceivably leak information
from short packets. However, any information regarding
size of the packet is left intact. Brief statistics on the
traffic data collected are given in Table I.

• DARPA99 traces consists of five weeks of traces gen-
erated at the MIT Lincoln Labs for Intrusion Detection
Evaluation [15]. The data represent a simulated network
at an imaginary Air Force base. For each week, there are
five network trace files that represent a network usage
from 8:00 AM to 5:00 PM. We used data from week one
and week three since these two weeks are attack-free
and our purpose is to evaluate whether we can classify
network traffic not if we can detect intrusions. We used
only the inside sniffing data. Brief statistics on the traffic
data collected are given in Table I.

For public data sets, there is no accurate method of
determining the type of application to which different packets
belong, since we do not have access to packet payloads.
Thus, we simply use a port-based classifier to determine
the class label, i.e. application, in these files, which use
standard port numbers and label flows according to IANA
assignments as done by the previous work [2], [4], [5], [16],

TABLE I
SUMMARY OF TRACES

Dalhousie AMP MAWI DARPA99
Total Packets 337041778 332,064,652 76543335 16723835
MBytes 213,562 188,435 28,718 3,638
% of TCP packets 86.51% 55.36% 85.37% 88.6%
% of TCP bytes 91.03% 72.05% 70.3% 93.29%
% of UDP packets 13.33% 33.6% 11.65% 11.33%
% of UDP bytes 8.95% 11.2% 5.5% 6.43%
% of Other packets 0.16% 11.04% 2.98% 0.07%
% of Other bytes 0.02% 16.75% 24.2% 0.28%

[17], [10]. As for DARPA99 data sets, we again employed
a port-based classifier to determine the class label. Indeed,
this uses standard port numbers and labels flows according to
IANA assignments as done by the previous work. However,
given that DARPA99 traces also have payload, then we could
verify the labels for SSH traffic against the handshake part
of SSH in the payload (given that SSH handshake is not
encrypted). This enabled us to know the ground truth for
DARPA99 traces.

On the other hand, Dalhousie traces (UCIS) are labeled
by UCIS by a commercial classification tool called Packet-
Shaper, which is a deep packet analyzer [18]. PacketShaper
uses Layer 7 filters (L7) to classify the applications [19].

Since all of the traffic traces are very large data sets.
We performed subset sampling to limit the memory and
CPU time required for training. In all cases, we sampled the
training data sets from the Dalhousie traces since that repre-
sent the newest trace among the set. For SSH identification,
the training data set, Dal Training Sample, is generated by
sampling randomly selected (uniform probability) flows from
five applications FTP, SSH, DNS, HTTP and MSN. In total,
Dal Sample consists of 12246 flows, 6123 SSH and 6123
non-SSH. On the other hand, for Skype identification, Skype
Dal Training Sample is generated by sampling randomly
selected (uniform probability) flows from different classes
(FTP, SSH, MAIL, DNS, HTTP, HTTPS and Random UDP).
The applications in the “Random UDP” class includes ran-
dom UDP 24000 flow instances. In total, Skype Dal Sample
consists of 60000 balanced flows (skype flows vs non-skype
flows).

B. Feature Selection

Network traffic is represented using flow-based features.
In this case, each network flow is described by a set of
statistical features. Here, a feature is a descriptive statistic
that can be calculated from one or more packets. To this
end, NetMate [20] is employed to process data sets, generate
flows and compute feature values. Flows are bidirectional
and the first packet seen by the tool determines the forward
direction. Moreover, flows are of limited duration. UDP
flows are terminated by a flow timeout. TCP flows are
terminated upon proper connection teardown or by a flow
timeout, whichever occurs first. The TCP flow time out value
employed in this work is 600 seconds [21]. The flows as
defined by the features, we extract a similar set of features

TABLE II
FLOW BASED FEATURES EMPLOYED

Protocol Duration of the flow
Packets in forward direction # Bytes in forward direction
Packets in backward direction # Bytes in backward direction
Min forward inter-arrival time Min backward inter-arrival time
Std deviation of forward inter-
arrival times

