
21st International Symposium INFOTEH-JAHORINA, 16–18 March 2022

A Proposal for Universal Preprocessing and
Text-Embedded Programming (PTEP) System

Vlado Kešelj
Faculty of Computer Science

Dalhousie University
6050 University Ave, NS, Canada

vlado@cs.dal.ca

Abstract—We present a novel concept of universal text prepro-
cessing and text-embedded programming (PTEP). Preprocess-
ing and text-embedded programming has been widely used in
programming languages and frameworks in a fragmented and
mutually isolated way. The PTEP ideas can be found in the
implementation of the TEX typesetting system; they are prominent
in PHP and similar web languages, and finally they are used in the
Jupyter data science framework. We define the following novel
principles of the Universal PTEP: generality, update and replace
modes, flexibility, configurability, transparency, and embedded
programming language use. We present an open-source system
Starfish for PTEP, which satisfies those principles. We describe
the operating model and design of Starfish, which is an open-
source system implementing these PTEP principles in Perl. The
system is transparent and its design allows direct implementation
in other programming languages as well.

Keywords—Preprocessing and Text-Embedded Programming
(PTEP); Software Development; Web Engineering; Data Science;
Text Processing;

I. INTRODUCTION

The main premise that we introduce in this paper is that
there is a wide need in computer science for text Preprocessing
and Text-Embedded Programming (PTEP). Transparency and
ubiquity of textual representation, similarly to the universality
of natural language, creates a widespread and uniform need
to transform and automatically manipulate text that we write
before this text is processed in some domain-specific way, such
as programming language compilation, document typesetting
or visual rendering, and similar.

We define text preprocessing as any operation that takes
text as input and produces a similar text as output; and it
serves as a way to automate manual editing of text. The
word “preprocessing” suggests that this is as a step before
the actual text processing associated with the particular type
of text, such as compilation or interpretation of programming
language source code, rendering of an HTML page, or similar.
A typical example of a preprocessor is the C programming
language preprocessor [1], which is mostly used for simple
text inclusions or exclusions based on some configuration
parameters and simple text replacements, before the C program
code is passed to the compiler.

Text-embedded programming is a related but generally
different concept than text preprocessing. We define text-
embedded programming as any form of computer program-
ming where code is embedded in an arbitrary text, and can be

This work was supported by NSERC.

executed in-place, in that text context. One of the first examples
of text-embedded programming can be considered to be the
TEX typesetting system by Donald Knuth, released in 1978 [2].
TEX has its own language of annotating text to prepare it for
typesetting and printing in form of papers, books, and similar
documents. The TEX language also includes a macro language
for text transformation in-place, before the final preparation of
the output pages. This macro part of the language is a form of
preprocessing, but also text-embedded programming because
it is Turing-complete, and one can write a general-purpose
program in the TEX macro language. The TEXbook [2] contains
a famous example of a table of prime numbers, generated in
the TEX macro programming language, written by Knuth.

The second, more obvious example of text-embedded pro-
gramming is the PHP programming language [3]. A PHP
program file is usually an HTML file with the snippets of
PHP code inserted in the file. The file is processed, or we
could say preprocessed, before being delivered to the HTML
browser in such way that the PHP snippets are replaced with
their output produced using the command echo. The snippets
are delimited with the strings <?php and ?>, or simply with
<? and ?>. This model is particularly convenient for fast
development of web apps, where we can start with a static
(pure) HTML page and incrementally replace text pieces of
the page with PHP snippets that will produce dynamic PHP-
generated HTML text. A similar approach was used in ASP
(Active Server Pages) engine [4] or JSP (JavaServer Pages) [5],
both of which use the delimiters <% and %> for code snippets.

The third example of text-embedded programming is the
project Jupyter [6], formed in 2015 by Fernando Pérez [7].
Jupyter supports inclusion of Python, Julia, or R programming
language snippets in a file called Jupyter Notebook. Although
this example of text-embedded programming is not transparent
in the sense that a Jupyter Notebook is not a plain text file,
it is still very close to a text file (it is in the JSON format),
marked in a language called Markdown, which gets translated
into HTML, and it allows inclusion of arbitrary code in Python
(or other allowed language) that can be executed. The result
of the execution is shown in the notebook itself. This feature
of including the snippets outputs in the source text is a novelty
when compared to PHP for example, and we call this feature
the update mode, vs. the replace mode used in PHP, ASP, JSP,
and similar template languages.

The first research goal of this paper is to present this unified
evidence for a general need for a text preprocessing and text-
embedding (PTEP) system in a number of different contexts.
The second goal is to define general properties of such system
so that it can be adapted in these contexts. The third goal is

978-1-6654-3778-3/22/$31.00 c©2022 IEEE

2

to demonstrate an implementation of such a system.
The general PTEP properties can be expressed as research

goals in themselves and we present them in the next subsec-
tion.

