Databases Management Systems
(DBMYS)

Outline

System outline (DBMS)

Database design overview
Entity-Relationship (ER) diagrams
Relational data model

Structured Query Language (SQL)
Normalization

... and a few other issues

What is a DBMS ?

E Database
— alarge, integrated collection of data
— Models a real-world enterprise
B Entities (e.g. students, courses, instructors)
B Attributes (e.g. student: ID, age, etc)
B Relationships (e.g. Trappenberg is teaching ECMM 6010)

® Database Management System (DBMS)

— a software application to assist in the creation, maintenance, and
access of databases

DBMS

DBMS Features

F Integrated data store
— Reduces data redundancy and inconsistency

® Query language
— Reduces application development time

® Data access methods and query optimization
— Ensures fast query answering for large data

E Data independence

— application programs are not impacted by changes in the way
the data is structured and stored

® Uniform data administration
— Provides easy data integrity and security
® Concurrent control and crash recovery

Example — A Banking System

® Data = info on accounts, customers, balances, current
interest rates, transaction histories, etc.

¥ Features:
— Massive : many terabytes at least for large banks

— Shared: reduce redundancy and ensure data consistency and
control of access

— Persistent: data outlives programs that operate on them

— Safe - from system failures (leveraged through software and
hardware)

— Multi -user: many people / programs accessing same database
simultaneously

— Convenient: simple commands, data independences facilitates
application development

— Efficient: don’t search all files

Describing and Storing Data

E Relationship between real-world enterprise and data

B Data Model

— a mechanism for describing data that hides the low-level storage
details

— Relational, network, hierarchical, object-oriented, etc.
* Relational data model

— most widely used

— a collection of relations (set of records) and operations on
relations

Levels of abstraction

® External level
— many views e)l‘:fg‘la'
— describes how the users
see the data
. conceptual
E Conceptual (logical) level level
— defines what is in the
database internal
level
® Internal level eve
— describes how the data is
actually stored stored
data
¥ Stored data

Example: University Database

B External schema:

— View - Courseinfo (cid:string, enrollment:integer)
® Conceptual schema:

— Students (sid:string, name:string, age:integer, gpa:real,
major:string)
— Courses (cid:string, cname:string, credits:integer)
— Coursereg (sid:string, cid:string, grade:string)
® Physical schema:

— relations stored as unordered files, indexed on first column of
students, etc.

Data Independence

® Applications are protected from how data is structured
and stored

® Logical data independence
— protection from changes in logical level of data

— provided by the external and conceptual levels. If the conceptual
schema changes, the views can be reconfigured to retrieve the
data using the new conceptual schema

® physical data independence

— the code remains the same is the underlying data structure is
changes

10

Database Design (1)

1. Requirements analysis

— understand what data is to be stored in the database, what
applications must be built on top of it, and what operations will
be most frequent

— i.e. find out what the users want!

2. Conceptual database design

— use the info gathered in step 1 to develop a high-level
description of the data to be stored, along with the constraints
that are known

— entity-relationship model often used for this step

3. Logical database design

— choose a DBMS to implement the database design and
convert the conceptual database design into a conceptual

schema (which can be implemented, for example, with SQL)
11

Database Design (2)

4. Schema refinement

— analyze the relations to identify potential problems and refine
the design (normalization)

5. Physical database design

— consider typical expected workloads and refine the database
design to meet performance criteria

— i.e. building indexes or potentially redesign

6. Security design

— identify different user groups and roles and identify access
restrictions

12

2.

o0 AW

Database Design Step 2

Requirements analysis

Conceptual database design

use the info gathered in step 1 to develop a high-level
description of the data to be stored, along with the constraints
that are known

entity-relationship model often used for this step

Logical database design
Schema refinement
Physical database design
Security design

13

Entity-Relationship (ER) Model

Conceptual Database Design

Standard technique for describing data in terms of
objects and their relationships

Entity

— an object in the real world that is distinguishable from other
objects (i.e. student, instructor, course, textbook)

— an entity is described used a set of attributes (i.e. Sid, Name,
Sex, dob)

Entity set

— a collection of similar entities (i.e. students, instructors)

— all entities in an entity set have the same attributes (for now,
we will expand on this later)

— each entity has a key (a minimal set of attributes that
uniquely identifies an entity) & a domain (a set of possible

values for the attributes) iy

ER Diagrams

dil» Awibute

Relationship

1234 Thomas M 01/01/85
2345 Quinn F 05/05/68
5532 Smith M 10/10/75

10

Type of Attributes

® Simple (atomic) vs. composite
— (e.g. house number vs. address)

