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Abstract— This work explores the use of clustering objectives
in a Multi-Objective Genetic Algorithm (MOGA) for both,
feature selection and cluster count optimization, under the
application of flow based encrypted traffic identification. We
first explore whether it is possible to achieve the performance
of a gold standard model (i.e., classification objectives), using
a MOGA based on clustering objectives. Then, we explore
the performance gain (if it exists) of applying a logarithmic
transformation to the data prior to running the MOGA. Results
show that MOGA trained with clustering objectives can closely
reproduce the behavior of a gold standard model, not only in
terms of the selected features, but also in terms of the achieved
detection rate and false positives rate, above 90% and less than
1% respectively. On the other hand, no gain was observed by
applying logarithmic transformation to the data.

I. INTRODUCTION

An important part of network management requires the
accurate identification and classification of network traffic
for decisions regarding both, bandwidth management and
quality of service [1], [3]. A particularly interesting area
in network traffic identification pertains to encrypted traffic,
where the fact that the payload is encrypted represents an
additional degree of uncertainty. Many traditional approaches
to traffic classification rely on payload inspection, which
becomes unfeasible under packet encryption. Alternatively,
some approaches have used port numbers to identify appli-
cation types, however, this practice has become increasingly
inaccurate as user applications are now able to arbitrarily
change the port number to deceive security mechanisms [2].
In short, the traditional approaches are unable to deal with the
identification of encrypted traffic. In this work, Secure Shell
(SSH) is chosen as an example encrypted application. While
SSH is typically used to remotely access a computer, it can
also be utilized for “tunneling, file transfers and forwarding
arbitrary TCP ports over a secure channel between a local
and a remote computer” [1]. These properties of SSH make
it an interesting encrypted application to focus on, given that
it shows similar behavior to popular encrypted applications
such as Skype. However, unlike Skype, SSH is an open
source protocol. This ensures that the ground truth is known
regarding the traffic tested.

From the traffic identification perspective, we employ a
Multi-Objective Genetic Algorithm (MOGA) that is used
for the dual goal of (i) identifying the appropriate (flow)
attribute/feature subspace and (ii) identifying traffic types
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by evolving clustering objectives. We first employed such a
MOGA based approach to traffic identification in [5], under
the assumption that the resulting clusters partition traffic
into encrypted/not encrypted. Then in [4], we benchmark the
performance of this MOGA against other unsupervised tech-
niques existing in the literature, like K-Means, DBSCAN,
and Expectations Maximization (EM). The results favored
the proposed algorithm not only in terms of detection rate
and false positives rate, but also in terms of the time required
to train and test the models.

Alternatively, instead of using clustering objectives, we
could use label information during training to establish a
gold standard for cluster purity. Thus, by using Detection
Rate (DR) and False Positives Rate (FPR) as objectives, we
would avoid the uncertainty of building clusters based on
a fitness function that indirectly pertains to the purpose of
traffic identification. I.e., clustering data description is not
necessarily the same as classification. However, the use of
labels during the learning phase is computationally much
more expensive as it involves iterative calculations of DR
and FPR, and implies the availability of labeled training
data which is expensive to produce. Thus, the first objective
in this work is to explore whether it is possible to mimic
the results obtained with the gold standard objectives (label
driven learning), with clustering objectives.

The second objective of this work is to establish the
significance of a prior attribute normalization on the resulting
cluster quality. Network traffic under a flow based repre-
sentation utilizes attributes representing different properties,
such as time features and packet features. As a result,
significant variation in attribute ranges is typically observed.
Such diversity in attribute ranges is typically considered to
have a negative impact on machine learning algorithms in
general, resulting in the wide spread use of a prior attribute
standardization/normalization to achieve a common variance
or dynamic range across all attributes. We analyzed the
effects of applying a logarithmic transformation to the data
set to increase the homogeneity between the attributes. This
is believed [18] to lead to better classification results.

II. PREVIOUS WORK

Paxson presented in [18] a number of analytic models
to describe the features associated with TELNET, NNTP,
SMTP, and FTP connections. Three million TCP connections
gathered at seven different sites were analyzed, focusing
on attributes like bytes transfered and duration. In doing
so, it was noticed that in the case of attributes with large
ranges of values it is more meaningful to analyze the data



after applying a logarithmic transformation. Specifically, the
significance of statistics such as mean and standard deviation
are skewed towards attributes with the greater ranges. Given
that there are several orders of magnitude, applying a log
transformation reduces the corresponding dynamic range to
the attributes with the most dissimilar ranges.