Std deviation of backward inter-
arrival times

Mean forward inter-arrival time Mean backward inter-arrival time
Max forward inter-arrival time Max backward inter-arrival time
Min forward packet length Min backward packet length
Max forward packet length Max backward packet length
Std deviation of forward packet
length

Std deviation of backward packet
length

Mean backward packet length Mean forward packet length

as in [5], form the input vector from which the machine
learning model provides a label {SSH (Skye), non-SSH (non-
Skype)} for each flow. As discussed earlier, features such as
IP addresses, source/destination port numbers and payload
are excluded from the feature set to ensure that the results
are not dependent on such biased features.

C. Classifiers Employed

In order to identify SSH traffic; five different machine
learning algorithms are deployed. These are Support Vector
Machine (SVM), RIPPER, AdaBoost Naı̈ve Bayesian and
C4.5.

Support Vector Machines (SVMs) are a set of machine
learning methods used for regression and classification prob-
lems [22]. They belong to a family of generalized linear
classifiers. A special property of this family of classifiers is
to simultaneously minimize the empirical classification error
and maximize the geometric margin. Often, in classification
problems, data points may not necessarily be points in <2,
but may be multidimensional <p or <n points. In this case,
data is represented by a vector of n attributes or n features.
The overall classification problem then takes the form of
determining whether this data can be separated by a n-1
dimensional hyperplane. Assuming our data is linearly sepa-
rable; we should find a hyperplane that separates our feature
vectors. This is a typical form of linear classifier. There
are many linear classifiers that might satisfy this property.
However, we are additionally interested in establishing the
maximum separation/margin between the two classes. If such
a hyperplane exists, the hyperplane is clearly of interest and
is known as the maximum-margin hyperplane and such a
linear classifier is known as a maximum margin classifier.
The feature vectors from which the distance to the hyperplane
is measured, or the vectors at either side of the margin, are
known as the support vectors. A more detailed explanation
of the algorithm can be found in [22].

AdaBoost, Adaptive Boosting, is a meta-learning algo-
rithm, which means that a strong classifier is built from
a linear combination of weak (simple) classifiers. It incre-
mentally constructs a complex classifier by overlapping the
performance of possibly hundreds of simple classifiers using
a voting scheme. These simple classifiers are called decision

stumps. They examine the feature set and return a decision
tree with two leaves. The leaves of the tree are used for
binary classification and the root node evaluates the value
of only one feature. Thus, each decision stump will return
either +1 if the object is in class, or -1 if it is out class.
AdaBoost is simple to implement and known to work well on
very large sets of features by selecting the features required
for good classification. It has good generalization properties.
However, it might be sensitive to stopping criterion or result
in a complex architecture that is opaque. A more detailed
explanation of the algorithm can be found in [23].

Naı̈ve Bayesian is a statistical classifier based on Bayess
theorem that gives its conditional probability a given class.
This classification method analyses the relationship between
instance of each class and each attributes to acquire a condi-
tional probability for the relationships between the attribute
values and the class. Naı̈ve Bayesian classifier assumes the
values of the input features are independent and have no
effect on a given class. This assumption, conditional inde-
pendence, is made to simplify the computations and consider
to be naive. Naı̈ve Bayesian can be used for classification
in straightforward process by computing the probability of
occurrence for each class , prior probability, and computing
the probability of occurrence of instance in a given class.
Moreover, Naı̈ve Bayesian has managed to achieve good
results even though when conditional independence assump-
tion is violated. Further information on the Naı̈ve Baysien
algorithm can be found in [24].