A. Research Goals of Universal PTEP

The main motivation for Universal PTEP (Preprocessing
and Text-Embedded Programming) is an initiative for creating
a prototype of a universal system that could be easily used and
adapted for an arbitrary type of text. Beside some major exam-
ples, such as TEX, PHP, and Jupyter, as mentioned, which have
dedicated embedded languages and in which text-embedded
programming has a central role, it would be beneficial to have a
system ready-to-be-used in an arbitrary text language, or style,
as we will call it, such as Makefiles, procmail recipes, Xfig
files, shell scripts, and many other text styles. The approach
is also intended to be used for any programming language,
web languages (e.g., HTML, CSS), data formats (e.g., JSON),
and typesetting languages (e.g., TEX, LATEX). Some ideas of
this prototype were implemented starting from 1998, with the
system Starfish being named and released in 2001 [8]. It has
been further developed since then, and as of now, we are not
aware of a similar effort in this area.

To better characterize properties that a system should satisfy
in order to implement the concept of Universal PTEP, we
introduce the following Principles of Universal PTEP:
• General PTEP: This is the goal of creating a general

system that can be used for PTEP for various text styles
(e.g., HTML, LaTeX, Java, Makefile, etc.)

• Update and Replace Modes: Supporting two modes
of operation: the replace mode — similarly to PHP or
C preprocessor, where the snippets are replaced with
the snippet output and the complete output is saved
in the output file or passed for further processing in
the standard output; or the update mode — similarly
to Jupyter, where the snippet output is appended to the
snippet in the updated source file.

• Flexible PTEP: A flexible system in the sense that
we can modify the patterns that are used to detect
active code (snippets) in text. The basic pattern used to
detect and execute code snippets, can be generalized to
make active “hooks” from any string, pair of delimiters,
or regular expression pattern. The system should also
provide flexibility in the way snippets are evaluated.

• Configurable PTEP: Allowing user-defined configura-
tion per directory, and using directory hierarchy for a
more wide hierarchical configuration specification.

• Transparent PTEP: Providing transparency in the sense
that when a file is processed with the PTEP system,
assuming it is a static file, we do not require the system
for further use of this file. For example, an HTML file
is still an HTML file viewable by a browser, a LATEX file
is still a LATEX file processable by LATEX, and so on. As
a comparison of a less transparent approach, a Jupyter
file is a special-format JSON file, which needs to be
processed with Jupyter or associated tools to produce
HTML, LATEX, or other forms usable by a user.

• Embedded Programming Language: A general-
purpose and easy-to use programming language needs
to be a part of the system, to provide an easy way for
users to adopt and learn to use the system.

The Starfish system implements these principles. The Em-
bedded Programming Language principle can be implemented
in many languages, and we chose to use Perl. Perl is par-
ticularly convenient for both Starfish implementation, use in
code snippets, and configuration. As a comparison, TEX uses
its own language for PTEP and it is difficult to use since its
paradigm and notation style are so different from the main
main-stream languages. The C preprocessor works well for
C, but in attempts to use it in other systems, like Imake
for the Makefiles, it was not widely adopted due to its
restrictive nature and a significantly different context than C
programs. Using a known, general-purpose language for spec-
ifying preprocessing steps and in the text-embedded snippets
has clear advantages, and Perl succinctness and expressiveness
in working with strings makes it an excellent candidate.

After this introduction, we will introduce main terminology
and some background on PTEP and related work in Section II.
In Section III, we will present a case study of a Java prepro-
cessor functionality achieved using Starfish system, which we
use to describe fundamental modes of operation of Starfish.
Finally, we give a conclusion with some ideas about vision of
PTEP for future work in Section IV.

II. BACKGROUND AND RELATED WORK

We will describe in this section some background infor-
mation on Preprocessing and Text-Embedded Programming
(PTEP), and some existing related work in this area. The PTEP
area does not exist as a recognized coherent area, but there has
been much fragmented related work within the context of dif-
ferent programming languages, and applied areas of Computer
Science, such as in the web systems development (PHP, ASP,
JSP), software development (C preprocessor, make, imake),
electronic publishing (TEX, LATEX), and machine learning and
data science (Jupyter). We will start with some background
introductions and definitions.

a) Text and text files: We define text to be any string of
characters, generally including the new-line character, and it
will typically be saved in a file, which we call a text file. We
will assume characters to come from the ASCII set, but they
may include extended ASCII (i.e., numerical values from 0 to
255), or they may have UTF-8 encoding, so characters may
be from the Unicode set. A text is usually created manually
in a plain-text editor, such as emacs or vi in Linux or other
Unix-like systems, or notepad in Windows OS. If the text
follows certain formal rules (grammar), we will say that text is
in certain style. Otherwise, if we do not recognize a particular
formal grammar of the text, we will say that text has a default
style. It could be, for example, a general natural language text,
such as English, or any kind of text that is not on our list
of recognized styles. We will also talk about specific styles,
such as the C-program style, if the text is a program in the
C programming language, a Java style, an HTML style, LATEX
style, and similar.

b) Text preprocessing: We define text preprocessing to
be an operation that takes text as input and produces a similar
text as output, and it serves as a way to automate manual
editing of the text. Again, this is not a very precise definition,
and we will have to rely on some of our common sense and
experience in recognizing what constitutes preprocessing. The
name “preprocessing” comes from the idea that this operation
does not change the main style of the text, and it is done before
any proper processing designed for this style of text, such as

3

compilation of a C program, rendering of an HTML page,
or translating a LaTeX text into a PDF document. A typical
representative preprocessor is the C programming language
preprocessor [1], [12].

