
SORTING BY TRANSPOSITIONS: FIXED-PARAMETER

ALGORITHMS AND STRUCTURAL PROPERTIES

by

Chris Whidden

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

BACHELOR OF COMPUTER SCIENCE, HONOURS

AT

DALHOUSIE UNIVERSITY

HALIFAX, NOVA SCOTIA

DECEMBER 5, 2007

c© Copyright by Chris Whidden, 2007

DALHOUSIE UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE

The undersigned hereby certify that they have read and recommend to

the Faculty of Graduate Studies for acceptance a thesis entitled “Sorting by

Transpositions: Fixed-parameter Algorithms and Structural Properties”

by Chris Whidden in partial fulfillment of the requirements for the degree of

Bachelor of Computer Science, Honours.

Dated: December 5, 2007

Supervisor:
Dr. Norbert Zeh

Reader:
Dr. Robert Beiko

ii

DALHOUSIE UNIVERSITY

Date: December 5, 2007

Author: Chris Whidden

Title: Sorting by Transpositions: Fixed-parameter Algorithms and

Structural Properties

Department: Computer Science

Degree: B.CSc. (Hon) Convocation: May Year: 2008

Permission is herewith granted to Dalhousie University to circulate and to have

copied for non-commercial purposes, at its discretion, the above title upon the request of

individuals or institutions.

Signature of Author

The author reserves other publication rights, and neither the thesis nor extensive extracts
from it may be printed or otherwise reproduced without the author’s written permission.

The author attests that permission has been obtained for the use of any copyrighted material
appearing in the thesis (other than brief excerpts requiring only proper acknowledgement in scholarly
writing) and that all such use is clearly acknowledged.

iii

Table of Contents

List of Figures v

Abstract vi

Acknowledgements vii

Chapter 1 Introduction 1

1.1 Sorting by Transpositions . 2

1.2 Fixed Parameter Tractability . 5

1.2.1 Example - Vertex Cover . 6

1.2.2 Creating a Fixed-parameter Algorithm 7

Chapter 2 Structural properties 9

2.1 Kernelization . 9

2.2 Splitting Pairs of Elements . 11

2.3 Creating Inversions . 16

2.4 Building Permutations One Element at a Time 17

Chapter 3 FPT results 20

3.1 An Algorithm Based on Kernelization 20

3.2 A Faster Algorithm Using a Bounded Search Tree 23

Chapter 4 Conclusions 26

Bibliography 28

iv

List of Figures

Figure 1.1 A Sorting by Transpositions example 4

Figure 1.2 A cycle graph example . 5

Figure 2.1 Proof of Theorem 2.3: Case 1 12

Figure 2.2 Proof of Theorem 2.3: Case 3a 13

Figure 2.3 Proof of Theorem 2.3: Case 4c 14

Figure 2.4 Proof of Theorem 2.3: Case 5a 15

v

Abstract

Molecular biologists study the evolutionary relationships of species by comparing

their gene sequences. One approach is to compare the gene orders of their genomes,

represented as a permutation, which evolve by inversions and transpositions, as well

as the deletion, insertion, and duplication of fragments. Recent years have seen

much work on the problem of Sorting By Transpositions, which is related to

the evolution of genomes through transpositions. However, It is not known if the

problem is NP-hard or admits a polynomial-time solution.

This thesis examines several structural properties of Sorting By Transposi-

tions to aid understanding the problem and possibly lead to a complexity proof. A

problem kernelization is given, which reduces the size of the permutation to at most

3k, where k is the number of transpositions needed to sort the permutation. We

show that some permutations can only be optimally sorted by inverting predecessor-

successor pairs. We also show that any permutation can be sorted optimally with a

transposition sequence that does not split any pair of elements more than once. The

effect of adding or removing elements on the problem is examined. An algorithm to

generate all optimal transposition sequences is provided based on this concept, but

it currently has poor results. This also provides a parameter for induction that may

be useful in proving results.

The problem is studied from the point of view of fixed-parameter tractability,

where the objective is to obtain an efficient exact algorithm with a running time

that is exponential in some parameter related to the input, but polynomial in the

input size. We provide two FPT algorithms where the parameter is the length of a

transposition sequence. Both rely on the kernelization provided. The first algorithm

has a running time of O(k3·(3k)!), and examines every permutation of the correct size.

The second algorithm has a running time of O(k log k · (3k)1.5k), by using a double-

ended search, which we show is faster than the first algorithm. Both algorithms have

memory complexity of the same order as their time complexity.

vi

Acknowledgements

I would like to thank Dr. Norbert Zeh, my Honours supervisor, for all of his help in

researching and working on this problem, as well as his many helpful comments while

I was writing this thesis.

vii

Chapter 1

Introduction

Molecular biologists study the evolutionary relationships of species by comparing their

gene sequences, using the reasonable assumption that species with more similar gene

sequences are more closely related. Methods of sequence comparison are often done

on DNA sequences of organisms to study their similarity, but a better approach may

be to compare the gene orders of mitochondrial DNA, instead of comparing DNA

sequences. Mitochondrial DNA shares many genes among different organisms and is

small enough to be extensively sequenced by current technology.

This method was examined by Sankoff et al [11]. They examined several mito-

chondrial genomes with 30–50 genes, such as various yeasts, chicken, and sea urchins.

Comparisons between genomes with this many genes have used many simplifications,

as exact comparisons would require an enormous amount of computation. While the

distances between these genomes are often 10 or more genome rearrangement opera-

tions, closely related genomes with few rearrangement operations may be able to be

compared exactly by using an algorithm that requires computation proportional to

the number of genome rearrangement operations instead of the genome length.

Gene order comparisons may be particularly useful for organisms with highly di-

vergent genomes, which may be closely related yet have very different gene sequences.

Genomes evolve by inversions and transpositions, as well as the deletion, insertion,

and duplication of fragments. Some genomes are thought to evolve almost exclu-

sively by inversions (for example plant mitochondrial DNA) [10], and some by both

inversions and transpositions (such as the Herpes virus).