McGregor et al. [15] presented an unsupervised approach
using Expectation Maximization (EM) clustering to classify
network traffic represented by a set of flow attributes. At-
tributes that did not have an impact on the classification were
removed. Using the Auckland VI trace they observed that
the clustering showed some capabilities in grouping flows
together by traffic type, but that more work needed to be done
to derive better features to increase their performance. Zander
et al. [22] also proposed traffic identification by using an
unsupervised machine learning technique (autoclass). They
employed the Auckland VI data set, and the NZIX-II and
Leiozig traces. The feature selection was based on a sequen-
tial forward selection. The quality of the resulting classes
was evaluated in terms of intra-class homogeneity, aiming
to achieve good separation between different applications.
They were able to achieve an average accuracy across all
traces of 86.5%. Bernaille et al. [6] proposed an unsupervised
clustering (K-means) online approach, based solely on the
packet size of the first p packets. The best results were
obtained with the first 5 packets, being able to correctly
classify more than 80% of the flows of almost all of the
tested applications. The authors did mention, however, that
this approach is sensitive to the arrival order of the packets.
Siqueira Junior et al. [12] focused on P2P traffic, presenting
an unsupervised approach in which 249 features were ana-
lyzed, including statistics about the length of the packets and
time between the packets. The feature selection was based on
the Ratio F, which uses a ratio of two estimates, “dividing
the variance mean of intra-group elements” and “the mean
variance of inter-group elements”. They were able to achieve
86.12% in trust, and 96.79% in accuracy. It is important to
notice, however, that the Port server was included as one of
the selected features. Yang et al. [20] applied a DBSCAN
clustering algorithm, using 5 flow features. Feature selection
was based on the effect that different features have on the
classification accuracy, i.e., a wrapper methodology. They
were able to achieve an accuracy of about 87%. None of these
authors mention any logarithmic transformation to deal with
the skewness of the data as described by Paxson. Moreover,
most of them used both time, and packet related features.

Erman et al., on the other hand, presented several unsu-
pervised approaches for traffic classification in which the
data was logged to deal with the “heavy tail distribution”
of the features employed [7], [8], [9], [10]. In [8], the
authors presented a comparison of an unsupervised machine
learning approach, EM, to previously obtained results with
a supervised learning method. They found the unsupervised
technique outperformed the supervised technique by up to
9%, achieving an overall accuracy of up to 91%. Then
in [7], they compared three unsupervised techniques: EM, K-

Means, and DBSCAN, using the Auckland IV trace as well
as traffic collected at the University of Calgary. The authors
concluded that K-Means accuracy is only marginally lower
than AutoClass (EM), but with a much faster training time.
In [9] they proposed a semi-supervised method, in which the
training was done with only a small percentage of labeled
and a high percentage of unlabeled flows. They obtained
high flow and byte accuracy, greater than 90%, using a
backward greedy feature selection method. They observed
that flow features that have time components should be
avoided as “they are less likely to be invariant across different
networks” [9]. Finally, Yingqiu et al. [21] also applied a
logarithmic transformation to the data. The authors presented
an unsupervised K-means approach, combined with feature
reduction techniques such as CFS, Consistency-based subset
evaluation, backward and forwards greedy search, among
others. With traffic collected at a research facility, they ob-
tained improvements of at least 10% accuracy after applying
log transformation, with an overall accuracy of up to 90%.

To the best of our knowledge, this is the first work
that, without using any payload information or port number,
identifies encrypted traffic with a multi-objective genetic
algorithm, and compares its performance to that of an
equivalent gold standard model. Furthermore, this is also
the first work that assesses the suitability of a logarithmic
transformation to the data for a genetic algorithm applied to
encrypted traffic identification.

III. METHODOLOGY

This section first discusses the employed data set, followed
by a description of the flow features obtained from it. We
then explain the multi-objective genetic algorithm, MOGA,
which leads to an analysis of its clustering objectives, de-
tailed in the fitness subsection. This section is concluded
with an outline of the logarithmic transformation used for
attribute wise standardization.