The generic applicability of the C preprocessor has been
recognized and it was used independently of the C compiler;
for example, in the Imake system [13], [14]. Darren Miller [15]
made available Filepp—a generic file preprocessor, following
closely the C preprocessor syntax, with a number of gen-
eralizations. The Filepp preprocessor is written in Perl with
intention to be used on general text files and a particular
support for the HTML files.

A. Text-Embedded Programming
We define text-embedded programming as a form of com-

puter programming where programming source code is embed-
ded in text of arbitrary style, and this code can be executed
in-place; i.e., in the original embedded context.

One could argue that any programming source code is
embedded, since code is generally mixed with comments
and other forms of documentation, but there is a significant
conceptual difference in thinking about a text file as a program
with comments, rather than as a text of arbitrary style, with
some code snippets inserted. We also leave some freedom in
how the code snippets are executed, to what purpose, or how
they interact with the surrounding text. We will see soon some
typical usages for such snippets.

In text-embedded programming, programming source code
is embedded in text as a sequence of continuous text segments.
These segments are sometimes called code snippets, active
code, live code, or embedded code. We call the text outside
the segments the outer text. The code snippets are usually
easily recognizable by defined text delimiters, but depending
on the rules that we use, any text can be recognized as a
snippet. This is why the name active code is very appropriate:
The TeX system uses a labeling of all characters at run-time
and this labeling can denote any character to be an ‘active’
character, and as such initiate special processing after the
system reads this character. The active character is also called
an escape character. A similar generalized approach is adopted
in Starfish, in which the active code is recognized by hooks,
which can be strings, pairs of begin-end strings, or regular
expressions.

One of the first examples of text-embedded programming
was the TEX typesetting system developed by Knuth, released
in 1978 [2]. The system processes text and prepares it for
typesetting pages for print, but in the process it recognizes
TEX commands by detecting the escape backslash character
(\); i.e., an active character, which triggers special execution
behaviour based mostly on macro expansions. This macro
expansion model can be regarded as a general computational
model, akin to any programming language, but it is difficult
to learn for programming purposes as indicated by the author
himself. There were approaches to developing TEX preproces-
sors in other languages such as Lisp, as published by Iwesaki
in 2002 [16].

Text-Embedded Programming is particularly popular and
useful in the context of HTML documents. The HTML
language was designed for preparation of static documents,
viewable and browsable by users, and a very natural way
to make the documents dynamic through programming is by
inserting code snippets in HTML pages. Before serving the

TABLE I. ESCAPE STRINGS IN SOME SYSTEMS

System Escape Strings

Begin End

PHP <? ?>

<?php ?>

ASP <% %>

JSP <% %>

ePerl <? !>

Text::Template { }

Text::Oyster <? ?>

System Escape Strings

Begin End

HTML::EP <ep-perl> </ep-perl>

Starfish (default) <? !>

Starfish (HTML style) <!--<? !>-->

Starfish (user defined) <?sfish !>

Starfish (user defined) any string any string

page for viewing and browsing, the snippets are executed and
replaced with their textual output, and the resulting page is
sent to the browser. This model is used in the very popular
PHP language [3], and also in ASP (Active Server Pages) [4]
and JSP (JavaServer Pages) [5].

The code snippets are marked in text with starting and
ending delimiters, which are arbitrary small strings. Other than
simple markers for snippets, we can think of them as escape
sequences that toggle on and off code processing. Table I
shows the live code (snippet) delimiters in some systems. For
example, the string delimiters are “<?” and “?>” or “<?php”
and “?>” in PHP, “<%” and “%>” in ASP, and “<?” and “!>”
in ePerl. For example, in PHP, we could prepare an HTML
document such as:

<html><head><title>PHP
Test</title></head>
<body>
<?php echo ’<p>Hello World</p>’; ?>
</body></html>

where we show snippet delimiters in red, and the snippet itself
in blue color. After processing with the PHP interpreter, the
following output would be produced:

<html><head><title>PHP
Test</title></head>
<body>
<p>Hello World</p>
</body></html>

where we show the generated output in the green color.
Embedding the code in this way is sometimes called escaping
because a starting delimiter, such as “<?” serves as an escape
sequence, triggering special processing of the snippet. Another
kind of escaping, referred to as the advanced escaping in PHP
is illustrated with the following example:

Good <?php if ($hour < 12) { ?>
Morning <?php} else { ?> Evening
<?php } ?>

We will refer to this kind of escaping as inverted escaping.
Inverted escaping can be interpreted in the following way:
The complete input text is treated as code in which the plain
text, i.e., the non-code text or outer text, is embedded between

4

‘?>’ and ‘<?php’ delimiters and it is translated into an
‘echo "string";’ statement; and similarly, any part of the
form ‘?> plain text <?’ is interpreted as the statement:

echo " plain text ";
An implicit delimiter ‘?>’ is assumed at the beginning of the
text and an implicit delimiter ‘<?php’ is assumed at the end
of text. Although this type of escaping is relatively easy to
implement, we do not use inverted escaping in Starfish since
its benefits are not very clear. On the other hand, inverted
escaping does not follow the principle that each snippet should
be a well-defined block of code. If we want large pieces of
outer text to be conditionally included or excluded, Perl offers
many string delimiting options for large text segments, such
as q/.../ and <<’EOT’, which can be used in place of
inverted escaping.

