

Table 3-1.	Estimated success o	f brute force attacks (for different numbers	of bits in the key and
number of	keys that can be trie	d per second)	a share want managements
Length of key	Keys searched per second	Postulated key searching technologya	Approximate time to search all possible keys
40 bits ^b	10	10-year-old desktop computer	3,484 years
40 bits	1,000	Typical desktop computer today	35 years
40 bits	1 million	Small network of desktops	13 days
40 bits	1 billion	Medium-sized corporate network	18 minutes
56 bits	1 million	Desktop computer a few years from now	2,283 years
56 bits	1 billion	Medium-sized corporate network	2.3 years
56 bits ^c	100 billion	DES-cracking machine	8 days
64 bits	1 billion	Medium-sized corporate network	585 years
80 bits	1 million	Small network of desktops	38 billion years
80 bits	1 billion	Medium-sized corporate network	38 million years
128 bits	1 billion	Medium-sized corporate network	10 ²² years
128 bits	1 billion billion (1×10^{18})	Large-scale Internet project in the year 2005	10,783 billion years
128 bits	1×10 ²³	Special-purpose quantum computer, year 2015?	108 million years
192 bits	1 billion	Medium-sized corporate network	2 × 10 ⁴¹ years
192 bits	1 billion billion	Large-scale Internet project in the year 2005	2×10^{32} years
192 bits	1×10 ²³	Special-purpose quantum computer, year 2015?	2×10^{27} years
256 bits	1×10 ²³	Special-purpose quantum computer, year 2015?	3.7×10^{46} years

	Table 3-2. Co	mmon symmetric encryption algorithms			
	Algorithm	Description	Key Length	Rating	
a bit old	Blowfish	Block cipher developed by Schneier	1-448 bits	Λ	
	DES	Data Encryption Standard adopted as a U.S. government standard in 1977	56 bits	ş	
	IDEA	Block cipher developed by Massey and Xuejia	128 bits	Λ	
	MARS	AES finalist developed by IBM	128-256 bits	ø	
	RC2	Block cipher developed by Rivest	1-2048 bits	Ω	
	RC4	Stream cipher developed by Rivest	1-2048 bits	Λ	
	RC5	Block cipher developed by Ronald Rivest and published in 1994	128-256 bits	ø	
	RC6	AES finalist developed by RSA Labs	128-256 bits	Ø	
	Rijndael	NIST selection for AES, developed by Daemen and Rijmen	128-256 bits	Ω	
	Serpent	AES finalist developed by Anderson, Biham, and Knudsen	128-256 bits	Ø	
	Triple-DES	A three-fold application of the DES algorithm	168 bits	Λ	
	Twofish	AES candidate developed by Schneier	128-256 bits	Ø	
	 Key to ratings: G.) Excellent algorithm. This algorithm is widely used and is believed to be secure, provided that keys of sufficient length are used. A) Algorithm appears strong but is being phased out for other algorithms that are faster or thought to be more secure. Ø) Algorithm appears to be strong but will not be widely deployed because it was not chosen as the AES standard. §) Use of this algorithm is no longer recommended because of short key length or mathematical weaknesses. Data encrypted with this algorithm should be reasonably secure from casual browsing, but would not withstand a determined attack by a moderately-funded attacker. 				

	Alice	Bob	
Secret part generation	Choose a secret number A=3	Choose a secret number B=6	
One-way function	Use one-way function a=7 ^A (mod 11)=2	Use one-way function b=7 ^B (mod 11)=4	
Swap	b=4	a=2	
Key generation	Another one-way function k=b ^A (mod 11)=9	Another one-way functio k=a ^B (mod 11)=9	