® Single-valued vs. multi-valued
— (e.g. age versus university degrees)

® Stored vs. derived
— (e.g. birth date versus age)

16

Relationships

E Relationship
— an association among two or more entities (i.e.
Thomas is registered in ECMM6010)
¥ Relationship set

— a collection of similar relationships
(i.e. Reg_In) 1234 | ECMM6010

— can also have descriptive attributes 2345 CSCl4161
(but the relationship must be uniquely identified | ss32 ECMM6000
by the participating entities)

17

Ternary Relationships

B Sometimes there is a three-way relationship (i.e. student / course /
semester)

B The above diagram is ONLY appropriate if any student only takes a
course once (i.e. only one term associated with that student/course

pair)

18

Ternary Relationships

B If a student can take a course several times, you need to represent
a third entity “Semester” in order to represent this relationship

19

Key attribute (key/uniqueness constraint)

® Key attribute(s):
— Attribute(s) that uniquely defines individual entity
® Key constrain:

— there can be only one instance of an item in a relationship
(i.e. each department can only have one manager)

— represented in an ER diagram by adding an arrowhead to
the line between the entity and the relationship

| eose g oepamen |

20

10

Relationship Constraints

Cardinality ratio (N:M)

one-to-one
1 1
one-to-many
many-to-one
N 1

many-to-many

Participation Constraints: partial
total

Cardinality ratio (N:M)

one-to-one one-to-many many-to-one many-to-many

11

Example — Employees & Departments

23

ISA (‘is &’) Hierarchies

® Attributes can be inherited

® If we declare A ISA B, then every A entity is also
considered to be a B entity

24

12

ISA Hierarchy Constraints

E Qverlap constraints

— are two subclasses allowed to contain the same entity? (i.e.
can Joe be an hourly and a salary employee?)

— If yes we write “Hourly_ Emp OVERLAPS Salary_ Emp”
® Covering constraints

— do the entities from the subclasses comprise all entities from
the superclass? (i.e. does every employee have to be an
hourly or a salary employss?)

— If yes we write “Hourly_Emp AND Salary Emp COVER
Employees”

25

Aggregation

¥ enables a relationship to be treated as an entity set for the purpose
of participating in other relationships

E represented by a dashed box around the relationship

26

13

Design choice: entity vs. attribute

B Should a property be modeled as an attribute or an
entity? (i.e. address)

E Depends on what we want to do with the information

® Should be an entity if:

— we want to record more than one (i.e. more than one address for
each employee)

— we want to capture the structure of the attribute (i.e. want to
record address in terms of street, city, province, country, postal
code. This was we can query on this info)

27

Design choices: entity vs. attribute

28

14

Summary of conceptual design

conceptual design follows requirements analysis
— gives a high-level description of data to be stored

ER model frequently used

Basic components: entities, relationships, and attributes
(or entities and relationships)

Additional components: ISA hierarchies

Can express constraints (i.e. key constraints,
participation constraints, overlap/covering constraints)

ER design is subjective. There are often many ways to
model a scenario!

29

N e

w

o u

Database Design Step 3

Requirements analysis
Conceptual database design

Logical database design

— choose a DBMS to implement the database design and
convert the conceptual database design into a conceptual
schema (which can be implemented, for example, with SQL)

Schema refinement
Physical database design
Security design

30

15

Logical database design

® convert the conceptual database design into a
conceptual schema

P ER Model — Relational Model

F Relational data model
— based on sets
— tabular representation of data

— arelation consists of a instance (table) with a schema (column
headings)

Reminder: a schema is a description of data in terms of a data model

31

Relation schema

® specifies the relation’s name, the name of each field (or
column, or attribute), and the domain of each field

® domain has a domain name and a set of associated
values

Students (Sid: integer, Sname: string, gpa: real)
Course (Cid: integer, Cname: string, Ctitle: string)

Takes (Sid: integer, Cid: integer)

32

16

Relation instance
E set of records (also called tuples)

E each record has the same number of fields as the
relation schema

E basically a table where each row represents a record
FIELDS (ATTRIBUTES, COLUMNS)

i

RECORDS 1234 Thomas 0.07
(TUPLES, ROWS) 2345 Quinn 4.03
6672 Jones 3.10

5532 Smith 2.17

An instance of the Students relation
« all rows in a table must be distinct
« cardinality is the number of records (tuples); above: cardinality = 4
« degree is the number of fields (columns); above: degree = 3