B. Perl-based Embedded Programming
The Universal PTEP proposal is programming language

independent, and the prototype is easily adaptable to work
with any programming language. Any higher-level language
that provides easy manipulation of strings, automated memory
management, and run-time evaluation of code is very suitable
for PTEP. The Perl programming language is particularly
suitable due to its efficient and expressive string-processing
functionalities. For this reason, there has always been many
Perl implementations of preprocessing and some forms of text-
embedded programming, including templating modules. Even
the core Perl language includes simple template-based string
generation with interpolated strings, in which a string such as
"The flight $flightid arrives at $time."
is evaluated to:
"The flight AC806 arrives at 11:26."
if the variables $flightid and $time have values:

$flightid = "AC806";
$time = "11:26";

An early system for embedded Perl in a fashion similar
to PHP was ePerl (Embedded Perl Language) by Ralf S.
Engelshall [17]. The language ePerl was developed in the
period from 1996 to 1998. The system was a binary package
based on modified code of the Perl interpreter, and as such had
a relatively large memory footprint, or was a “heavy-weight”
implementation as sometimes called [18]. This approach had
some other disadvantages such as need for recompilation for
each platform, and not keeping with the evolution of the
Perl language, unless regularly maintained. These issues are
addressed by implementing the system as a Perl module; i.e.,
a language extension in Perl terminology. For example, David
Ljung Madison developed an “ePerl hack” [18] which is a Perl
script of some 1400 lines that has functionality similar to ePerl.
In comparison to Starfish, in addition to the “heavy-weight”
implementation, ePerl does not support the update mode and
is not designed for a universal PTEP.

Text::Template [19] by Mark Jason Dominus is another Perl
module with similar functionality. It is a very popular mod-
ule designed to “expand template text with embedded Perl”,
created in 1995 or 1996 and maintained with contributions
by many users until now. An interesting and independent
similarity is that Starfish uses $O as the output variable,
while $OUT is used in Text::Template. The default embedded
code delimiters in Text::Template are ‘{’ and ‘}’, with an
additional condition that braces have to be properly nested. For

example, ‘{{{"abc"}}}’ is a valid snippet with delimiters.
The module allows the user to change the default delimiters to
other alternative delimiters. The philosophy of Text::Template
module has a lot of similarity with Starfish, however the
Text::Template module is primarily meant to be used in
templating style; which means that a template file is created
as a more passive object and it always requires a handling
Perl script to generate the output target file. An additional
difference is that the Text::Template module does not support
the update mode. The use of default delimiters creates issues
with JavaScript code, although there are workarounds. The
system is not applied to many text styles other than plain text
and HTML.

Another well-known Perl module HTML::Mason [20], au-
thored by Jonathan Swartz, Dave Rolsky, and Ken Williams,
can also be seen as an embedded Perl system. It is a larger sys-
tem with the major design objective to be a high-performance,
dynamic, web-site authoring system.

A relatively minimalistic approach is used in development of
the module Text::Oyster [21] by Steve McKay in the period
2000–3. The module is template module for evaluating Perl
embedded in text between delimiters ‘<?’ and ‘?>’.

HTML::EP [22] is another Perl module for embedding Perl
into HTML. Its specific approach is that code delimiters are
HTML-like tags that start with ‘ep-’. For example, comments
are delimited by <ep-comment> and </ep-comment>,
and active code is delimited with tags <ep-perl> and
</ep-perl>. The last value in the embedded code is the
generated string. The module is meant to be used in a dynamic
way over the Apache web server and the use of Apache module
mod-perl, so the documentation gives a nice overview of
how to set up a Perl module that supports embedded program-
ming to run efficiently in this setting. The set of tags is further
extended, so it includes <ep-email> for generating emails
from a web page, <ep-database> and <ep-query> for
working with a database, <ep-list> for generating HTML
lists, then conditionals, and so on. It is an interesting idea that
in text embedding like this we can modify the language to be
simpler in some situations than Perl, but it is still not clear
that it is justified to introduce all these new constructs, when
equivalent Perl code constructs exist.

Starfish is a lighter-weight system than eperl or Mason, but
it is more flexible and universal than Text::Template, the ePerl
hack, and HTML::EP. Starfish covers a larger set of text styles
than other systems, provides other unique innovations, such
as more flexibility in defining active code detection patterns,
per-directory configuration, update mode, and full embedding
when compared to the other systems. Under full embedding
we refer to capability that all functionality and customizability,
such as adaptation of patters, can be achieved with code inside
the snippets embedded in a text file.

C. PTEP in the Update Mode
We can have different ways in which embedded code is

executed and how its output is used. For example, even the
concept of Literate Programming [23] introduced by Knuth
in 1984 [24] can be considered to be text-embedded pro-
gramming, although the code is only executed after it is
automatically gathered into the source files, and then compiled.