The problem of Sorting By Reversals, related to the evolution of genomes

through inversions, has been extensively studied [1]. The problem has been proven

to be NP-Hard [4], and has an approximation algorithm with performance guaran-

tee 1.375 [3]. However, the oriented version, where genes are represented as signed

1

2

permutations, has a linear-time algorithm. [7]

Recent years have seen much work on the similar problem of Sorting By Trans-

positions, which is related to the evolution of genomes through transpositions [2].

An approximation algorithm with a performance guarantee of 1.375 is known [6].

This seems to be a more difficult problem to analyze, however, as the complexity of

the problem is currently unknown. In particular, it is not known if the problem is

NP-hard or admits a polynomial-time solution.

This thesis examines several structural properties of Sorting By Transposi-

tions to aid understanding the problem and possibly lead to a complexity proof. A

problem kernelization is given, which reduces the size of the permutation that must

be examined. We prove that some permutations can only be optimally sorted by

inverting predecessor-successor pairs. We also prove that any permutation can be

sorted optimally with a transposition sequence that does not split any pair of ele-

ments more than once. The effect of adding or removing one element to the problem

is also examined. An algorithm to generate all optimal transposition sequences is

examined, based on this concept, but it currently has very poor results. Adding and

removing elements also provides a basis for induction that may be useful in proving

results.

The problem is also studied from the point of view of fixed-parameter tractability,

where the objective is to obtain an efficient exact algorithm with a running time that

is exponential in some parameter related to the input, but polynomial in the input

size. We provide two algorithms where the parameter is the transposition distance.

The first, based on a breadth-first search of a transposition graph, has a factorial

running time. The second uses a double-ended search and has an exponential but

provably faster running time.

1.1 Sorting by Transpositions

This section defines concepts and introduces notation that is necessary to discuss the

results in this thesis. These concepts are based on the material from [2].

A permutation S = x1x2 . . . xn of the numbers 1 to n represents the order of genes

in a genome. To represent the beginning and end of the genome we often prepend

3

0 and append n + 1 to the permutation. Circular permutations are also commonly

used, as sorting a linear permutation of length n is equivalent to sorting a circular

permutation of length n + 1 [8]. We say that xi and xi+1 are adjacent for 1 ≤ i < n.

The identity permutation, I, of length n is the sorted permutation I = 1, 2, . . . , n

Given a permutation S = x1x2 . . . xn and integers 0 ≤ i < j < k ≤ n the

transposition τ i,j,k transforms S into the permutation

(x1x2 . . . xi)(xj+1xj+2 . . . xk)(xi+1xi+2 . . . xj)(xk+1xk+2 . . . xn)

that is, the subsequences (xi+1xi+2 xj) and (xj+1xj+2 . . . xk) are swapped by τ i,j,k.

We say that a transposition τ i,j,k joins element xi with xj+1, xk with xi+1, and xj

with xk+1. We also say that τ i,j,k splits element xi from xi+1, xj from xj+1, and xk

from xk+1.

This leads to the Transposition Distance Problem, where the objective is

to find a minimal length sequence of transpositions that act on one permutation to

give another permutation.

Transposition Distance Problem

Input: Two permutations S1 = x1x2 . . . xn and S2 = x1x2 . . . xn

Goal: Find a minimal length sequence T = τ1τ2 . . . τk of transpositions

such that (τk ◦ τk−1 ◦ . . . ◦ τ1)(S1) = S2

The length of T is the transposition distance between S1 and S2. It is important to

note that the transposition distance between S1 and S2 is the same as the transposition

distance between S−1
2 ◦ S1 and the identity permutation I. Then any instance of

the Transposition Distance Problem becomes an equivalent instance of the

following problem:

Sorting by Transpositions

Input: A permutation S = x1x2 . . . xn

Goal: Find a minimal-length sequence T = τ1τ2 . . . τk of transpositions

such that (τk ◦ τk−1 ◦ . . . ◦ τ1)(S) = I We say that T sorts S.

4

2

0 2 13 6

0 2 13 5 4 6

0 14 6

0 6

4 5

32 5

5431
Figure 1.1: A Sorting by Transpositions example

An example is shown in figure 1.1. As a simplification, for the remainder of

this thesis we will only consider the problem of Sorting by Transpositions with

the understanding that results are generalizable to the Transposition Distance

Problem.

A breakpoint of a permutation S = x1x2 . . . xn is a pair (xi, xi+1) where xi+1 6=
xi + 1. Breakpoints are adjacent elements that are not a predecessor-successor pair.

The identity permutation is the only permutation with 0 breakpoints. Then a natural

way to see the problem is as reducing the number of breakpoints to 0.

A p-transposition is a transposition that changes the number of breakpoints by p.

Lemma 1.1. Any transposition is a p-transposition with −3 ≤ p ≤ 3.

Proof. Three locations in a permutation are affected by a transposition, so a trans-

position can change the number of breakpoints by at most 3.

One useful tool that has aided the analysis of the problem is the notion of a cycle

graph [2]. An example is shown in figure 1.2. A directed edge-colored cycle graph

5

0 25 4 13 6

Figure 1.2: A cycle graph example

of S, denoted by G(S), is the graph with vertex set {0, 1, 2, . . . , n + 1} and edge set

defined as follows. For all 1 ≤ i ≤ n + 1, gray edges are directed from i − 1 to i, and

black edges from si to si−1.

An alternating cycle of G(S) is a directed cycle where the edges alternate colours.

We will simply refer to these as cycles. The length of a cycle is the number of black

edges contained in it. As the identity permutation is the only permutation with n+1

cycles, sorting the permutation corresponds to increasing the number of cycles.

A p-move is a transposition that changes the number of cycles by p.

Lemma 1.2 (Bafna and Pevzner [2]). Any transposition is a p-move with p ∈
{−2, 0, 2}.

Note that the set of 2-transpositions and 3-transpositions is a subset of the set

of 2-moves, since each adjacent predecessor-successor pair forms a cycle of length 1.

Similarly, the set of (-2)-transpositions and (-3)-transpositions is a subset of the set

of (-2)-moves.