33

Table Design Phase

® Rules of thumb
— one table per entity

B each attribute of an entity becomes an attribute of the
table

— one table per relationship

B each attribute of a relationship becomes an attribute of
the table

B the primary keys for the participating entity sets become
part of the table (if no key constraints)

34

17

Example — Employees & Departments

ER Diagram

Tables

Employees

1234 Thomas M 01/01/85
2345 Quinn M 05/05/68
works_In
6672 Jones M 11/11/72
manages d
5532 Smith F 06/18/43 = -
Departments
P 1234 |23 2345 |33 | 1982
2345 |38 6672 |23 | 2000
23 Dept A 500000
5532 |18 | 2002
18 Dept B 200000
33 Dept C 750000 .

Relational Rules

® There is no meaning to the order of tuples in a relation

® There is no meaning in the order of attributes in a
relation

® Each tuple is unique in a relation

B Each attribute value is atomic
(i.e. cannot be split up)

B Each tuple is an assertion (i.e. a true statement)

36

18

Integrity Constraints

Data entered into a database must be correct and a
DBMS should help prevent incorrect information

An integrity constraint is a condition that is specified on a
database schema that restricts what data can be stored
Types of integrity constraints include:

— keys

— foreign key constraints

— domain constraints

— participation constraints

37

Keys

A set of fields is a key for a relation if:

— uniqueness: no two distinct tuples can have the same values in
all key fields (key can be a combination of attributes)

— minimality: not true for any subset of the key

If minimality is false it is considered to be a superkey
— set of all attributes is a superkey
— Key = minimal superkey

There may be several possible keys (candidate keys)

The primary key is the key chosen to be supported in the
database

A primary key CANNOT be null

38

19

Primary Key

® Primary key

— attribute(s) that uniquely identify records (tuples)

— can be comprised of one or more attributes

Students (Sid: integer, Sname: string, gpa: real)
Course (Cid: integer, Cname: string, Ctitle: string)

Takes (Sid: integer, Cid: integer)

39
Employees Departments
1234 Thomas M 01/01/85
23 Dept A 500000
2345 Quinn M 05/05/68
18 Dept B 200000
6672 Jones M 11/11/72
5532 | Smith F 06/18/43 33 Dept C 750000
Works_In
Manages 1234 |23 1970
2345 |33 1982
6672 | 23 2000
2345 |33
5532 | 18 2002
40

20

Foreign Key

B Attribute(s) that link to a primary key in another relation

— For example: in the relation Reg_in (sid: int, cid: int, grade: int),
sid would be a foreign key (from the Students relation) and cid
would be a foreign key (from the courses relation)

E Referential integrity

— If a foreign key refers to a primary key in another relation, then
that key must exist in the other relation

41

Foreign Key

Employees Departments
1234 Thomas M 01/01/85
23 Dept A 500000
2345 Quinn M 05/05/68
18 Dept B 200000
6672 Jones M 11/11/72
5532 | Smith F 06/18/43 33 Dept C 750000
Works_In
Foreign key for Foreign key
Employees for Depts
Manages 1234 |23 | 1970
Foreign key Foreign key
for Employees for Depts 2345 33 1982
1234 |23
6672 |23 2000
2345 |33
5532 18 2002

42

21

Translating Key Constraints (1)

| emose | emges | Depamen |

F Option #1

— create a table for the relation, and the primary key for that
table will be the primary key from Department (did)

Manages

43

Translating Key Constraints (2)

B Option #2
— include information about the relationship in the table
corresponding to the Department entity

— Advantage: don’t need to create an extra table or join tables
for queries

— Disadvantage: can be a waste of space if several
departments don’t have managers

Departments

23 Dept A 500000 1234

18 Dept B 200000

33 Dept C 750000 2345

44

Translating Participation Constraints

B
B If the participation constraint is associated with a key constraint we

can specify “NOT NULL” to constrain total participation IF design
option #2 is used

E This is not the case if option #1 was used to handle the key
constraint

B For other participation constraints, table constraints or assertions
must be used

Departments
23 Dept A 500000 1234
18 Dept B 200000 6672
33 Dept C 750000 2345

45

Translating ISA Class Hierarchies (1)

E Option #1

— create a table for each entity set (employees, hourly_emp, and
salary_emp)