All the systems discussed in this section so far support the
execution model that we call the replace mode of execution.
In the replace mode, the code snippets are replaced with the

5

output of those snippets, and the file produced in this way is
either sent over internet to a browser to be viewed, or saved
into a target file. The Starfish system was designed to support
a new mode of operation, called the update mode, in addition
to the replace mode, from its initial release in 2001 [8].
This mode was briefly described in a Perl Journal article in
2005 [10]. The main property of the update mode is that rather
than replacing the code snippets with their output, the output
is appended to snippets. This has several advantages: (1) we
are not required to setup a translation process from source
files to target files, which makes the project management
simpler; (2) it provides an easy inspection of the embedded
code and the output it produces, which is very convenient
in prototyping, for example; and (3) it provides an easy way
for the system to be used as a preprocessor for text files of
arbitrary style. We will describe in more detail the update
mode, but we mention it in the related work section since a
well-known system Jupyter [6], [7], released in 2015, operates
in the update mode. The Jupyter system works on files called
Jupyter Notebooks, which are JSON-type files with a mixture
of plain text and embedded Python code. The execution of the
notebook appends the output of embedded code immediately
to the code. This is used to create documents in which the
code and results of code execution are intermixed. We would
describe this as text-embedded programming with the update
mode, with a minor exception that Jupyter Notebook itself
is not in plan-text format but needs a viewer software to be
presented in that way.

At the end of this related work section, we would like
to mention previous publications more directly related to
Universal PTEP and the Starfish system. The Starfish system
has been developed and released as an open-source system
since 2001 [9], [8]. It was first presented in a publication
in 2005 in The Perl Journal [10], where it was presented as
new emerging Perl module with some basic ideas. The further
development of the system over the years, also in a connection
to other relevant work such as Jupyter, contributed to theoret-
ical development of the concept of Universal PTEP, and this
is the first refereed publication where it appears. A related
pre-print technical report [11] was posted on the arXiv site
in 2020, which is becoming a common practice in Computer
Science, but it is not considered a peer-reviewed publication.
Additionally, the report is more focused on presenting the latest
report on Starfish as prototype for Universal PTEP, rather than
introducing PTEP as a theoretical concept.

After this summary of related work, we can introduce
Starfish by using a case of Java preprocessor functionality.

III. CASE STUDY: JAVA PREPROCESSOR

In this section, we will use the Java style example to
describe details of the Starfish model, and how Starfish can be
directly used in Java preprocessing. As we mentioned before, a
preprocessing example is the C preprocessor, which is a useful
and unique feature of the C programming language. It is a
part of the C compiler package, but it is a simple language in
its own, which does simple text manipulation before feeding
it to the proper C compiler. One use of the preprocessor is
inclusion or exclusion of parts of code depending on values of
some configuration variables. It preprocesses C source code as
a general text, without a detailed use of C syntax or semantics.
It is sometimes criticized for not using deeper semantics of the
language, and it is also praised for the same reason because

it is very clear what it does and it can be used on text other
than C programs. For example, it was used in the Imake
system [14], [13] for preprocessing Makefiles [25], [26].
Java does not have a preprocessor and it would be useful in
some situations.

When developing code in Java, we may need two versions
of the source code: a test version to be used for testing and de-
velopment, and a release version to be the production release.
The test version could carry around a lot of meta information
on data structures, be able to produce verbose debug code,
make additional expensive run-time checks, and similar, while
the release version would be efficient and slim in code size
and running time. This means that at various places in the
source code, we need to write two versions of code snippets: a
test version and a release version, and the appropriate version
would be included everywhere based on the value of some
global variable. This could be simulated using Java constructs,
but the release code would be unnecessarily bloated, and
running-time efficiency of the code would likely be negatively
affected.

As an example, let us consider the following simple Java
code:
/**

A simple Java file.
*/

public class simple {

public static in main(String[] args) {

System.out.println("Test version");
System.out.println("Release version");

return 0;
}

}
where the red line would be included in the test version of

the code, and the blue line would be included in the release
version of the code.

One solution would be to use the C preprocessor. However,
the C preprocessor is a part of the C compiler and it is not
meant and not convenient to use independently. Its function-
ality is tailored to the C language, and it is not as easy to
use for general and more flexible text processing that we
may want to have. We can argue that it is more convenient
to write a new text preprocessor from scratch in a language
like Perl, than to rely on the C preprocessor for this purpose.
A text-friendly high-level language like Perl, is particularly
convenient for rapid development of such solutions, and rather
than having a tailored solution for a particular application,
or even a programming language, we can envision a general-
purpose preprocessing system. The system m4 [27], [28] is
one such system, but it is limited to general-purpose macro
processing, has its own, specific syntax, and it does not support
the update mode of operation.

A. Fully-Embedded Preprocessor
One approach to our preprocessing task is to implement

a program similar to the C preprocessor, which would read
our Java source files and produce other files to be used for
compilation. To distinguish these two files, we would have the

6

original, meta-source file, and produced target source Java file.
An issue with this approach is that we must now manage two
files for each Java source file, and the second issue is that this
preprocessor would be one-off program with its own syntax,
and a more general solution would be applicable to a wider
set of situations. We could emulate the functionality of the
C preprocessor, but designing a new universal preprocessor
would allow us to think bigger and aim at a more open-ended
general functionality. Both of the issues are addressed with a
fully-embedded preprocessor, which combines preprocessing
instructions and the preprocessing result in the same file, and
allows for a general Perl preprocessing code.