1.2 Fixed Parameter Tractability

Fixed-parameter algorithms, similar to approximation algorithms, are a tool for solv-

ing NP-hard problems. The difference is that fixed-parameter algorithms provide

exact solutions, which implies that exponential running times are unavoidable unless

P = NP . The main idea of fixed-parameter algorithms is to restrict the combi-

natorial explosion in the running time to some function depending only on some

parameter that is specific to the problem. It is hoped that in a real application of

6

this problem, that parameter is relatively “small” so that the exponential growth

is reasonable. The fixed-parameter algorithm then efficiently solves the given pa-

rameterized problem. A good resource on fixed-parameter algorithms is the book

”Invitation to Fixed-Parameter Algorithms” by Rolf Niedermier [9].

Parameterized complexity was formalized by Rod G. Downey and Michael R.

Fellows and co-authors in the 1990’s [5]. They developed a theory of parameterized

complexity which is a mathematical tool for fixed-parameter algorithms. The material

studied in this thesis uses this theory where necessary but uses an application-oriented

look at the use and design of fixed-parameter algorithms.

The advantages of fixed-parameter algorithms over approximation algorithms and

heuristics are the guaranteed optimality of the solution and the provable upper bounds

on the computational complexity. The disadvantage is that exponential running times

are expected. Parameterized algorithm design searches for the cause of the hardness

of a problem. The size of an instance and some parameter are examined to find

whether the difficult part of the problem can be confined to the parameter. That

parameter may be much smaller than the input size in practice.

Formally, a parameterized problem is a language L ⊆ Σ∗ ×Σ∗, where Σ is a finite

alphabet. The first component is an instance of the problem. The second component

is the parameter of the problem and is often confined to N. Thus every member of L

is of the form (X, k), where k is the parameter. For Vertex Cover, for example,

X is some encoding of the given graph G and k is the desired size of the vertex cover.

Then (X, k) belongs to L if and only if G has a vertex cover of size k. Vertex

Cover is examined below.

A parameterized problem L is fixed-parameter tractable if it can be determined in

f(k) · nO(1) time whether or not (X, k) ∈ L, where f is a computable function only

depending on k. The corresponding complexity class is called FPT.

1.2.1 Example - Vertex Cover

Vertex Cover is a popular problem for fixed-parameter tractability research and

examples. Many fixed-parameter approaches work on it and new approaches are often

first tested with Vertex Cover.

7

Vertex Cover

Input: a graph G = (V, E) and a non-negative integer k.

Goal: Find a subset of at most k vertices C ⊆ V such that every edge

{u, v} ∈ E has at least one endpoint in C.

A simple observation leads to a fixed-parameter algorithm for Vertex Cover:

Every edge {u, v} must be covered by C. Thus, at least one of u and v must be in

C. Then a search tree can be built where each node of the tree represents a partially

solved version of the graph. The root of the tree is the original graph G and an empty

cover C. At each node of the tree, branch to bring either u or v into C, removing

that vertex and any incident edges from the graph, and continue recursively on the

reduced graph.

Each instance of the problem in a search tree is a single node. A search tree with

depth at most k has less than 2k+1 nodes, since the branching is done on both ends

of an edge. Each node can be checked in linear time to determine if it is a solution.

Therefore this algorithm requires O(2k · n) time.

1.2.2 Creating a Fixed-parameter Algorithm

There are two main techniques that can be combined to create a fixed-parameter

algorithm, kernelization and depth-bounded search trees.

Reducing a problem to a “problem kernel”, or kernelization, uses data reduction

rules to replace the original instance of a problem with a reduced instance and reduced

parameter. This reduced instance is generally the difficult core of a problem.

For Vertex Cover, there is a simple reduction rule. Each edge must be covered

in a vertex cover, so one of the two endpoints of every edge must be in the vertex

cover. Then, for any vertex, either that vertex or all of its neighbours must be in a

vertex cover. Since at most k vertices can be in the vertex cover, any vertex with

degree at least k + 1 must be in the vertex cover, as not all of its neighbours can

be. Then any such vertex can be put in the vertex cover, k can be reduced by one,

and the vertex and its adjacent edges removed from the graph, without altering the

solution. After reducing the problem with this rule, there can be at most k2 edges

and k2 + k vertices.

8

Let L be a parameterized problem, that is, L consists of input pairs (I, k), where I

is the problem instance and k is the parameter. Reduction to a problem kernel means

to replace (I, k) with a reduced instance (I ′, k′) such that k′ ≤ k, |I ′| ≤ g(k) for some

function g only depending on k, and (I, k) ∈ L iff (I ′, k′) ∈ L. The reduction must

be computable in polynomial time. g(k) is the size of the problem kernel.

With data reduction and problem kernels, the focus is on polynomial-time prepro-

cessing of the input. For NP-hard problems, there is usually no other method than

an exhaustive search that can finally determine the optimal solution. Organizing the

exhaustive search in a tree whose depth is bounded by some function depending only

on the parameter gives a depth-bounded search tree.

One method of creating a depth-bounded search tree is to find in polynomial time

a “small subset” of the input instance such that at least one element of the subset is

guaranteed to be in the solution. For Vertex Cover, for example, the two vertices

of an edge in a vertex cover are such a subset. This leads to the previously mentioned

size-O(2k) search tree.

If there is a reduction to a problem kernel and a depth-bounded search tree method

for a particular problem, we can reduce the problem and then apply the bounded

search tree method. A method that may provide better results is to repeatedly

kernelize the problem while applying the search tree method. Because the parameter

decreases during the search tree, kernelization may remove more elements.

Chapter 2

Structural properties

2.1 Kernelization

There is a simple kernelization for Sorting by Transpositions that limits the

problem size to 3k, where k is the transposition distance. Intuitively, it never helps

to split two elements i and i+1 that are already adjacent. The kernelization requires

the following lemma:

Lemma 2.1. Given a permutation S = x1x2 . . . xn with a transposition distance of

k, there always exists a transposition sequence T = τ1τ2 . . . τk of length k that sorts S

in k transpositions and such that no transposition τi splits any elements xj , xj+1 that

satisfy xj + 1 = xj+1.