A. Data Set
The employed data set was captured by the Dalhousie Uni-

versity Computing and Information Services Centre (UCIS)
in January 2007 on the campus network between the uni-
versity and the commercial Internet. Dalhousie University
is one of the largest universities in the Atlantic region of
Canada, with more than 15,000 students and about 3,300
faculty and staff. Data privacy related issues required that the
data was filtered to scramble the IP addresses and each packet
was further truncated to the end of the IP header so that all
the payload was excluded. Furthermore, the checksums were
set to zero since they could conceivably leak information
from short packets. However, any length information in the
packet was left intact. Dalhousie traces were labeled by
UCIS with a commercial classification tool, PacketShaper,
which is a deep packet analyzer, i.e., it analyzes the packet
payload [17]. Given that the handshake part of SSH protocol
is not encrypted, we can confidently assume that the labeling
of the data set is completely accurate and provides the ground
truth for testing purposes. Again, we emphasize that our



work did not consider any information from the handshake
phase nor any part of the payload, IP addresses, or port
numbers. Also, we focus on SSH as a case study, there is
nothing in the approach that ties us to the SSH protocol
specifically. However, the fact that the SSH’s handshake is
not encrypted, allowed us to compare our obtained results
with those obtained through payload inspection. In order
to build training data we sampled the Dalhousie traces.
The training data for all experiments consisted of 12250
flows, including SSH, MSN, HTTP, FTP, and DNS. The
test data, on the other hand, was the entire data set (more
than 18,500,000 flows) and consisted of flows from each of
those applications, plus flows that belonged to any of the
following additional applications: RMCP, Oracle SQL*NET,
NPP, POP3, NETBIOS Name Service, IMAP, SNMP, LDAP,
NCP, RTSP, IMAPS and POP3S.

B. Flow Generation

Flows are defined by sequences of packets that present the
same values for source IP address, destination IP address,
source port, destination port and type of protocol. In this
work, each flow is described by a set of statistical features
and associated feature values. A feature is a descriptive
statistic that can be calculated from one or more packets.
NetMate [16], an open source tool, was used to generate
flows, and compute feature values. Table 1 shows the 38
features obtained from NetMate. Flows are bidirectional with
the first packet determining the forward direction. Since
flows are of limited duration, in this work UDP flows are
terminated by a flow timeout, and TCP flows are terminated
upon proper connection teardown or by a flow timeout,
whichever occurs first. A 600 second flow timeout value was
employed here; where this corresponds to the IETF Realtime
Traffic Flow Measurement working groups architecture [11].
It is important to mention that only UDP and TCP flows
are considered. Specifically, flows that have no less than
one packet in each direction, and transport no less than one
byte of payload. Again, payload data and features like IP
addresses and source/destination port numbers were excluded
from the feature set to ensure that the results were not
dependent on such biases.

C. Genetic Algorithm for Feature Selection and Clustering

In this work we took the MOGA framework proposed
by Kim et al. [13] for feature selection and cluster count
optimization, but adapted the MOGA as proposed by Kumar
et al. [14]. The latter converges towards the Pareto-front
(set of non-dominated solutions) without any complex shar-
ing/niching mechanism. One specific property of this Genetic
Algorithm (GA) is the utility of a steady-state GA, thus,
only two members of the population are replaced at a time
under an elitist replacement model. Like most GA’s, MOGA
starts with a population of individuals (potential solutions
to a problem), and incrementally evolves that population
into better individuals, as established by the fitness criteria.
Fitness is naturally relative to the population.

TABLE I
FLOW FEATURES

ind. Feature Name Abreviation
1 protocol (tcp, udp) proto
2 total forward packets total fpackets
3 total forward volume total fvolume
4 total backward packets total bpackets
5 total backward volume total bvolume
6 min forward packet length min fpktl
7 mean forward packet length mean fpktl
8 max forward packet length max fpktl
9 std dev forward packet length std fpktl