The Starfish system provides this functionality. Our example
Java file could be written in the following way using the
Starfish conventions:
/**

A simple Java file.
*/
// Uncomment version:
//<? $Version = ’Test’; !>
//<? # $Version = ’Release’; !>

public class simple {

public static int main(String[] args) {

//<? $s=’System.out.println’;
// $O = " ".($Version eq ’Test’
// ? $s.("Test version");’
// : $s.("Release version");’);
//!>

return 0;
}

}
Starfish code is embedded Perl code found between delimiters
<? and !>, and it is commented out using the Java line
comment notation //. The blue and red lines are used to
choose version of the software that we want to produce. The
red line contains code commented out in Perl, so that chosen
version is the “Test” version. The green snippet code shows
how we can select the appropriate line of Java and produce it.
The Perl variable $O is used as a special variable to specify
the generated code. Starfish has also a command echo that
effectively appends to this variable.

If the name of the Java source file is simple.java then
we can process it in Starfish by running the command ($ is a
shell prompt):

$ starfish simple.java

As the result of preprocessing, we do not create a new file,
but the source file is updated. This is what we call the update
mode, which is the default mode of Starfish operation. The rea-
son why we call Starfish a fully-embedded preprocessor is that
all necessary preprocessing code, including even customization
of delimiters and snippet evaluations, can be done within the
snippets themselves. After running the above command, the
contents of the file simple.java is now:
/**

A simple Java file.
*/
// Uncomment version:

//<? $Version = ’Test’; !>
//<? # $Version = ’Release’; !>

public class simple {

public static int main(String[] args) {

//<? $s=’System.out.println’;
// $O = " ".($Version eq ’Test’
// ? $s.("Test version");’
// : $s.("Release version");’);
//!>//+
System.out.println("Test version");//-

return 0;
}

}
We can see that the desired line of code has been generated
and inserted in the file (magenta-colored part). The generated
part is delimited with strings //+ and //-, so if we run the
starfish again on the file, the file will not be changed
because the generated part would be replaced with the same
generated string. If by coincidence our output code contains
the string //-, Starfish will insert a number in the delimiters;
e.g., //3+ and //3-, so that the ending delimiter does note
conflict with accidental match in the generated code.

If we comment out the ‘Test’ line and uncomment the
‘Release’ line in the new simple.java file as follows:
/**

A simple Java file.
*/
// Uncomment version:
//<? # $Version = ’Test’; !>
//<? $Version = ’Release’; !>

public class simple {

public static int main(String[] args) {

//<? $s=’System.out.println’;
// $O = " ".($Version eq ’Test’
// ? $s.("Test version");’
// : $s.("Release version");’);
//!>//+
System.out.println("Test version");//-

return 0;
}

}
and run:

$ starfish simple.java

again, the file simple.java file will look as follows:
/**

A simple Java file.
*/
// Uncomment version:
//<? # $Version = ’Test’; !>
//<? $Version = ’Release’; !>

public class simple {

7

public static int main(String[] args) {

//<? $s=’System.out.println’;
// $O = " ".($Version eq ’Test’
// ? $s.("Test version");’
// : $s.("Release version");’);
//!>//+
System.out.println("Release version");

//-

return 0;
}

}
Since we can include arbitrary Perl code in the snippets, in-

cluding imports of external libraries and code, this framework
provides a very general way of code preprocessing. Starfish
includes a few more features to support wider management of
code base within a directory, which we will discuss in the next
subsection.

B. Preprocessing Multiple Files
If we want to preprocess a number of Java files in a project,

it would be tedious and error-prone to modify each of them to
set them to the appropriate Test or Release version. There are
several ways how this problem could be solved and we will
describe three of them:
(1) using Perl require command,
(2) using Make and Starfish -e option, and
(3) using the Starfish starfish.conf configuration file.

(1) Using Perl require command: We can have one
$Version parameter controlling many files by simply having
a Perl file called configuration.pl with the following
content:

#!/usr/bin/perl
$Version = ’Test’; # Test or Release
1;

and one of the first lines in each Java source file would be:
//<? require ’configuration.pl’ !>

In this way, we would have one point of control for the Test
or Release version of all files.

(2) Using Make and the Starfish -e option: Starfish has the
option -e for an initial Perl code execution, somewhat similar
to Perl, and we can use it to set the Version variable. For
example, if we use a Makefile to compile all Java files in a
project, we could add a preprocessing command for each of
them in the following way in the Makefile:

VERSION=Test
#VERSION=Release

simple.class: simple.java
starfish -e=’$$Version="$VERSION"’ $<
javac $<

We would again have one point of version control, this time
in the Makefile.