Proof. The proof proceeds by induction on |T |. As a basis, consider T = τk, that is,

|T | = 1. The result of τk is I, which has no elements out of order. Then τk can not

split any two elements i and i + 1 that are already adjacent.

Assume the lemma is true for |T | < k, and S is a permutation that is sorted

using k transpositions. Let T = τ1τ2 . . . τk be a transposition sequence that sorts S.

Then by the inductive hypothesis, the length k − 1 transposition sequence τ2τ3 . . . τk

has an alternative transposition sequence T ′ = τ ′
2τ

′
3 . . . τ ′

k that does not split any two

elements xj , xj+1 that satisfy xj + 1 = xj+1.

Consider the transposition sequence T ′′ = τ1T
′. If τ1 does not split two elements

that are already adjacent, then we are done. Otherwise, consider two elements xj , xj+1

that satisfy xj + 1 = xj+1 that are split by τ1. Since xj and xj+1 are adjacent in I,

and T ′ does not split xj and xj+1 by the inductive hypothesis, T ′′ must split and join

xj , xj+1 exactly once. Let τf be the transposition that joins the pair.

We will now alter T ′′ such that a split occurs after xj+1 in any transposition that

would split xj , xj+1. Construct T ′′′ = τ ′′
1 τ ′′

2 τ ′′
3 . . . τ ′′

k from T ′′ as follows: τ ′′
1 = τ1 with

9

10

one index changed so that τ ′′
1 splits xj+1, xj+2 instead of xj , xj+1. For each subsequent

τ ′′
i , split after xj+1 instead of xj , xj+1 if those two elements are split.

We must show that T ′′′ results in I. Consider how T ′′ and T ′′′ each alter S. Each

transposition τ ′′
i of T ′′′ has the same effect as the corresponding transposition τ ′

i of

T ′′ except that xj and xj+1 remain adjacent. Then after τ ′′
f , where xj , xj+1 would be

joined by τ ′
f , T ′′′ and T ′′ result in the same permutation. Then the result of both is

I.

However, T ′′′ may still fail to satisfy the lemma if xj+1, xj+2 are adjacent in I.

Since the above alterations always increase the indices of τ1, this process can be

repeated a finite number of times, resulting in a transposition sequence of length k

where the first transposition satisfies the lemma. The alterations may have caused

a later transposition to fail the lemma, but we can once again apply the inductive

hypothesis to give a transposition sequence of length k that satisfies the lemma.

Lemma 2.1 implies the following reduction rule, R1: Let S = x1x2 . . . xn be a

permutation such that xj , xj+1 are two elements where xj +1 = xj+1. Replace xj and

xj+1 with a single element x′
j with the predecessor of xj and the successor of xj+1 to

give S ′. A transposition sequence that sorts S can be created from a transposition

sequence that sorts S ′ by replacing x′
j with xj and xj+1.

Theorem 2.2. Reducing an instance of Sorting by Transpositions with R1 gives

a problem kernel of size 3k, where k is the transposition distance of the instance.

Proof. By Lemma 1.1, at most 3 elements of a permutation can be joined by one

transposition. Then a permutation with a transposition distance of k can have at

most 3k breakpoints. Reducing a permutation S with R1 results in an equivalent

permutation, S ′, where every element boundary is a breakpoint. The size of S ′ is at

most 3k.

This reduction gives a linear-size problem kernel that will be very important for

our FPT results.

11

2.2 Splitting Pairs of Elements

Since the problem of sorting one permutation into another is equivalent to Sorting

by Transpositions, it is interesting to consider Lemma 2.1 applied to the interme-

diate results of a transposition sequence. This leads to the following Theorem:

Theorem 2.3. Given a permutation S = x1x2 . . . xn, there exists an optimal trans-

position sequence that splits any pair of elements at most once.

Proof. Let S = x1x2 . . . xn be a permutation. Let T = τ1τ2 . . . τk be an optimal trans-

position sequence on S. We will show how to convert T into an optimal transposition

sequence that splits any pair of elements at most once. Denote by Si the permutation

before τi.

Consider two elements x and y that are split, joined, and split again at trans-

positions τa, τb, and τc. Now, consider the problem of sorting Sa to Sb+1. x and y

are adjacent in both Sa and Sb+1, so by Lemma 2.1, x and y can be treated as one

element if we were to sort Sa to Sb+1. Similar to the proof of Lemma 2.1, there is a

transposition sequence T ′ that can be constructed from T that keeps x and y together

up to Sc, increases one index of τ ′
a and otherwise splits and joins the same pairs. Sub-

sequent permutations will have xy where x was previously, at least for permutations

up to Sb+1.

Applying this to join one such pair may cause another pair to be split twice.

Repeatedly applying this to suitable elements can give a transposition sequence T ′

that splits any pair of elements at most once. Some care must be taken in how this

is done, however.

To analyze repeated applications of this, we will store each pair that is joined

this way, for each transposition. Let L be a list of 4-tuples (x, y, i, j) where x and

y are a pair of elements, i is the first permutation generated by T that has x and y

adjacent, and j is the last permutation generated by T where x and y are adjacent.

Then each such 4-tuple represents (j − i + 1) joined pairs. Each time we alter T to

T ′ by keeping elements x and y together, we add (x, y, i, j) to L. Then L reflects the

pairs of elements that we have grouped together.

Our first chosen pair is simply kept together, and the corresponding 4-tuple is

12

all that L contains. Now, consider how keeping elements x and y together and thus

adding (x, y, i, j) to L affects pairs that have already been grouped in L. We will

show that the number of joined pairs in L always increases. Then this process can

only be repeated a finite number of times. In the following, any elements that are

represented with different letters are not the same element. Figures are shown for

important cases as follows: the left box represents a set of existing groupings, the

second box represents the new grouping, and the final box shows the result from

carrying out that case.

