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Abstract

In this work, AdaBoost and C4.5, are employed for
classifying Skype direct (UDP and TCP) communications
from traffic log files. Pre-processing is applied to the
traffic data to express it as flows, which is later
converted into a descriptive feature set. The
aforementioned algorithms are then evaluated on this
feature set. Results show that a 98% detection rate with
6% false positive rate for UDP based Skype and a 94%
detection rate with 4% false positive rate for TCP based
Skype is possible to achieve.

1. Introduction

In this work, our objective is to explore the limits of
employing machine learning algorithms namely, C4.5
and AdaBoost, in order to classify Skype traffic without
using the payload, IP addresses and port information from
a given traffic file. By doing so, we aim to develop a
framework where privacy concerns of users are respected
but also an important task of network management, i.e.
accurate identification of network traffic, is also achieved.
Given that Skype is one of most popular VoIP
applications used on the Net, it is important to identify it
accurately for network engineering and management tasks.
Moreover, being an encrypted application and tunneling
itself through different ports, identifying Skype becomes
even more challenging.

Traditionally, one approach to classifying applications is
to inspect the payload of every packet. However, this is
not realistic in practice. Firstly, there are privacy concerns
with examining user data. Secondly, there is a high
computational and storage overhead when attempting to
study every packet that traverses a link; especially given
the wide spread dependency on high-speed links. Thirdly,
there are applications such as Skype, which has encrypted

Given the above, another approach to classifying traffic is
using well-known TCP/UDP port numbers. This solves
the issues regarding privacy concerns as well as the
requirement for a high computational and storage
overhead. However this approach has become increasingly
inaccurate, mostly because applications use nonstandard
ports to avoid detection, to by-pass firewalls or
circumvent operating systems restrictions. Thus, other
techniques are needed to increase the accuracy of network
traffic identification.

One possibility is to identify specific features of the
application traffic and use these to guide the traffic
classification. Recent research in this area focuses on the
identification of efficient and effective classifiers.
Different research groups have employed various
classification techniques such as Hidden Markov models,
Naive Bayesian models, or AdaBoost, to this problem [3
- 6]. On the other hand, the limitations of port-based and
payload-based analysis have motivated the use of
transport/flow layer statistics for traffic classification [7 -
9]. These techniques rely on the fact that different
applications have distinct behavior patters on the network.
However, in general all these efforts show that even
though it is easier to apply such techniques to well
known application traffic such as HTTP (Hyper Text
Transfer Protocol) and SMTP (Simple Mail Transfer
Protocol), more work is needed to identify encrypted
traffic such as Skype, which presents a unique challenge
in terms of identification due to several key factors. These
factors include using dynamic port allocation, payload
encryption and various means of tunneling its service via
different ports and protocols in order to evade detection
and bypass firewalls. The remainder of the paper is
organized as follows. An overview of Skype is given in
section 2. Section 3 discusses the background research.
Machine learning algorithms are presented in section 4.
The methodology is described in sections 5 and
experimental results are given in section 6. Finally,
conclusions are drawn and future work is discussed in
Section 7.

2. Skype Overview

Skype is a proprietary P2P(Peer to Peer) VoIP network. It
was founded by Niklas Zennstrom and Janus Friis, who
are also founders of Kazaa, a file sharing system. Skype is
widely known for its broad range of features, including
free voice and video conferencing, and its ability to use
P2P technology to overcome common firewall and NAT
problems [10]. Skype users can speak to other Skype
users for free, call traditional telephone numbers for a fee
(SkypeOut), receive calls from traditional phones
(Skypeln), and receive voicemail messages. It is a
versatile method of synchronous and asynchronous
communication.