C4.5 is a decision tree based classification algorithm. A
decision tree is a hierarchical data structure for implement-
ing a divide-and-conquer strategy. It is an efficient non-
parametric method that can be used both for classification
and regression. In non-parametric models, the input space is
divided into local regions defined by a distance metric. In a
decision tree, the local region is identified in a sequence of
recursive splits in smaller number of steps. A decision tree
is composed of internal decision nodes and terminal leaves.
Each node m implements a test function fm(x) with discrete
outcomes labeling the branches. This process starts at the
root and is repeated until a leaf node is hit. The value of
a leaf constitutes the output. In the case of a decision tree
for classification, the goodness of a split is quantified by an
impurity measure. A split is pure if for all branches, for all
instances choosing a branch belongs to the same class after
the split. A more detailed explanation of the algorithm can
be found in [25].

RIPPER, Repeated Incremental Pruning to Produce Error
Reduction, is a rule based machine learning algorithm. This
means rules are learned from the data directly. Rule induction
does a depth-first search and generates one rule at a time.
Each rule is a conjunction of conditions on discrete or
numeric attributes and these conditions are added one at a
time to optimize some criterion. In RIPPER, conditions are
added to the rule to maximize an information gain measure
[26]. To measure the quality of a rule, minimum description
length is used [26]. RIPPER stops adding rules when the

description length of the rule base is 64 (or more) bits larger
than the best description length. Once a rule is grown and
pruned, it is added to the rule base and all the training
examples that satisfy that rule are removed from the training
set. Then the process continues until enough rules are added.
In the algorithm, there is an outer loop in which one rule at
a time is added to the rule base and an inner loop in which
one condition at a time is added to the current rule. These
steps are both greedy and do not guarantee optimality. A
more detailed explanation of the algorithm can be found in
[26].

IV. EXPERIMENTS AND RESULT

In traffic classification, two metrics are typically used in
order to quantify the performance of the classifier: Detection
Rate (DR) and False Positive Rate (FPR). In this case DR
will reflect the number of SSH (Skype) flows correctly
classified whereas FPR will reflect the number of non-SSH
(non-Skype) flows incorrectly classified as SSH. Naturally, a
high DR rate and a low FPR would be the desired outcomes.
They are calculated as follows:

DR = 1− #FNClassifications

TotalNumberSSHClassifications

FPR =
#FPClassifications

TotalNumberNon SSHClassifications

where FN, False Negative, means SSH (Skype) traffic clas-
sified as non-SSH (non-Skype) traffic. Once the aforemen-
tioned feature vector is prepared for the data sets, then Ad-
aBoost, Support Vector Machine, Naı̈ve Bayesian, RIPPER
and C4.5 based classifiers are trained on the Dal Training
Samples. To this end, we have used Weka [28], which is an
open source tool for data mining tasks. We employed Weka
with its default parameters to run all algorithms on our data
sets.

We use these trained models, on all of the complete
traces employed. Table III lists the number of flows in each
data set. Furthermore, Table I shows that the percentages
of the TCP and UDP traffic are different for each trace.
What this demonstrates is that these traces indeed belong
to substantially different networks. Therefore, we believe
that only well generalized models are able to classify SSH
(Skype) traffic correctly on these networks.

Results show that the C4.5 and RIPPER based classifiers
perform better than the other classifiers on the majority of
the data sets. Our results show that C4.5 achieves the best
results on Dalhousie, AMP and MAWI traces, whereas SVM
achieves the best results on DARPA99 traces. Looking at
only real network traces (DARPA99 is a simulated network
trace), C4.5 performs better than the other classifiers. C4.5
achieves 95.9% DR and 2.8% FPR on Dalhousie traces,
97.2%, 97% DR and 0.8% FPR on the AMP traces, and
82.9% DR and 0.5% FPR on MAWI traces, Table IV. This
not only shows that the model, which the C4.5 classifier
learned during training, are adapted enough to be tested
on real world network traces, but also verifies that accurate

TABLE III
NUMBER OF FLOWS IN THE COMPLETE TRACES EMPLOYED

Dalhousie AMP MAWI DARPA99
FTP 8504 14346 3395 8867
SSH 19384 427448 19016 72094

TELNET 510 4500 353 463643
MAIL 359212 174179 31410 173530
DNS 5325576 8021575 9601134 25735411

HTTP 5672886 450868 155511 474282
Skype 8664137 0 0 0

OTHERS 24179489 12004509 10163022 1633475
Total 44229698 21097425 19973841 28561302

differentiation between SSH and non-SSH traffic is possible
without employing port numbers, IP addresses and payload
information.