(x, y)

(x, y)

(x, y)

(x, y)

(x, y)

(x, y)

(x, y)

(x, y)

(x, y)

(x, y)

(x, y)

(x, y)

(x, y)

Figure 2.1: Proof of Theorem 2.3: Case 1

1. (x, y, k, l) ∈ L

The new grouping supersedes this grouping, and will only occur if some change

has split x, y before Sk or joined x, y after Sl. In either case, the new grouping

encompasses the previous one which can be removed from L.

2. (p, q, k, l) ∈ L

Grouping x and y only affects pairs of elements adjacent to x or y, so no change

occurs.

3. (a, y, k, l) ∈ L

Si and Sj must have the pair x, y, so there are three subcases:

(a) i < k and j > l

13

Grouping elements x and y as specified will remove the a, y grouping, so

it is deleted from L.

(a, y)

(x, y)

(x, y)

(x, y)

(x, y)

(x, y)

(x, y)

(x, y)

(x, y)

(x, y)

(a, y)

(a, y)

(x, y)

Figure 2.2: Proof of Theorem 2.3: Case 3a

(b) i < k and j < k

The groupings do not affect the same transpositions so no change occurs.

(c) i > l and j > l

The groupings do not affect the same transpositions so no change occurs.

4. (y, b, k, l) ∈ L

(a) i < k and j > l

The x, y grouping encompasses the old y, b grouping which is deleted from

L.

(b) i < k and j < k or i > k and j > k

The two groupings are independent so no change occurs.

(c) i < k and k < j < l

Element y is moved with x but b is also moved at some index m where

k ≤ m ≤ j. This is because the pairs x, y and y, b are adjacent at index

j, due to the y, b grouping existing and the x, y grouping being necessary.

Then the y, b grouping is altered to (y, b, k, m).

(d) k < i and i < l < j

Symmetric with the previous subcase.

14

(y, b)

(x, y)

(x, y)

(x, y)

(x, y)

(x, y)

(x, y)

(x, y)

(x, y)

(x, y)

(y, b)

(y, b)

(y, b)

(y, b)

(y, b) (y, b)

(y, b)

(x, y)

Figure 2.3: Proof of Theorem 2.3: Case 4c

If there previously existed a, y and y, b groupings, then an a, b grouping is cre-

ated, where the y, b grouping was diminished. This is because element y was

moved from between elements a and b.

5. (x, c, k, l) ∈ L

Si and Sj must have the pair x, y, so there are three subcases:

(a) i < k and j > l

Grouping elements x and y as specified will alter the x, c grouping to

(y, c, k, l). This altered grouping must be tested against all cases when x, y

is finished to move any groupings that applied on the left to c to apply to

x.

(b) i < k and j < k

The groupings are independent and no change occurs.

(c) i > l and j > l

The groupings are independent and no change occurs.

6. (d, x, k, l) ∈ L

Pairings to the left of x are not altered by the way we specified keeping x and

y together, so there are no changes.

Each 4-tuple (x, y, i, j) denotes (j−i+1) joined pairs in the transposition sequence.

One transposition can only have two pairs involving one element, and there can be

15

(y, c)

(x, y)

(x, y)

(x, y)

(x, y)

(x, y)

(x, y)

(x, y)

(x, y)

(x, y)

(x, c)

(x, c)

(y, c)

(x, y)

Figure 2.4: Proof of Theorem 2.3: Case 5a

only one grouping for a pair, as no case will split a grouping in two or add a second

grouping for a pair already in L. The only types of groupings that can be diminished

are a, y groupings encompassed by x, y in Case 3a or y, b groupings in Case 4c. If

both occur then the a, y grouping is altered to an a, b grouping, so both occuring still

increases the number of joined pairs. Also, altered groupings from x, c to y, c in Case

5a may require updating any c, d groupings since c has moved. Since only the d can

be moved by this update and the c has already been tested, this can only occur a

finite number of times and will not decrease the number of groupings. Then adding

an x, y grouping increases the number of joined pairs.

If there is a pair of elements x and y that are split and joined by T ′ then they

can be grouped. Then since each case increases the number of joined pairs and there

can be only finitely many pairs joined in a finite number of transpositions, repeatedly

applying this process will result in a transposition sequence that does not join any

pair that it splits.

Theorem 2.3 provides an interesting result that could potentially reduce the sub-

problems that need to be considered when solving an instance of Sorting by Trans-

positions. However, we do not as of yet have any useful results using it.

16

2.3 Creating Inversions

One concept that has been useful in the development of sorting algorithms is that of

inversions. There is an inversion between two elements of a permutation if they are

out of order. Then two elements xi and xj are inverted if xi > xj and i < j.

One may wonder if there is always an optimal transposition sequence that does

not create new inversions. This seems to be a fairly strong claim, so we first consider

only inversions between two elements adjacent in I. Then two elements xi and xj are

inverted if xi + 1 = xj and i > j.

With this definition of inversions, the claim becomes that there is always an op-

timal transposition sequence that does not create new inversions between elements

adjacent in I. This claim holds for permutations with transposition distance at most

2, but does not hold for all permutations with transposition distance 3. Consider the

permutation S = 0426183759. There are only two optimal transposition sequences

for this permutation:

1. (0)(426)(183)(759) → (0)(183)(426)(759)

(01)(834)(267)(59) → (01)(267)(834)(59)

(012)(678)(345)(9) → (012)(345)(678)(9)

2. (042)(618)(375)(9) → (042)(375)(618)(9)

(04)(237)(561)(89) → (04)(561)(237)(89)

(0)(456)(123)(789) → (0)(123)(456)(789)

Clearly the first transposition of transposition sequence 1 inverts elements 2 and

3, while the first transposition of transposition sequence 2 inverts elements 6 and 7.

Note that this permutation is sorted optimally by three 3-transpositions, such that

the indices of any two of the transpositions interleave. Also note that if transposition

sequence 1 is denoted T1 = τ1τ2τ3 then transposition sequence 2 is T2 = τ3τ2τ1, the

inverse of transposition sequence 1. It may still be interesting to characterize permu-

tations that do not allow a transposition sequence which does not create inversions

between elements adjacent in I. Another question to examine is whether it is ever

necessary to increase the number of inversions.