— the subclasses (hourly_emp and salary_emp) contain the key
attribute from the superclass (employees)

— good if we run a lot of queries on employees in general

— requires joining two tables though if we want to compare just hourly
employees

46

23

ISA Class Hierarchy Example

Option #1 Employees
I e
1234 Thomas M 01/01/85
2345 Quinn M 05/05/68
6672 Jones M 11/11/72
5632 Smith F 06/18/43
Hourly_Emp
FIOCIEL 2 FleEl
siefel wlRel:
1234 7.00 27 1234 55
2345 6.50 34 2345 73
6672 12.00 37 6672 120
5532 11.00 55 5532 | 26

47

Translating ISA Class Hierarchies (2)

® Option #2

— create two tables, one for each subclass (hourly_emp and
salary_emp) and include all of the attributes from the employee
class in each table (employees, hourly_emp, and salary_emp)

— must join tables to compare employees in general but is faster to
do comparisons within each category

— doesn't work if we do not have a covering constraint (i.e. have
employees that are not either an hourly employee or a salary
employee)

— also, redundancy if we have an overlap constraint (i.e. an
employee is both an hourly and a salary employee)

48

ISA Class Hierarchy Example

Option #2 Hourly_Emp

EAUElEEN

Zieje

01/01/85 7.00 27

1234 Thomas M

2345 Quinn M 05/05/68 6.50 34
6672 Jones M 11/11/72 12.00 37
5532 Smith F 06/18/43 11.00 55

Salary_Emp

B0l

1)

1234 Thomas 01/01/85 55

2345 Quinn 05/05/68 73

=l 4l <4

6672 Jones 11/11/72 120

5532 Smith

-

06/18/43 26

49

Other constraints

Domain constraints
— May specify a range of values for a field
Table constraints

— Constraints associated with a single table and are checked
whenever that table is modified

Assertions

— Involve several tables and are checked whenever any of these
tables are modified

Overlap & covering constraints are handled using
assertions

50

25

SQL (structured query language)

B The most widely used relational query language for
creating, manipulating and querying relational databases

51

Creating Tables with SQL

CREATE TABLE Students (sid : INTEGER, name: CHAR(20), age:
INTEGER, gpa: REAL)

CREATE TABLE Enrolled (sid : INTEGER, cid: INTEGER, grade:
CHAR(2))

Students Enrolled

52

26

Adding Keys with SQL

CREATE TABLE Students (sid : INTEGER, name: CHAR(20), age:
INTEGER, gpa: REAL, PRIMARY KEY (sid))

CREATE TABLE Enrolled (sid : INTEGER, cid: INTEGER, grade:
CHAR(2), PRIMARY KEY (sid , cid), FOREIGN KEY (sid)
REFERENCES Students, FOREIGN KEY (cid) REFERENCES

courses)

Students Enrolled

53

Inserting & Updating Data

INSERT INTO Students (sid , name, age, gpa) VALUES
(1234, ‘Thomas’, 18, 4.1)

UPDATE Students SET Name = Johnson WHERE sid =5532

1234 Thomas 18 4.1
2345 Quinn 32 3.6
5532 Johnson 99 3.9

¥ Often DBMS provide a GUI to facilitate data
entry/deletion/modification or provides facilities for the designer
to create a form for data entry/deletion/modification

54

27

Querying with SQL (data retrieval)

® SELECT: Choose one or more rows
SELECT * FROM students WHERE name = “Thomas”

¥ PROJECT: Choose one or more columns:
SELECT sid , name FROM students

¥ JOIN: combine two tables to make a new one

SELECT * FROM students, enrolled WHERE students.sid =
enrolled.sid

55

SELECT Example 1

¥ Choose rows from a table

Employees

1234 Thomas

n

01/01/85

2345 Quinn 05/05/68

E <

6672 Jones 11/11/72

5532 Smith

-

06/18/43

SELECT * FROM Employees WHERE Sex = “M”

RESULT

2345 Quinn M 05/05/68

6672 Jones M 11/11/72

56

SELECT Example 2

B Choose rows (and specific fields) from a table

Employees | 1234 Thomas F 01/01/69
2345 Quinn M 05/05/68
6672 Jones M 11/11/72
5532 Smith F 06/18/43
SELECT SIN, Name FROM Employees WHERE Sex = “M"
RESULT
2345 Quinn
6672 Jones
57

PROJECT Example 1

B Choose one or more columns from a table

1]