10 min backward packet length min bpktl
11 mean backward packet length mean bpktl
12 max backward packet length max bpktl
13 std dev backward packet length std bpktl
14 min forward inter arrival time min fiat
15 mean forward inter arrival time mean fiat
16 max forward inter arrival time max fiat
17 std dev forward inter arrival time std fiat
18 min backward inter arrival time min biat
19 mean backward inter arrival time mean biat
20 max backward inter arrival time max biat
21 std dev backward inter arrival time std biat
22 duration of the flow duration
23 min active min active
24 mean active mean active
25 max active max active
26 std dev active std active
27 min idle min idle
28 mean idle mean idle
29 max idle max idle
30 std dev idle std idle
31 sub flow forward packets sflow fpackets
32 sub flow forward bytes sflow fbytes
33 sub flow backward packets sflow bpackets
34 sub flow backward bytes sflow bbytes
35 forward push counter fpsh cnt
36 backward push counter bpsh cnt
37 forward urg counter furg cnt
38 backward urg counter burg cnt

In order to model the problem of feature selection, each
individual in the population represents a subset of features
f and a number of clusters K. Specifically, an individual
is a 120 bit binary string, where bits between the first bit
and the 38th bit represent the features to include, and the
remaining bits represent the K number of clusters. Bits of
the individuals in the initial population are initialized with
a uniform probability distribution. For feature selection, a
“one” implies that the feature at that index (from Table 1)
is included, and a “zero” ignores the feature. The K number
of clusters, on the other hand, is obtained from the number
of “ones” (as opposed to “zeros”) contained between the
39th bit and the 119th bit. Clusters are identified using the
standard K-means algorithm, using the subset of features
f, and the number of clusters K, as the input for the K-
means algorithm. We used the K-means algorithm provided
by Weka [19]. The fitness of the individual will then depend
on how well the resulting clusters perform in relation to four
predefined clustering objectives: Fwithin, Fbetween, Fclus-
ters, and Fcomplexity (see section III. D). Fitness evaluation
assumes a multi-objective approach, typically resulting in the



Fig. 1. System Diagram

identification of the Pareto front, or a set of non-dominated
solutions. Informally, a solution is said to dominate another if
it has higher values in at least one of the objectives, and is at
least as good in all the others. After the objective values for
each individual have been assessed, individuals are assigned
with ranks, which indicate how many individuals dominate
that particular individual. Thus, fitness of the individuals is
inversely proportional to their ranks, which is used to build a
roulette wheel that is ultimately used for parental selection.

A population of 250 individuals is evolved for 5000
epochs, with a mutation rate of 0.6% and a uniform crossover
operator. The evolutionary component of the algorithm is
then terminated and the best individual (the one that better
identifies SSH traffic) out of the set of non-dominated
solutions (individuals whose ranks equal to 1) is identified
in the post-training phase. We take each individual from
the set of non-dominated solutions, apply K-Means with its
proposed set of features f and number of clusters K, and label
its clusters as SSH or NON-SSH. If the majority of the flows
in a cluster have SSH labels, then that cluster is labeled as
SSH, otherwise it is labeled as non-SSH. The post-training
phase is then entered and consists of testing each of the non-
dominated individuals in our training data (used to build the
clusters on), to identify the solution with best classification
rates. The entire system is displayed in Figure 1, and its
evolutionary component in Figure 2.

D. Fitness Function

The fitness of the individual depends on how well the
resulting clusters perform in relation to the following four
predefined clustering objectives:

1) Fwithin: Measures cluster cohesiveness, the more
cohesive the better. For this purpose the average
standard deviation per cluster is assumed. That is, the
sum of the standard deviations per feature over the
total number of employed features. Then Fwithin will
be the number of clusters in a solution, K, over the

Fig. 2. Evolutionary Component Diagram

sum of all the clusters’ average standards.

2) Fbetween: Measures how separate the clusters are
from each other, the more separated the better. For
each pair of clusters i and j, we calculate their average
standard deviations and we also calculate the euclidean
distance between their centroids. Then, Fbetween for
clusters i and j is:

Fbetween(i, j) =
EuclideanDistanceFrom i to j√
(AveStdDevi)2 + (AveStdDevj)2

Thus, Fbetween will be the sum of all pairs of cluster’s
Fbetween(i,j), over K.

3) Fclusters: Measures the number of clusters K,
“Other things being equal, fewer clusters make the
model more understandable and avoid possible over
fitting” [13].

Fclusters = 1− K −Kmin

Kmax−Kmin

Kmax and Kmin are the maximum and minimum
number of clusters.