(3) Using the Starfish starfish.conf configuration file:
The idea of using a Perl configuration file, as shown in (1),
is so common in many situations that we use a standard
name for the configuration file called starfish.conf to

include this information. Similarly to (1), the contents of the
file starfish.conf would be:

#!/usr/bin/perl
$Version = ’Test’; # Test or Release
1;

and one of the first lines in each Java source file would be:
//<? read_starfish_conf !>

This is the common way to represent per-directory configu-
ration in Starfish. One important difference between this ap-
proach and the earlier approach with the standard Perl config-
uration file (1) is that read_starfish_conf behaves in a
special way. Namely, the command read_starfish_conf
will look for a file named starfish.conf in the current
directory; if found, it will then look for the same named file
in the parent directory. Again, if it is found, it will look
into the parent of the parent directory and so on until it
cannot find a file with that name, or until it reaches the top
directory in the file system. After that, it will execute, or more
precisely require in the Perl terminology, all found files
starfish.conf from top to bottom. Each file is executed
in its own directory as the current directory. This provides for
a hierarchical per-directory configuration, with natural process
of parameter inheritance and override option in sub-directories.
A similar process is used sometimes in the system of Makefiles
in a project with multiple directories [29], and in the Imake
system for Makefile generation.[13], [14]

C. Replace Mode

Finally, if we want to produce a version of Java code without
preprocessing code, we can use the Starfish replace mode.
In this mode, the preprocessing code is removed as well as
markup around the generated code. We must specify an output
file in the replace mode because we normally do not want to
permanently loose the preprocessing code. For example, if we
run the following command:

$ starfish -replace
-o=release/simple.java simple.java

on the above file in which $Version variable is
set to the value "Release", the resulting file named
release/simple.java would contain the following con-
tents:

/**
A simple Java file.

*/
// Uncomment version:

public class simple {

public static int main(String[] args) {

System.out.println("Release version");

return 0;
}

}

With this, we conclude this Java preprocessor case study of
general PTEP as implemented in the Starfish system.

8

IV. CONCLUSION

We present a proposal for a general view of Preprocessing
and Text-Embedded Programming (PTEP) in different con-
texts. We give a background and a review of related work
showing that PTEP is widely used in different contexts. Its
use is fragmented and the implementations use different and
context-specific syntax in most cases. If we want to apply
PTEP to a new context, we would always need to implement
a preprocessor from scratch. We propose a universal approach
to PTEP, with a number of novel features, and an open-source
implementation of this approach named Starfish [9], [8], [10].

We propose the Universal PTEP founded on the six prin-
ciples, named as follows: General PTEP, Update and Replace
Modes, Flexible PTEP, Configurable PTEP, Transparent PTEP,
and Embedded Programming Language. The Starfish system
implements these principles and uses Perl as the embedded
programming language.

We discuss a case study of a Java preprocessor functionality
achieved with Starfish, which serves as an illustrative example.
In a grand view of things, universal PTEP is a step towards
finding commonality in some universal preprocessing and text-
embedding task, and defining them in a unified way in different
contexts of textual computer instruction, such as computer
programming, typesetting, configuration, and others.

We would propose the following future work: Development
and presentation of universal PTEP use in the Web context,
in both static and dynamic HTML and CSS page generation.
A Jupyter-style HTML pages with embedded code would
achieve effectiveness of Jupyter but also be very portable
and transparent due to direct generation of HTML and code
embedding in such files.

REFERENCES

[1] GCC.GNU.org, “The C preprocessor,” 2020 (accessed Jun 23, 2020),
GNU GCC Documentation, https://gcc.gnu.org/onlinedocs/cpp/.

[2] D. E. Knuth, The TEXbook. Reading, MA, USA: Addison-Wesley,
1986.

[3] PHP.net, “PHP: Hypertext Preprocessor,” 2020 (accessed Jun 19, 2020),
http://www.php.net.

[4] Wikipedia.org, “Active server pages,” 2000 (accessed Jun 23, 2020),
https://en.wikipedia.org/wiki/Active Server Pages.

[5] ——, “JavaServer pages,” 1999 (accessed Jun 23, 2020), https://en.
wikipedia.org/wiki/JavaServer Pages.

[6] Jupyter.org, “Project Jupyter,” 2015–20 (accessed Jun 22, 2020), https:
//jupyter.org.

[7] Wikipedia.org, “Project Jupyter,” 2015–20 (accessed Jul 1, 2020), https:
//en.wikipedia.org/wiki/Project Jupyter.

[8] V. Kešelj, “Perl module Text::Starfish and starfish: A Perl-based system
for preprocessing adn text-embedded programming,” 2001–20 (accessed
Jul 1, 2020), https://metacpan.org/pod/Text::Starfish.

[9] ——, “Perl module Text::Starfish and starfish: A Perl-based system for
preprocessing and text-embedded programming,” 2001–20 (accessed Jul
1, 2020), http://vlado.ca/starfish.

[10] ——, “Starfish: A Perl-based framework for text-embedded program-
ming and preprocessing,” The Perl Journal, June 2005.

[11] ——, “A prototype for universal preprocessing and text-embedded
programming,” arXiv preprint arXiv:2007.02366, 2020, https://arxiv.
org/abs/2007.02366.