Employees

I

1234 Thomas M 01/01/85
SELECT Name, DOB FROM Employees 2345 | Quinn M 05/05/68
6672 Jones M 11/11/72
5532 Smith F 06/18/43
RESULT
N
Thomas 01/01/85
Quinn 05/05/68
Jones 11/11/72
Smith 06/18/43
58

29

PROJECT Example 2

B Choose one or more columns (but only for records that satisfy a

constraint) from a table

Employees

SELECT Name FROM Employees WHERE SIN > 3000

RESULT

Il

1234 Thomas F 01/01/85
2345 Quinn M 05/05/68
6672 Jones M 11/11/72
5532 Smith F 06/18/43
59

JOIN Example

B gather information that is stored in two different tables
Students

6672 Jones 30 0.07

SELECT * FROM Students, Enrolled

WHERE Students.Sid = Enrolled.Sid

RESULT

Enrolled

1234 63 A
5532 32 D
2345 81 B

1234 Thomas 18 4.1 63 A
2345 Quinn 34 3.6 81 B
5532 Smith 99 3.9 32 D

60

30

Database Design Step 4

1. Requirements analysis
Conceptual database design
3. Logical database design

4. Schema refinement

— analyze the relations to identify potential problems and refine the
design (e.g. normalization)

o

Physical database design
Security design

o

61

Schema Refinement

® Need to examine the database design, looking more
closely at the issue of redundant storage of information
— Problems caused by redundant storage
B update anomalies
B insertion anomalies
B deletion anomalies

62

31

Problems with redundancy - example

Suppose that hourly wages are determined by an
employees rating
— this is called a functional dependency

Hourly_Emp

1234

Thomas

01/01/85

e G,

e

10.00

2345

Quinn

05/05/68

6.50

6672

Jones

11/11/72

10.00

5532

Smith

06/18/43

6.50

63

Problems with redundancy - example

Disadvantages:

information stored multiple times (wasted storage space)

update anomaly
¥ the hourly wage for Thomas could be updated without

updating the hourly wage for Jones which would produce an

inconsistency
insertion anomaly

B we cannot insert an employee unless we know the hourly
wage for the employee’s rating value

deletion anomaly

B if we delete all tuples with a given rating value we lose the
association between the rating value and its hourly wage

64

32

Solution — decomposition

Decompose the larger relation into smaller relations

— Hourly_emp2 (SIN, Name, Sex, DOB, rating, hours_worked)

— Wages (rating, hourly_wages)

Can update without creating inconsistencies and more efficient to
update in one place

Can insert an employee without knowing the hourly wage

Can delete all employee of a certain rating without losing the
information related to that rating and hourly wage

65

When do we need to decompose?

Several standards have been identified which eliminate
certain types of problems
— normal forms (i.e. 1st, 2nd, 314, Boyce-Codd)

Knowing the “normal form” of a schema, we can decide
whether or not to decompose further

What are the problems associated with decomposition?

66

33

1st normal form

® if every field contains only single values (i.e. no multi-valued or

composite attributes)

Example (NOT IN 1st normal form):
STUDENT (shum, sname, {phonel, phone2}, address)

Correction (IN 1t normal form):
STUDENT (snum, shname, address)

PHONE (snum, phonel, phone2)

¥ By definition, all relational schemas are in 15t normal form

67

2"d normal form

¥ all attributes are fully dependent on the primary key

Example (NOT IN 2" normal form):
COURSE (cnhum, csec, room, cname)

Correction (IN 2" normal form):
COURSE (cnum, csec, room)
COURSE_NAME (chum, cname)

68

34

2"d normal form

Course
. . 6000 01 333 Overview of E-Commerce
Violation of 2 nd
normal form 6010 01 258 Technology for E-Commerce
6010 54 319 Technology for E-Commerce
6030 01 107 Business for E-Commerce
Course Course_Name
FAOCEES
. 6000 Overview of E-Commerce
Solution
6010 01 258 6010 Technology for E-Commerce
6010 54 319 6030 Business for E-Commerce

6030 01 107

69

34 normal form

® no dependencies other than on the primary key

Example (NOT in 3@ normal form):

COURSE (cnum, csec, prof, prof_office)

Correction (IN 3@ normal form):
COURSE (cnum, csec, prof)
PROF_OFFICES (prof, prof_office)