Based on the information that Skype has provided on its
website (http://www.skype.com) as well the work in [11,



12], it is apparent that from the outset Skype was
designed to be not only 'secure' but also resilient to
detection and blocking methods. While the encryption
aspects of Skype are best described in [11, 12], we believe
that the fact that the traffic is encrypted should aid the
process of detection. Since VoIP is subject to delay and
jitter on the network, we can assume that the ciphers are
run on very small block sizes. This assumption is
grounded in the rational that larger blocks will require
more time to encrypt and decrypt, and furthermore when
set via TCP, larger block sizes will be a detriment if the
packet is lost during transmission or corrupted since the
whole process will need to be repeated.

3. Detecting Skype

Most of the research existing in the literature on Skype
reflects the experience of different research teams when
building LibPcap tools. The common goal has been to
observe and report on how Skype reacts under different
modes of transmission [14]. On the other hand, most
commercial products [15 - 20] claim to block/detect
Skype via several means. For example, some block the
communication to the login server of Skype
(ui.skype.com) or some maintain a list of Skype Super
Nodes and block the communication to these nodes.
Others such as Cisco IOS [19] can limit its functionality
by enforcing quality of service conditions, which would
affect all other applications.

In this work, our objective is to detect Skype traffic
automatically without using a priori information such as
Skype login server information, super Node lists or port
and IP addresses. This is very different from the existing
research work and commercial products in the market. In
order to achieve our objective, we divide the problem of
classifying Skype traffic into two phases: (i) Skype UDP
traffic; (i1) Skype TCP traffic.

4. Machine Learning

AdaBoost:

AdaBoost, an acronym for Adaptive Boosting, was
developed by Yoav Freund and Robert Schapire [24]. It
is a meta-algorithm, which means constructing a strong
classifier as a linear combination of weak classifiers. It
produces a sequence of gradually more complex classifiers
in order to improve the overall performance by building a
strong classifier from several weak classifiers.

These simple weak classifiers are called decision stumps.
They examine the feature set and return a decision tree
with two leaves. The leaves of the tree are used for binary
classification and the root node evaluates the value of
only one feature. Thus, each decision stump will return
either +1 if the object is in class, or —1 if it is out class.
Once this process has been completed the resulting
structure that AdaBoost returns is the final (strong)
classifier with a weighted majority vote of T weak

classifiers. This is defined to be the sequence of decision
stumps that can best classify the training set with the
given features. A more detailed explanation of AdaBoost
can be found in [22].

C4.5:

C4.5 is a decision tree based classification algorithm. A
decision tree is a hierarchical data structure for
implementing a divide-and-conquer strategy. It is an
efficient non-parametric method that can be used both for
classification and regression. In non-parametric models,
the input space is divided into local regions defined by a
distance metric. In a decision tree, the local region is
identified in a sequence of recursive splits in smaller
number of steps. A decision tree is composed of internal
decision nodes and terminal leaves. Each node m

implements a test function f,,(X) with discrete outcomes
labeling the branches. This process starts at the root and
is repeated until a leaf node is hit. The value of a leaf
constitutes the output. In the case of a decision tree for
classification, the goodness of a split is quantified by an
impurity measure. A split is pure if for all branches, for
all instances choosing a branch belongs to the same class
after the split. One possible function to measure impurity

is entropy, equation 1 [22].
K
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If the split is not pure, then the instances should be split
to decrease impurity, and there are multiple possible
attributes on which a split can be done. Indeed, this is
locally optimal, hence has no guarantee on finding the
smallest decision tree. In this case, the total impurity after
the split can be measured by equation 2 [22]. A more
detailed explanation of the algorithm can be found in
[22].
' n mi K ; ;
Jm = _Z N—zpnulogzpmj

J=1 +Vm i=1
5. Methodology

As discussed earlier, we divided the problem of
classifying Skype traffic into two phases. In the first
phase, we develop a classifier for the automatic
recognition of Skype Direct UDP traffic. In the second
phase, we develop a classifier for the automatic
recognition of Skype Direct TCP traffic. In all cases, we
employ AdaBoost and C4.5 in order to identify the best
fitting solution to the problem. The reason we employ
these two machine learning algorithms is because they
have been shown to be good classifiers in the previous
literature on network traffic detection [23].