17

2.4 Building Permutations One Element at a Time

One method we have used for proving results about Sorting by Transpositions

is induction on the length of optimal transposition sequences. Another proof tech-

nique that may be useful is induction on the length of permutations. To examine

permutations in this manner, we must consider what happens when we add or re-

move an element from a permutation. We define these operations as follows: Let

S = x1x2 . . . xn be a permutation.

Removing an element xi creates a new permutation (S − xi) = x′
1x

′
2 . . . x′

n−1 such

that elements larger than xi are decreased by one, and elements xj to the right of xi

are now referred to as x′
(j−1).

Adding an element xi creates a new permutation (S + xi) = x′
1x

′
2 . . . x′

n+1 such

that elements as large or larger than xi are increased by one, and elements xj to the

right of xi are now referred to as x′
(j+1).

Lemma 2.4. Removing an element from a permutation is equivalent to the transpo-

sition that moves that element directly before its successor

Proof. Let S = x1x2 . . . xn be a permutation. Let (S − xi) = S with element xi

removed. Consider S ′ = S after transposition τ (i−1),i,(j−1) or τ (j−1),(i−1),i that moves

xi directly before its successor xj . S ′ = x1x2 . . . x(j−1)xixjx(j+1) . . . xn. By Lemma 2.1

we can reduce S ′ to (S − xi), since xi and xj are an adjacent predecessor-successor

pair. Then any transposition sequence that sorts S ′ has an equivalent transposition

sequence that sorts (S − xi) and vice versa.

Moving a single element directly before its successor can either decrease the trans-

position distance by one or keep it the same, since any transposition sequence that

sorts permutation S has an equivalent transposition sequence that sorts (S − xi),

possibly with an empty transposition that corresponds to moving xi directly before

its successor or after its predecessor. Let k be the transposition distance of S. This

gives the following two cases:

1. Removing element xi does not change the transposition distance

2. Removing element xi decreases the transposition distance by one

18

By the same reasoning, we have analogous cases for adding a single element:

1. Adding element xi does not change the transposition distance

2. Adding element xi increases the transposition distance by one

In case 1 for adding an element, since adding xi does not change the transposition

distance, xi must be carried around inside transpositions while either staying or mov-

ing with transpositions that border it, in some optimal transposition sequence for S,

to give an optimal transposition sequence for (S + xi).

In case 2, it must be optimal to move element xi directly before its successor

with transposition τx, since τx will give a permutation that is equivalent to S and

then S can be sorted in k transpositions. Note that optimal transposition sequences

for (S + x) in case 2 can also occur by having xi move along the boundaries of

transposition sequences of length k + 1 that sort S.

These results lead to the following algorithm to solve the problem, based on con-

structing all optimal transposition sequences. for a permutation S:

Consider permutation T , initially empty. Maintain a tree Q of transposition

sequences for T . For each element i of S, 1 ≤ i ≤ n, add element i to T such that

T is a subsequence of S. If T is sorted, continue to the next element. Otherwise,

update the transposition sequences in Q to reflect the new element. Branch whenever

a transposition could either move i or not. if any of these new transposition sequences

sort T and have the same length as an optimal transposition sequence before adding

element i, then we have case 1 and each of those is optimal. Otherwise, we can

construct all optimal transposition sequences by moving i directly before its successor

or after its predecessor. Unfortunately, we must branch and do this at every possible

location in Q.

Based on the cases above, this will generate all optimal transposition sequences

for S. However, the running time will be quite large. Each branch for Case 1 can

double the size of Q for each level of Q. Additionally, the branches for Case 2 can

increase the size of Q by the depth of Q, since i can be moved individually at any

level of a transposition sequence.

We had hoped that non-optimal transposition sequences could be pruned from the

19

tree, which would greatly limit its size, but since non-optimal transposition sequences

can become optimal when a new element is added, both Case 1 and Case 2 must be

explored at every step, and every generated transposition sequence must be stored.

If that obstacle can be overcome, this algorithm could potentially be quite efficient.

As previously mentioned, the effects of adding and removing elements from per-

mutations are still useful. They could possibly be used for considering Sorting by

Transpositions along with other genome rearrangement operations. They can also

be used with induction to prove results about the problem. Adding an element to a

permutation changes the transposition distance by either one or zero, which may be

very useful in an inductive proof.

Chapter 3

FPT results

3.1 An Algorithm Based on Kernelization

The kernelization from Theorem 2.2 can be used to give a fixed-parameter algorithm

for Sorting by Transpositions. Recall that the kernelization gives a problem

kernel of size 3k, where k is the transposition distance of a problem intance. Also,

note that there are n! different permutations of size n. Then after reducing an instance

of the problem of size n, there are at most 3k! different permutations that are possible.

We can create a transposition graph of permutations, where each vertex is a

permutation of size n and two vertices have an edge if the corresponding permutations

can be transposed to one another. We can then do a breadth-first search of the

permutation graph, starting at S and looking for I. We will examine the algorithm

from the perspective that S is of size n for simplicity and generality. Then we will

apply the kernelization before the algorithm and examine the results. This suggests

the following algorithm for finding the transposition distance:

Let S be a permutation. Let G be a graph of permutations, the permutation

graph. Let d(M) be the transposition distance from S to M . Let L be a list of

permutations that have not been visited yet, ordered by d(M).

PERMUTATION-GRAPH-SBT(S)

G = (V, E)

V = every permutation of the same size as S.

d(S) = 0

L = {S}
VISITED = ∅
while (L 6= ∅)

P = dequeue(L)

add P to VISITED

20

21

foreach M that P can be transposed to

if M /∈ VISITED

enqueue M in L

d(M) = d(P) + 1

add (P, M) to E

return d(I)

This algorithm examines at most each permutation of the same size as S. Per-

mutations are examined in order of their distance from S, so every permutation at

distance i from S will be examined before every permutation at distance i + 1. Then

a new permutation M adjacent to P that is not yet in G must be one farther from

S than P . Then when the identity permutation I is found, d(I) gives the transpo-

sition distance of S. The transposition sequence can be recovered from the edges

of E. This is a breadth-first search of the transposition graph of permutations that

S can be transposed to. Newly found permutations are added to L, and only per-

mutations from L are examined, so each permutation is examined once. Thus the

algorithm will terminate after examining each permutation once, and correctly gives

the transposition distance of S.