70

35

34 normal form

Course

Hraiziel Hrofzoffice

. . 6000 01 8703 CSs 117
Violation of 3 ™
normal form 6010 01 7742 €S 333
6010 54 2251 CS 095
6030 01 8703 cs 117
Course Prof_Office
Propiic Preifid Prafioffics
. 6000 01 8703 8703 cs117
Solution
6010 01 7742 7742 CS 333
6010 54 2251 2251 CS 095
6030 01 8703

71
What normal form is this example in?
¥ 1NF: if every field contains only single values
¥ 2NF: all attributes are fully dependent on the primary key
¥ 3NF: no dependencies other than on the primary key
Hourly Emp
S E Fzitlpc)
1234 Thomas M 01/01/85 8 10.00 27
2345 Quinn M 05/05/68 5 6.50 34
6672 Jones M 11/11/72 8 10.00 37
5532 Smith F 06/18/43 5 6.50 55
72

36

1stys 2™ ys 3 Normal Form

E A relation in 2" normal form is also in 1st normal form

B A relation in 3" normal form is also in 2" and 1st normal
form

73

And soon

® There are other forms of normalization but in most cases
3NF is good enough

® \We need to evaluate the ‘normal form’ of a schema and
decide if further decomposition is necessary

74

37

Database Design Step 5

Requirements analysis
Conceptual database design
Logical database design
Schema refinement

pwbdPRE

5. Physical database design

— consider typical expected workloads and refine the database design
to meet performance criteria (e.g. building indexes or schema
refinement)

o

Security design

75

Physical database design

® must address performance goals based on anticipated
workload:
— what queries will be most frequent?
— what updates will be most frequent?
— how fast certain queries or updates must run?

® Must identify

which tables must be accessed

which attributes are gathered

joins

type of updates (e.g. insert, delete, update)

76

38

Mechanisms to improve performance

E index creation
— data storage to speed up retrieval
— rules of thumb
E only build indexes that are needed
E index attributes mentioned in a WHERE clause

7

Mechanisms to improve performance

F denormalization

— we may want to denormalize a schema in order to reduce the
number of joins in frequent queries

Hourly_Emp

FLIEiic) EIOGEL

ziefe

1234 Thomas M 01/01/85 8 10.00 27
2345 Quinn M 05/05/68 5 6.50 34
6672 Jones M 11/11/72 8 10.00 37
5532 Smith F 06/18/43 5 6.50 55

78

39

Database Design Step 6

Requirements analysis
Conceptual database design
Logical database design
Schema refinement
Physical database design

a s> wbdh e

6. Security design

— identify different user groups and roles and identify access restrictions

79

Three Security Objectives

¥ secrecy
— information should not be disclosed to unauthorized users

¥ integrity
— only authorized users should be allowed to modify data

® availability
— authorizing users should not be denied access

80

40

Transaction Processing

E A transaction is defined as a series of reads and writes
of database objects” (Ramakrishnan, pg. 524)

® How a DBMS handles transactions is important for
concurrency control and recovery

81

Concurrency Control Problem

User A Joint Account User B

Read total: $100 $100

Read total: $100

Take out $50

Take out $50

Write total $50

$50 Write total

This wouldn’t be very good for the Bank! 82

ACID Transaction Model

B Four important properties of transactions:

1. Atomic: each transaction is either carried out completely or not at all

2. Consistent: each transaction must preserve consistency of the
database

3. Isolated: transactions are not affected by concurrent transactions

4. Durable: once a transactions has been completed, its effects should
persist, even if the system crashes

83

Transaction Concurrency

¥ Why do we want concurrent transactions?
¥ What are the problems with concurrent transactions?
B What is the simplest way to handle concurrent transactions?

B A schedule is a potential execution sequence for the actions in a set
of transactions

84

42

Recovery

DBMS is responsible for guaranteeing either

— atransaction is completed successfully OR

— atransaction has no effect on the data or any other transaction
But, what about when a system crashes?

A recovery manager ensures:

— atomicity: must undo the actions of transactions that do not
commit

— durability: make sure that all the actions of a committed
transaction survive system crashes

The recovery manager maintains a log of all
modifications to the database

85

References

Raghu Ramakrishnan & Johannes Gehrke, Database Management
Systems, McGraw Hill, 2000.

Elmasri & Navathe, Fundamentals of Database Systems,
Benjamin/Cummings, 2 Ed., 1994

Darrel Ince, Developing Distributed and E-commerce Applications,
Chapter 5, Addison Wesley 2002

86

43