Data Collection:

To this end Dalhousie University Computing and
Information Services Department (UCIS) provided us



with labeled network traffic. This data set consists of
network traffic from the campus network during a
continuous eight-hour period in January 2007. This
traffic that was logged by UCIS, was aggregated by
PacketShaper in both directions, going on and off
campus.
The captured traffic contained at most the first 128 bytes
of a packet, which allowed for the full IP header, as well
as the TCP header if the options field was included.
From this basic starting point, the UCIS department then
proceeded to anonymize each packet, first by altering the
IP address fields, then further truncating the packet so that
no payload data was included. Other alterations to the
packets include that checksums were reset to prevent
attempts to guess the data.
Rather than classifying the data on a packet-by-packet
inspection, which involves the complications of temporal
elements into the packet stream, it was decided that the
captured traffic traces be converted into bi-directional
communication flows. By doing so, we aim to identify
the potential unique patterns in Skype traffic flows. To
this end, we developed our own flow tool set.
Since our objective is to establish results based on
training on a partition of the UCIS data set, and then
validating the results on unseen partitions of differing
traffic percentages, it was decided to randomly partition
the UCIS data set into different samples. These random
partitions include the following characteristics:

¢ Contain at most 50% Skype traffic in the

training partition of the data
¢ Contain anywhere between 15% to 50% Skype
traffic in the testing partition of the data

* Contain no single packet flows.
It should be noted here that each sample used for training
and/or testing in Table I contains 1000 flows. In this
work, in addition to Skype flow, UDP sample data sets
include applications such as Ventrilo (a VoIP software),
traceroute, TACACS, SIP and SunRPC flows. On the
other hand, TCP sample data sets include http, BitTorent,
IRC, SIP and SunRPC application flows. In both cases,
SIP and SunRPC flows are only included in the data sets
with 15% Skype traffic.

Feature Selection:

Based on the above assumptions, we selected the
following feature set to represent a flow to our system:
*  Duration
e Number of bytes in the forward direction per
second
* Number of packets in the forward direction
per second
*  Number of bytes in the backward direction per
second
*  Number of packets in the backward direction
per second
*  Number of ACK packets
e Protocol ID

* Minimum Packet length observed (not
counting ACK, RST, SYN packets)

*  Maximum packet length observed
These features are simple and well understood within the
networking community. They represent reasonable
benchmark feature sets to which more complex features
might be added in the future. Other features such as IP
addresses and source/destination port numbers are
excluded from the data sets to ensure that the results are
not dependent on such biased features or produce a trivial
solution.

6. Results

In this section, we are going to present the results of the
AdaBoost and C4.5 classifiers on our data sets using
detection rate (DR) and false positive rate (FP). A high
detection rate and a low false positive rate would be the
desired outcomes. They are calculated as follows:

DR = 1 — (#FalseNegatives)/TotalNumberSkypeFlows
FP = #FalsePositives/TotalNumberNon-SkypeFlows

where False Negative means Skype traffic classified as
non-Skype traffic and False Positive means non-Skype
traffic classified as Skype traffic.

Once the aforementioned feature set is prepared for the
data sets, then classifiers are trained on the data using
Weka [21], which is an open source tool for data mining
tasks, with its default parameters to run C4.5 and
AdaBoost. Table 1 lists the results for the two machine
learning algorithms.