Analysis of the model generated by C4.5 and RIPPER
shows that C4.5 classifier model generates 13 rules for
SSH flows and used 14 features, Figure 1 while RIPPER
classifier model generates 11 rules for SSH flows and used
15 features, Figure 2. Both these models are easy to deploy
and understandable by network administrators.

1) Results of Skype Experiments: Table V shows that
C4.5 based classification approach is much better than other
machine learning algorithms employed in identifying the
Skype traffic. In this case, the classification based system
can correctly classify ≈98% of the instances with less than
8% FPR.

V. CONCLUSION AND FUTURE WORK

In this work, we investigate the robustness of the
model/rules generated by AdaBoost, Support Vector Ma-
chine, Naı̈ve Bayesian, RIPPER and C4.5 learning algo-
rithms for distinguishing SSH traffic from non-SSH traffic
in a given traffic trace. To do so, we employ public traffic
traces from AMP and MAWI web sites based on the previous
research [5] as well as employing traffic traces captured on
our Dalhousie Campus network. We evaluated the aforemen-
tioned learning algorithms using traffic flow based features.
We have employed Weka (with default settings) for both
algorithms. Results show that the rules/model generated
by C4.5 based classifier performs better than other based
classifiers on the above data sets using flow based features.
In these experiments, in the worst case scenario, the C4.5
based classifier can achieve a 83.7% DR and 1.5% FPR at
its test performance (when trained on one network but tested
on another) to detect SSH traffic. On the other hand, in the
best case test scenario, C4.5 based classifier can achieve up
to 97% DR and 0.8% FPR at its test performance. These
results show that the classification based system trained on
data from one network can be employed to run on a different
network without new training. Thus, it can generalize well
from one network data to another and is therefore robust. In
short, the rules, i.e. solutions, generated by the classification
based system are robust generic solutions as well as being
easy to understand.

Last but not the least, we have also investigated clas-
sification based system on Dalhousie traces in order to

TABLE IV
RESULTS ON THE TRAINING DATA AND COMPLETE TRACES FOR SSH

C4.5 AdaBoost Naive
Bayesian

SVM RIPPER

DR FPR DR FPR DR FPR DR FPR DR FPR
Result of 10-fold cross validatoin on SSH Dal Training Sample

Non-SSH 0.996 0.006 0.978 0.029 0.993 0.084 0.982 0.021 0.996 0.005
SSH 0.994 0.004 0.971 0.022 0.916 0.007 0.979 0.018 0.995 0.004

Result of Dalhousie traces
Non-SSH 0.971 0.04 0.469 0.057 0.993 0.172 0.847 0.06 0.965 0.037
SSH 0.959 0.028 0.942 0.53 0.827 0.006 0.939 0.152 0.962 0.034

Result of AMP traces
Non-SSH 0.991 0.027 0.372 0.963 0.994 0.998 0.709 0.011 0.99 0.061
SSH 0.972 0.008 0.036 0.627 0.001 0.005 0.988 0.29 0.938 0.009

Result of MAWI traces
Non-SSH 0.994 0.17 0.207 0.761 0.998 0.985 0.523 0.087 0.994 0.184
SSH 0.829 0.005 0.238 0.792 0.014 0.001 0.912 0.476 0.815 0.005

Result of DARPA99 traces
Non-SSH 0.988 0.166 0.958 0.105 0.97 0.309 0.962 0.001 0.973 0.111
SSH 0.833 0.011 0.894 0.041 0.69 0.029 0.998 0.037 0.888 0.026

TABLE V
RESULTS ON THE COMPLETE DALHOUSIE TRACES FOR SKYPE USING SKYPE DAL TRAINING SAMPLES

C4.5 AdaBoost Naive
Bayesian

SVM RIPPER

DR FPR DR FPR DR FPR DR FPR DR FPR
Result of 10-fold cross validatoin on Skype Dal Training Sample