[12] Wikipedia.org, “C preprocessor,” 2020 (accessed Jun 23, 2020), https:
//en.wikipedia.org/wiki/C preprocessor.

[13] P. DuBois, Software Portability with imake, 2nd ed. O’Reilly Media,
September 1996, https://archive.org/details/softwareportabil00dubo.

[14] Wikipedia.org, “imake,” 2020 (accessed Jun 23, 2020), https://en.
wikipedia.org/wiki/Imake.

[15] D. Miller, “Filepp: The generic file preprocessor,” 2000–2007 (accessed
Jun 30, 2020), https://www-users.york.ac.uk/∼dm26/filepp/.

[16] H. Iwesaki, “Developing a Lisp-based preprocessor for TEX docu-
ments,” Software: Practice and Experience, vol. 32, no. 14, pp. 1345–
1363, 2002.

[17] R. S. Engelshall, “OSSP eperl: Embedded Perl language,” 1996–8
(accessed Jun 23, 2020), http://www.ossp.org/pkg/tool/eperl/.

[18] D. L. Madison, “ePerl (rewrite in Perl),” 2001–8 (accessed Jun 23,
2020), http://marginalhacks.com/Hacks/ePerl/.

[19] M. J. Dominus and et al., “Perl module Text::Template,” 1999–2019
(accessed Jun 23, 2020), https://metacpan.org/pod/Text::Template.

[20] D. Rolsky, J. Swartz, K. Williams, and et al., “Perl module
HTML::Mason,” 1998–2020 (accessed Jun 23, 2020), https://metacpan.
org/pod/HTML::Mason.

[21] S. McKay, “Perl module Text::Oyster: Evaluate Perl code embedded in
text,” 2000–3 (accessed Jun 23, 2020), https://metacpan.org/pod/Text::
Oyster.

[22] J. Wiedmann, “Perl module HTML::EP,” 1998–2001 (accessed Jun 23,
2020), https://metacpan.org/pod/HTML::EP.

[23] Wikipedia.org, “Literate programming,” 1984 (accessed Jul 1, 2020),
https://en.wikipedia.org/wiki/Literate programming.

[24] D. E. Knuth, “Literate programming,” The Computer Journal, vol. 27,
no. 2, pp. 97–111, 1984.

[25] GNU.org, “GNU make,” 2020 (accessed Jul 2, 2020), https://www.gnu.
org/software/make/manual/make.html.

[26] Wikipedia.org, “Make (software),” 1976–20 (accessed Jul 2, 2020),
https://en.wikipedia.org/wiki/Make (software).

[27] GNU.org, “GNU M4,” 2000–2020 (accessed Jul 2, 2020), https://www.
gnu.org/software/m4.

[28] Wikipedia.org, “m4 (computer language),” 1977–2020 (accessed Jul 2,
2020), https://en.wikipedia.org/wiki/M3 (computer language).

[29] GNU.org, “GNU make: 5.7 recursive use of make,” 2020 (accessed
Jun 23, 2020), https://www.gnu.org/software/make/manual/make.html#
Recursion.

https://gcc.gnu.org/onlinedocs/cpp/
http://www.php.net
https://en.wikipedia.org/wiki/Active_Server_Pages
https://en.wikipedia.org/wiki/JavaServer_Pages
https://en.wikipedia.org/wiki/JavaServer_Pages
https://jupyter.org
https://jupyter.org
https://en.wikipedia.org/wiki/Project_Jupyter
https://en.wikipedia.org/wiki/Project_Jupyter
https://metacpan.org/pod/Text::Starfish
http://vlado.ca/starfish
https://arxiv.org/abs/2007.02366
https://arxiv.org/abs/2007.02366
https://en.wikipedia.org/wiki/C_preprocessor
https://en.wikipedia.org/wiki/C_preprocessor
https://archive.org/details/softwareportabil00dubo
https://en.wikipedia.org/wiki/Imake
https://en.wikipedia.org/wiki/Imake
https://www-users.york.ac.uk/~dm26/filepp/
http://www.ossp.org/pkg/tool/eperl/
http://marginalhacks.com/Hacks/ePerl/
https://metacpan.org/pod/Text::Template
https://metacpan.org/pod/HTML::Mason
https://metacpan.org/pod/HTML::Mason
https://metacpan.org/pod/Text::Oyster
https://metacpan.org/pod/Text::Oyster
https://metacpan.org/pod/HTML::EP
https://en.wikipedia.org/wiki/Literate_programming
https://www.gnu.org/software/make/manual/make.html
https://www.gnu.org/software/make/manual/make.html
https://en.wikipedia.org/wiki/Make_(software)
https://www.gnu.org/software/m4
https://www.gnu.org/software/m4
https://en.wikipedia.org/wiki/M3_(computer_language)
https://www.gnu.org/software/make/manual/make.html#Recursion
https://www.gnu.org/software/make/manual/make.html#Recursion

	Introduction
	Research Goals of Universal PTEP

	Background and Related Work
	Text-Embedded Programming
	Perl-based Embedded Programming
	PTEP in the Update Mode

	Case Study: Java Preprocessor
	Fully-Embedded Preprocessor
	Preprocessing Multiple Files
	Replace Mode

	Conclusion
	References