4) Fcomplexity: Measures the amount of features used to
cluster the data, this objective aims at minimizing the
number of selected features.

Fcomplexity = 1− d− 1
D − 1

D is the dimensionality of the whole dataset and d is
the number of employed features.



In short, this model assumes that building fewer high
quality clusters in terms of low intra-cluster distance and
high inter-cluster distance, and selecting fewer features, will
lead to a better data description. Conversely, post training
performance evaluation is based on detection rate (DR) and
false positives rate (FPR) defined by:

DR = 1− #false negatives

total number of SSH flows

FPR =
#false positives

total number of non SSH flows

where false negatives means SSH traffic incorrectly
classified as non-SSH traffic, and false positives means non
SSH traffic incorrectly classified as SSH traffic.

In order to test whether these clustering objectives
can indeed optimize the system, and still achieve good
classification rates, a second set of objectives is defined, in
which Fwithin and Fbetween are replaced with DR and FPR
as clustering objectives, but keeping the Fcomplexity and
Fclusters objectives. By doing so, the learning is guided
towards the classification objectives, rather than towards
generating high quality clusters. However, this second
approach has the disadvantage of (i) being computationally
much more expensive, as the calculation of DR and FPR
requires a test run over the entire training data for each
individual evaluation, and (ii) being label dependent,
requiring a labelled training data that is expensive to
produce. We are, therefore, interested in identifying under
what conditions (if any) the purely cluster style objectives
are able to approach the performance of the explicitly label
driven approach to cluster identification. Such an analysis
will consider both classification performance and attribute
support.

E. Log Transformation
It is important to notice that not all 38 features from

Table 1 belong to the same type. Instead, there is a mix
of time features, with packet features, and others, resulting
in significant range differences between their values. These
differences can account for up to seven orders of magnitude
between their average values. Presumably, differences of this
order could bias the design of clusters towards some of the
features, not because of class discriminating characteristics,
but because of their range in values. I.e., clustering is a data
description process, thus will be biased to modeling the most
frequent/dominant properties in the data. Whether this is an
appropriate bias for traffic discrimination is unknown. To
test the effect of a logarithmic transformation to reduce the
effect of these range differences, we conducted a second set
of experiments in which a log transformation was applied
to each attribute. The logged data will observe much lower
inter attribute variation, thus less bias towards any feature
in particular, potentially resulting in different features being
identified as appropriate support for clustering.

IV. RESULTS

We conducted a total of four sets of experiments. The
first set consisted of running the MOGA with the orig-
inal clustering objectives, without applying a logarithmic
transformation. The second set consisted of running MOGA
with the original objectives, but after applying a logarithmic
transformation to the data. The third and fourth sets of exper-
iments consisted of running MOGA with the gold standard
objectives, without applying logarithmic transformation in
the third set, and after applying logarithmic transformation
in the fourth set. Each set of experiments consisted of 25
independent runs, from which we took the non-dominated
individuals. We then combined those non-dominated individ-
uals, and took a subset that we consider the best individuals,
in the case of the runs with the original objectives, the best
individuals were those with the highest intra and inter cluster
distances, and in the case of the gold standard model, the best
individuals were those with DR above 90% and FPR under
0.6%.

Figures 3 to 6 show the features selected by the best
individuals in each set of experiments. The vertical axis
contains the 38 available features from Table 1, and the
horizontal axis represents the percentage of best individuals
that employed each feature. Figure 3 demonstrates that
MOGA with the original objectives selects a subset of the
features identified by the gold standard model, Figure 5, both
without logarithmic transformation. Both time and packet
related features are selected by the best individuals. It appears
that the standard deviation forward inter arrival time, std fiat,
and the minimum backward inter arrival time, min biat, were
selected by almost all of the individuals in both sets of
experiments. We can also see how with the exception of the
features between duration, and std idle, the remaining 26
features are selected with a very similar frequency. On the
other hand, once the logarithmic transformation is included,
we observe that the features selected with the original
objectives significantly differ from the features selected by
the gold standard model; compare Figures 4 and 6. With
the exception of the standard backward inter arrival time,
std biat, the other selected features seems to be the opposite
with the gold standard model.