Non-SKYPE 0.981 0.022 0.876 0.114 0.525 0.046 0.276 0.042 0.974 0.033
SKYPE 0.978 0.019 0.886 0.124 0.954 0.475 0.958 0.724 0.968 0.026

Result of Skype Dal Training Sample on test data
Non-SKYPE 0.923 0.016 0.821 0.134 0.401 0.079 0.45 0.11 0.938 0.03
SKYPE 0.984 0.077 0.866 0.179 0.921 0.6 0.89 0.55 0.971 0.062

identify Skype traffic. The preliminary results show that the
classification based approach can achieve 98.4% detection
rate and 7.8% false positive rate. Even though, the false
positive rate in this case is high, these are promising results
and should be investigated in more detail to develop a robust
solution for Skype identification as well.

Future work will follow similar lines to compare the
classification based approach against other clustering based
approaches and to generate more data sets to test the robust-
ness of the classifier for the classification of other encrypted
applications, such as SSL and virtual private network tunnels.
Moreover, the application of this approach to encryption
algorithm identification will also be explored.

ACKNOWLEDGMENT

This work was in part supported by MITACS, NSERC and
the CFI new opportunities program. Our thanks to John Sher-
wood, David Green and Dalhosuie UCIS team for providing
us the anonymozied Dalhousie traffic traces. All research
was conducted at the Dalhousie Faculty of Computer Science
NIMS Laboratory, http://www.cs.dal.ca/projectx.

REFERENCES

[1] Wright C., Monrose F., Masson G. M., “HMM Profiles for Network
Traffic Classification”, Proceedings of the ACM DMSEC, pp 9-15,
2004.

[2] Haffner P., Sen S., Spatscheck O., Wang D., “ACAS: Automated
Construction of Application Signatures”, Proceedings of the ACM
SIGCOMM, pp.197-202, 2005.

[3] Moore A. W., Zuev D., “Internet Traffic Classification Using Bayesian
Analysis Techniques”, Proceedings of the ACM SIGMETRICS, pp 50-
60, 2005.

[4] Moore A., Papagiannaki K., “Toward the Accurate Identification of Net-
work Applications”, Proceedings of the Passive & Active Measurement
Workshop, 2005.

[5] Williams N., Zander S., Armitage G., “A Prelimenary Performance
Comparison of Five Machine Learning Algorithms for Practical IP Traf-
fic Flow Comparison”, ACM SIGCOMM Computer Communication
Review, Vol. 36, No. 5, pp. 5-16 , 2006.

[6] Zhang Y., Paxson V., “Detecting back doors”, Proceedings of the 9th
USENIX Security Symposium, pp. 157-170, 2000.

[7] Dreger H., Feldmann A., Mai M., Paxson V., Sommer R., “Dynamic
application layer protocol analysis for network intrusion detection”,
Proceedings of the 15th USENIX Security Symposium, pp. 257-272,
2006.

[8] Early J., Brodley C., Rosenberg C., “Behavioral authentication of server
flows”, Proceedings of the 19th Annual Computer Security Applications
Conference, pp. 46-55, 2003.

Fig. 1. C4.5 Model

Fig. 2. RIPPER Model

[9] Karagiannis, T., Papagiannaki, K., and Faloutsos, M, “BLINC: Mul-
tilevel Traffic Classification in the Dark”,Proceedings of Applications,
Technologies, Architectures, and Protocols For Computer Communica-
tions pp 229-240, 2005.

[10] Wright C. V., Monrose F., Masson G. M., “On Inferring Application
Protocol Behaviors in Encrypted Network Traffic”, Journal of Machine
Learning Research, (7), pp. 2745-2769, 2006.

[11] Bernaille L., Teixeira R., “Early Recognition of Encrypted Applica-
tions”, Passive and Active Measurement Conference (PAM), Louvain-
la-neuve, Belgium, April, 2007.