Because permutations are examined in order of their distance from S, new per-

mutations can be added to the end of L and L will remain sorted by d. Then L

can be implemented as a linked list, and adding elements to L or removing the first

element of L require costant time. Because the algorithm may examine every permu-

tation eventually, VISITED can be an array of size n! and checking if a permutation

is in VISITED requires constant time. Then the running time of this algorithm relies

solely on the number of permutations examined and the time required to examine

each. There are
(

n
3

)

transpositions from each permutation, which is O(n3), so the

time complexity of the algorithm is O(n3 · n!). The space required is dominated by

the size of G which is O(n!).

Applying our kernelization to the permutation gives a permutation that is at most

3k elements long, so if we first apply our kernelization, the algorithm has a running

time of O((3k)3 · (3k)!), which is O(k3 · (3k)!), and requires O((3k)!) space.

22

This algorithm can be optimized in several ways which may improve performance

but do not improve the worst-case time complexity. First, the algorithm can return as

soon as I is found, since d(I) is known then. Second, instead of preallocating G as an

array, G can be a hash table or other dictionary. The second change would actually

increase the time complexity, due to dictionary accesses, but the entire permutation

set would not necessarily be examined and stored.

Note that this algorithm solves the optimization problem for Sorting by Trans-

positions and uses the transposition distance as the parameter. We can use this

algorithm to solve the relevant decision problem: does a permutation have a trans-

position distance at most k?

FPT-PERMUTATION-GRAPH-SBT(S, k)

S ′ = KERNELIZE(S)

if (k < 1/3 · |S ′|)
return NO

d = PERMUTATION-GRAPH-SBT(S ′)

if (d <= k)

return YES

else

return NO

Theorem 3.1. Sorting by Transpositions can be solved in O(k3 · (3k)!) time

and O((3k)!) space and is in FPT.

Proof. From the kernelization, we know that the transposition distance of S is at

least 1/3 · |S ′|, since one transposition can eliminate at most 3 breakpoints. Then

we know that the answer is NO if k is less than 1/3 · |S ′|. Otherwise, we can use

PERMUTATION-GRAPH-SBT to find the transposition distance and compare

it to the given k. Since PERMUTATION-GRAPH-SBT is only used when n <=

3k, our previous analysis holds and we have a fixed-parameter algorithm for Sorting

by Transpositions with a running time of O(k3 · (3k)!) which requires O((3k)!)

space. Thus the problem is in FPT.

23

3.2 A Faster Algorithm Using a Bounded Search Tree

The analysis of FPT-PERMUTATION-GRAPH-SBT relied on the fact that

there are n! permutations of size n. A more naive method that may allow improve-

ments is a a naive bounded search tree algorithm. With this we examine every

permutation that can be transposed to with k transposition from S.

Let S be a permutation and k be a nonnegative integer. Let T be a bounded-depth

search tree, initially empty, where each node of the tree will have a permutation and

its distance from S. Let I be the identity permutation.

FPT-NAIVE-SBT(S, k)

S ′ = KERNELIZE(S)

if (k < 1/3 · |S ′|)
return NO

T = {(s, 0)}
return FPT-NAIVE-EXAMINE-NODE((S, 0), k)

FPT-NAIVE-EXAMINE-NODE((S, d), k)

if(d > k)

return NO

if(S = I)

return YES

for each permutation v that S can be transposed to

add (v, d + 1) to T as a child of (S, d)

if(FPT-NAIVE-EXAMINE-NODE((v, d + 1), k) = YES)

return YES

return NO

These two subroutines detail a recursive algorithm that creates a depth-bounded

search tree for the problem. The depth of the tree is at most k and each node branches

into
(

n
3

)

children, which is O((3k)3 due to the kernelization. Then the size of the tree

is O(((3k)3)k) = O((3k)3k). Since every node does a constant amount of work other

than the branching, this algorithm uses time and space O((3k)3k).

24

This algorithm is asymptotically slower and requires more space than FPT-

PERMUTATION-GRAPH-SBT. However, This type of search allows improve-

ments.

We can improve the algorithm by using a double-ended search. To solve an in-

stance of Sorting by Transpositions with permutation S and distance k, use

FPT-NAIVE-SBT to generate a depth-bounded search tree of depth ⌈k/2⌉ start-

ing from S and a depth-bounded search tree of depth ⌊k/2⌋ for the inverse problem

of sorting I to S. Sorting I to S gives a new permutation S2 that is sorted to I. Then

normalize the inverse tree by applying S−1
2 to each permutation so that I is the first

element, instead of S2 and the trees can be compared. If there is a permutation x

that exists in both trees, then there must be a path of length at most k from S to I,

via x.

Let S be a permutation and k be a nonnegative integer. Let I be the identity

permutation. Let T1 and T2 be bounded bounded-depth search trees, initially empty,

where each node of T1 will have a permutation and its distance from S and each node

of T2 will have a permutation and its distance from I.

FPT-DOUBLE-ENDED-SBT(S, k)

S1 = KERNELIZE(S)

S2 = S−1
1 · I

FPT-NAIVE-SBT(S1, ⌈k/2⌉)
FPT-NAIVE-SBT(S2, ⌊k/2⌋)
normalize T2 so that its permutations can be compared with T1

X = the intersection of permutations in T1 and T2

if (X = ∅)
return NO

else

return YES

This generates two depth-bounded search trees which are both of size O((3k)3·k/2)

which is O((3k)1.5k). The kernelization and inverse problem creation take an insignif-

icant amount of time compared to the tree sizes, but normalizing T2 will take O(|T2|)

25

time. The most time consuming part of this algorithm is generating the intersection X

of permutations in T1 and T2, which can be done in O((|T1|+ |T2|) · log (|T1| + |T2)) by

inserting each permutation into a sorted binary search tree. This is O(log ((3k)1.5k) ·
(3k)1.5k) which is O(k log k · (3k)1.5k). The memory required is O((3k)1.5k).