To further explore these observations, we conducted a
post training evaluation of classification performance, as
described in the methodology section. We test the best non-
dominated individuals per set of experiments in the training
data, in order to identify the ones with the best classifications
rates. The individual with the best classification performance
in post training becomes the final solution for that set of
experiments, and it is then tested in the entire data set.

Figures 7 to 10 show the plot of the best individuals
performances during the post training phase. The vertical
access represents the DR and the horizontal axis represents
the FPR. The final solution per experiment is marked with a
darker square on each plot. From Figure 7, we can observe
that with the original objectives and without the logarithmic
standardization, the final solution achieves a DR of 93.5%
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and a FPR of 0.25% in post training. That same individual
achieves a DR of 90.0% and a FPR of 0.4% when tested on
the entire data set. In comparison, the gold standard model
achieves a DR of 93.9% and a FPR of 0.22% in post training
(Figure 9), and a DR of 90.0% and a FPR of 0.8% when
tested on the entire data set. We can conclude that the original
objectives are capable of closely mimicking the performance
of the gold standard model. This does not come as a surprise,
as we already observed that the original model generally
selects a similar set of features as the gold standard model.

On the other hand, we can observe from Figures 8 and
10 that the results achieved in post training when applying
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Fig. 5. Features selected with gold standard without log. standardiz.
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the logarithmic standardization, differ between the original
objectives and the gold standard objectives. With the original
objectives, the final solution achieves a DR of 95.4% and a
FPR of 1.1% in post training (Figure 8). Notice that the rest
of the individuals do not appear on the plot for being out of
scale with much larger FPR. That same individual achieves
a DR of 91.4% and a FPR of 17.0% when tested in the
entire data set, which is a prohibitory high FPR. The gold
standard model, Figure 10, achieves a DR of 94.4% and a
FPR of 0.16% in post training, and a DR of 91.0% and a
FPR of 0.2% when tested in the entire data set. Thus, we can
conclude that because the original objectives under a logged
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Fig. 7. Post training with original objectives without log. standardization.
DR (y-axis) over 93 to 96% range; FPR (x-axis) over 0.1 to 1% range.
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Fig. 8. Post training with original objectives with log. standardization. DR
(y-axis) over 93 to 96% range; FPR (x-axis) over 0.5 to 3% range.

data do not select the same features as the gold standard,
the performance of the MOGA with the original clustering
objectives is inferior to that of the gold standard model. All
the test results are summarized in Table 2.

TABLE II
FINAL SOLUTIONS TEST RESULTS

Experiment DR FPR
Original Objectives 90.0% 0.4%
Gold Standard 90.0% 0.8%
Original Objectives logged 91.4% 17.0%
Gold Standard logged 91.0% 0.2%

V. CONCLUSIONS

With regards to our first goal, we observe that the original
cluster style objectives can quite closely mimic the behavior
of the gold standard classifier style objectives in the non
logged experiments. In that case, we observe that not only
both sets of experiments selected a similar set of features, but
also that the results from testing both models’ best individ-
uals on the entire data set show very similar performances.
The gold standard model achieves a DR of 90.0% with a FPR
of 0.8% when tested on the entire data set, and the original
objectives also achieve a DR 90.0% with a FPR of 0.4%.
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Fig. 9. Post training with gold standard without log. standardization. DR
(y-axis) over 93 to 96% range; FPR (x-axis) over 0.1 to 0.7% range.
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Fig. 10. Post training with gold standard with log. standardization. DR
(y-axis) over 93 to 96% range; FPR (x-axis) over 0.1 to 0.7% range.

With regards to our second goal, on the other hand, we ob-
serve that after applying a log transformation to the attributes,
the original objectives do not mimic the behavior of the
gold standard model. Both sets of experiments do not select
similar features. Moreover, the classification performance
achieved with the original objectives is considerably lower
than the logged gold standard model. The gold standard
model achieved a DR of 91.0% with a FPR of 0.2% when
tested on the entire data set, whereas the original model
achieved a DR of 91.4% with a FPR of 17.0%, which is
prohibitory high.

Finally, we observe that the best results are achieved
consistently with a mix of time and packet related features. In
particular, the features std fiat and min biat were employed
by almost all the best individuals in the non logged experi-
ments.

For future work we consider to modify the MOGA into a
hierarchical clustering approach, and also to focus on other
types of encrypted traffic, such as Skype.
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