Table 1: Results of the Classifiers

AdaBoost C4.5
DR | Fp DR | Fp
UDP Training
Skype 0.97 0.26 0.99 0.02
Non-Skype 0.74 0.03 0.98 0.01
UDP Testing (50% Skype)
Skype 0.98 0.26 0.98 0.02
Non-Skype 0.74 0.02 0.98 0.02
UDP Testing (15% Skype)
Skype 0.97 0.26 0.98 0.06
Non-Skype 0.74 0.03 0.94 0.02
TCP Training
Skype 0.97 0.11 0.97 0.01
Non-Skype 0.89 0.03 0.99 0.03
TCP Testing (50% Skype)
Skype 0.97 0.11 0.94 0.01
Non-Skype 0.89 0.03 0.99 0.06
TCP Testing (15% Skype)
Skype 0.94 0.14 0.94 0.04
Non-Skype 0.86 0.06 0.96 0.06

As the above results show both algorithms achieve
minimum 94% detection rate on the test data sets for
TCP based Direct Skype traffic. On the other hand, C4.5
achieves minimum 98% detection rate on UDP based




direct Skype traffic, whereas AdaBoost achieves 97%
detection rate under the same conditions. However
differences between the performances of the two
algorithms get more obvious when we look at the false
positive rates for Skype traffic. In this case, we observe
that AdaBoost misclassifies non-Skype traffic as Skype
~25% of the time under the UDP protocol and ~10% of
the time under the TCP protocol. However, false positive
rates given by C4.5 never go above 6%, which makes it a
more desirable classifier for these tasks.

Analysis of Results:

The results indicate that C4.5 performed the best,
considering the false positives and detection rates for both
classes. As such, since C4.5 uses a form of information
gain, we can analyze which features provided the most
information to identify Skype accurately.

Figure 1 and Figure 2, show the fully pruned decision
trees for the TCP and UDP based C4.5 classifiers,
respectively. As these figures show, the packet size
feature is a very good indicator of the traffic type as this
feature often is very high up on the tree, and thus is a
very informative feature. The other features seem to be
less consistent with their placement in the trees and more
reflective of the data in question, for example, NUM of
ACKs (number of ACK packets) in the TCP tree only.
Moreover, in the UDP tree only 6 features out of 9 are
employed (number of bytes in backward direction,
number of ACK packets and protocol features are unused).
On the other hand, in the TCP tree 7 of our 9 features are
employed (duration and number of packets in the forward
direction are unused). Thus, we can conclude that the
feature vector appears to be robust enough to handle both
TCP and UDP based Skype traffic, and still provide
accurate classification.

7. Conclusions and Future Work

In this work, we have employed C4.5, and AdaBoost,
both supervised learning algorithms for classifying Skype
direct UDP, and Skype direct TCP communications from
a given traffic file. To do so, the UCIS department at
Dalhousie University provided us with a data set that had
both UDP and TCP labeled traffic for Skype. We then
converted these traces to traffic flows and tested the
aforementioned learning algorithms using a feature vector
to represent these flows.

Results so far show that both approaches perform with a
very high detection rate and a low false positive rate when
the feature set is employed. In this case, we have the
worst case performance of 98% detection rate with 6%
false positive rate achieved for UDP based Skype detection
and the worst case performance of 94% detection rate with
4% false positive rate achieved for TCP based Skype
classification by the C4.5 classifier. These results also

indicate that the features selected to represent the traffic
seem to be sufficient as well.

In summary, in this work, we have shown that it is
possible to detect Skype Direct UDP and Direct TCP
traffic without using features such as IP addresses and
source/destination ports or any payload information.
Indeed more analysis on the training data sets and labeling
techniques need to be performed, as the results given here
are preliminary but promising. Future work will test our
classification system on more data sets captured on
different networks, as well as with more varied Skype
traffic including Skype tunneling traffic. In addition,
future work will look at examining the accuracy of the
labeled data set provided to us, to ensure that the classifier
is being trained solely on Skype and not false positives of
Packet Shaper style tools.

Finally, it might be interesting to examine the inner
workings of Skype Super Node relay calls. In particular,
looking at the call formats observed in other Skype
sessions, and seeing if machine learning is appropriate or
if simpler observed rules would be more fitting. While
Skype direct VoIP communications can be successfully
identified by our system, this does not mean that all
Skype traffic can be identified, since there is still the
matter of Skype Super Nodes, which can relay VoIP calls
between peers, which is not studied in this work.
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