How do the factorial algorithm FPT-DOUBLE-ENDED-SBT and the expo-

nential algorithm FPT-PERMUTATION-GRAPH-SBT compare? It suffices to

compare nn/2 and n!. n! = n · (n− 1) · (n− 2) . . . 2 and can be rewritten as a product

of n/2 terms if n is even: (n · ((n− 1) · 2) · ((n− 2) · 3) . . . ((n/2) · ((n/2) + 1))). Each

term is larger than n, so clearly n! is larger than nn/2 as nn/2 is the product of n/2

terms that are n. for even n. If n is odd, then the final term of the rewritten n! is

⌊n/2⌋. However, since n is odd, nn/2 is the product of ⌊n/2⌋ terms of n and one term

of
√

n. Since n/2 is larger than
√

n for n > 3, n! is larger than nn/2.

Note that each term needs at most to be multiplied by 2 to be larger than n. Then

instead of using the ⌊n/2⌋! multiple, we only need 2⌊n/2⌋. Then nn/2 and n! differ by

at least
(⌊n/2⌋!)
2⌊n/2⌋

.

Therefore O(k log k · (3k)1.5k increases slower than O(k3 · (3k)!). Thus a double-

ended search causes the running time of FPT-DOUBLE-ENDED-SBT to grow

slower than that of FPT-PERMUTATION-GRAPH-SBT as n increases.

That being said, both algorithms require a large amount of time and mem-

ory. Structural considerations can potentially decrease the number of permutations

generated in the depth-bounded search tree, and could potentially improve FPT-

DOUBLE-ENDED-SBT.

Chapter 4

Conclusions

We have provided a simple kernelization of at most 3k elements for Sorting by

Transpositions, by treating adjacent elements of a permutation which are also

adjacent in the identity permutation as a single element. This concept was used with

the intermediate results of a transposition sequence to show that there is always an

optimal transposition sequence that splits no pair of elements more than once. It

remains to be seen if the second result can lead to an improved algorithm for the

problem.

The concept of inversions does not seem to give much insight into the problem of

Sorting by Transpositions. In particular, some permutations are only optimally

sorted by inverting elements i and i+1. Future research should be done that examines

such permutations to determine their structure and rarity. Perhaps they are easy to

solve and can be worked around in an algorithm based on not creating new inversions.

Adding and removing elements from a permutation can potentially be useful for

an inductive proof of properties of Sorting by Transpositions. However, our al-

gorithm based on adding elements to generate all optimal transposition sequences can

not avoid looking at nonoptimal transposition sequences as well. Future work should

examine this further to see if nonoptimal transposition sequences can be pruned with-

out risk of losing at least one optimal transposition sequence.

We provided two fixed-parameter algorithms for Sorting by Transpositions.

Both rely on the kernelization provided. The first algorithm has a running time

of O(k3 · (3k)!), and examines every permutation of the correct size. The second

algorithm has a running time of O(k log k · (3k)1.5k), by using a double-ended search,

which we showed is faster than the first algorithm. Both algorithms have memory

requirements similar to their running times.

We conjecture that 2-transpositions are optimal, ie. every 2-transposition is the

26

27

start of some optimal transposition sequence. This may be useful practically, even if

it does not lead to better worst-case bounds. We have so far been unable to prove or

disprove this. Approximation algorithms often use a stronger version of this, choosing

any available 2-moves.

We had hoped to find a faster FPT algorithm than those discussed here, or possibly

an NP-hardness proof. We examined several structual properties of the problem which

could lead to improvements. We have an efficient linear-size problem kernel; however,

we have so far found no better depth bounded search tree method than an exhaustive

double-ended search. Future research should focus on improving this.

Bibliography

[1] Bafna, V., and Pevzner, P. Genome rearrangements and sorting by rever-
sals. SIAM Journal of Computing 25 (1996), 272–289.

[2] Bafna, V., and Pevzner, P. Sorting by transpositions. SIAM Journal on
Discrete Mathematics 11, 2 (1998), 224–240.

[3] Berman, P., Hannenhalli, S., and Karpinski, M. 1.375-approximation
algorithm for sorting by reversals. Electronic Colloquium on Computational Com-
plexity (ECCC) 8, 47 (2001).

[4] Caprara, A. Sorting by reversals is difficult. In RECOMB ’97: Proceedings
of the first annual international conference on Computational molecular biology
(New York, NY, USA, 1997), ACM, pp. 75–83.

[5] Downey, R., and Fellows, M. Fixed-parameter tractability and complete-
ness I: Basic results. SIAM Journal of Computing 24 (1995), 873–921.

[6] Elias, I., and Hartman, T. A 1.375-approximation algorithm for sorting by
transpositions. IEEE/ACM Transactions on Computational Biology and Bioin-
formatics 3, 4 (2006), 369–379.

[7] Hannenhalli, S., and Pevzner, P. Transforming cabbage into turnip: Poly-
nomial algorithm for sorting signed permutations by reversals. Journal of the
ACM 46, 1 (1999), 1–27.

[8] Hartman, T. A simpler 1.5-approximation algorithm for sorting by transposi-
tions. Combinatorial Pattern Matching (CPM 03) 2676 (2003), 156–169.

[9] Niedermeier, R. Invitation to Fixed-Parameter Algorithms. Oxford University
Press, 2006.

[10] Palmer, J., and Herbon, L. Plant mitochondrial DNA evolves rapidly in
structure, but slowly in sequence. Journal of Molecular Evolution 27 (1988),
87–97.

[11] Sankoff, D., Leduc, G., Antoine, N., Paquin, B., Lang, B. F., and

Cedergren, R. J. Gene order comparisons for phylogenetic inference: Evo-
lution of the mitochondrial genome. In Proceedings of the National Academy of
Sciences (1992), vol. 89, pp. 6575–6579.

28