[12] Alshammari, Riyad; Nur Zincir-Heywood, A., “A flow based approach
for SSH traffic detection,” Systems, Man and Cybernetics, 2007. ISIC.
IEEE International Conference on , vol., no., pp.296-301, 7-10 Oct,
2007.

[13] NLANR, http://pma.nlanr.net/Special.
[14] MAWI, http://tracer.csl.sony.co.jp/MAWI/.
[15] 1999 DARPA intrusion detection evaluation data,

http://www.ll.mit.edu/IST/ideval/docs/1999schedule.html, last accessed
Jan. 2008.

[16] Bernaille L., Teixeira R., Akodkenou I., “Traffic Classification on the
Fly”, Proceedings of the ACM SIGCOMM Computer Communication
Review, 2006.

[17] Erman J., Arlitt M., Mahanti A., “Traffic Classification using Cluster-
ing Algorithms”, Proceedings of the ACM SIGCOMM, pp. 281-286,
2006.

[18] PacketShaper, http://www.packeteer.com/products/packetshaper/.
[19] l7-filter, http://l7-filter.sourceforge.net/
[20] NetMate, http://www.ip-measurement.org/tools/netmate/.
[21] IETF, http://www3.ietf.org/proceedings/97apr/97apr-final/xrtftr70.htm.
[22] Burges C. J. C., “A Tutorial on Support Vector Machines for Pattern

Recognition”, Data Mining and Knowledge Discovery, 2(2): 1-47, 1998.
[23] Alpaydin E., “Introduction to Machine Learning”, MIT Press, ISBN:

0-262-01211-1.
[24] George H. John and Pat Langley Estimating Continuous Distributions

in Bayesian Classifiers. Proceedings of the Eleventh Conference on
Uncertainty in Artificial Intelligence. pp. 338-345, Morgan Kaufmann,
San Mateo, 1995.

[25] J R Quinlan, “C4.5: Programs for Machine Learning”,Morgan Kauf-
mann Publishers,isbn=1-55860-238-0, 1993.

[26] Cohen W. W., “Fast effective rule induction”, Proceedings of the 12th
International Conference on Machine Learning, pp. 115-123 , 1995.

[27] Montigny-Leboeuf A., Flow Attributes For Use In Traffic Characteri-
zation, Journal of CRC Technical Note No. CRC-TN-2005-003, Ottawa,
ON, Canada, 2005.

[28] WEKA Software, http://www.cs.waikato.ac.nz/ml/weka/.
[29] Alshammari, Riyad; Zincir-Heywood, A. Nur, “Investigating Two

Different Approaches for Encrypted Traffic Classification, ” Privacy,
Security and Trust, 2008. PST ’08. Sixth Annual Conference on , vol.,
no., pp.156-166, 1-3 Oct. 2008

[30] S. Baset, H. Schulzrine, “An analysis of the skype peer-to-peer internet
telephony protocol,” in INFOCOM06: Proceedings of the 25th IEEE
International Conference on Computer Communications, 2006.

[31] K Suh, D. R. Figueiredo, J. Kurose, and D. Towsley, “Characterizing
and detecting relayed traffic: A case study using skype,” in INFOCOM
06: Proceedings of the 25th IEEE International Conference on Computer
Communications, Apr 2006.

[32] S. Ehlert, S. Petgang, T. Magedanz, and D. Sisalem, “Analysis and
signature of skype VoIP session traffic,” in CIIT 2006: 4th IASTED

International Conference on Communications, Internet, and Information
Technology, Nov/Dec 2006, pp. 8389.

[33] D. Bonfiglio, M. Mellia, M. Meo, D. Rossi, “Detailed analysis of skype
traffic”, IEEE Transactions on Multimedia, Vol. 11, No.1, Jan 2009.

[34] M. Perenyi, A. Gefferth, T. D. Drang, S. Molnar, “Skype traffic
identification”, IEEE, 2007.

[35] E. P. Freire, A. Ziviani, R, M. Salles, “Detecting Skype flows in web
traffic”, IEEE, 2008.

