
CSCI 6906: Fundamentals of
Computational Neuroimaging

Thomas P. Trappenberg
Dalhousie University

1 Programming with Matlab

This chapter is a brief introduction to programming with the Matlab programming en-
vironment. We assumes thereby little programming experience, although programmers
experienced in other programming languages might want to scan through this chapter.
MATLAB is an interactive programming environment for scientific computing. This
environment is very convenient for us for several reasons, including its interpreted exe-
cution mode, which allows fast and interactive program development, advanced graphic
routines, which allow easy and versatile visualization of results, a large collection of
predefined routines and algorithms, which makes it unnecessary to implement known
algorithms from scratch, and the use of matrix notations, which allows a compact and
efficient implementation of mathematical equations and machine learning algorithms.
MATLAB stands for matrix laboratory, which emphasizes the fact that most opera-
tions are array or matrix oriented. Similar programming environments are provided
by the open source systems called Scilab and Octave. The Octave system seems to
emphasize syntactic compatibility with MATLAB, while Scilab is a fully fledged al-
ternative to MATLAB with similar interactive tools. While the syntax and names of
some routines in Scilab are sometimes slightly different, the distribution includes a
converter for MATLAB programs. Also, the Matlab web page provides great videos
to learn how to use Matlab at http://www.mathworks.com/demos/matlab/...
...getting-started-with-matlab-video-tutorial.html.

1.1 The MATLAB programming environment
MATLAB1 is a programming environment and collection of tools to write programs,
execute them, and visualize results. MATLAB has to be installed on your computer to
run the programs mentioned in the manuscript. It is commercially available for many
computer systems, including Windows, Mac, and UNIX systems. The MATLAB web
page includes a set of brief tutorial videos, also accessible from the demos link from
the MATLAB desktop, which are highly recommended for learning MATLAB.

As already mentioned, there are several reasons why MATLAB is easy to use and
appropriate for our programming need. MATLAB is an interpreted language, which
means that commands can be executed directly by an interpreter program. This makes
the time-consuming compilation steps of other programming languages redundant and
allows a more interactive working mode. A disadvantage of this operational mode is
that the programs could be less efficient compared to compiled programs. However,
there are two possible solution to this problem in case efficiency become a concern.
The first is that the implementations of many MATLAB functions is very efficient

1MATLAB and Simulink are registered trademarks, and MATLAB Compiler is a trademark of The
MathWorks, Inc.

Programming with Matlab2 |

and are themselves pre-compiled. MATLAB functions, specifically when used on
whole matrices, can therefore outperform less well-designed compiled code. It is thus
recommended to use matrix notations instead of explicit component-wise operations
whenever possible. A second possible solutions to increase the performance is to use
the MATLAB compiler to either produce compiled MATLAB code in .mex files or to
translate MATLAB programs into compilable language such as C.

A further advantage of MATLAB is that the programming syntax supports matrix
notations. This makes the code very compact and comparable to the mathematical
notations used in the manuscript. MATLAB code is even useful as compact nota-
tion to describe algorithms, and it is hence useful to go through the MATLAB code
in the manuscript even when not running the programs in the MATLAB environ-
ment. Furthermore, MATLAB has very powerful visualization routines, and the new
versions of MATLAB include tools for documentation and publishing of codes and
results. Finally, MATLAB includes implementations of many mathematical and sci-
entific methods on which we can base our programs. For example, MATLAB includes
many functions and algorithms for linear algebra and to solve systems of differential
equations. Specialized collections of functions and algorithms, called a ‘toolbox’ in
MATLAB, can be purchased in addition to the basic MATLAB package or imported
from third parties, including many freely available programs and tools published by
researchers. For example, the MATLAB Neural Network Toolbox incorporates func-
tions for building and analysing standard neural networks. This toolbox covers many
algorithms particularly suitable for connectionist modelling and neural network ap-
plications. A similar toolbox, called NETLAB, is freely available and contains many
advanced machine learning methods. We will use some toolboxes later in this course,
including the LIBSVM toolbox and the MATLAB NXT toolbox to program the Lego
robots.

1.1.1 Starting a MATLAB session

Starting MATLAB opens the MATLAB desktop as shown in Fig. 1.1 for MATLAB
version 7. The MATLAB desktop is comprised of several windows which can be
customized or undocked (moving them into an own window). A list of these tools are
available under the desktop menu, and includes tools such as the command window,
editor, workspace, etc. We will use some of these tools later, but for now we only
need the MATLAB command window. We can thus close the other windows if they
are open (such as the launch pad or the current directory window); we can always
get them back from the desktop menu. Alternatively, we can undock the command
window by clicking the arrow button on the command window bar. An undocked
command window is illustrated on the left in Fig. 1.2. Older versions of MATLAB
start directly with a command window or simply with a MATLAB command prompt
>> in a standard system window. The command window is our control centre for
accessing the essential MATLAB functionalities.

1.1.2 Basic variables in MATLAB

The MATLAB programming environment is interactive in that all commands can
be typed into the command window after the command prompt (see Fig. 1.2). The

| 3The MATLAB programming environment

Fig. 1.1 The MATLAB desktop window of MATLAB Version 7.

Fig. 1.2 A MATLAB command window (left) and a MATLAB figure window (right) displaying the
results of the function plot sin developed in the text.

commands are interpreted directly, and the result is returned to (and displayed in) the
command window. For example, a variable is created and assigned a value with the =
operator, such as

>> a=3

Programming with Matlab4 |

a =

3

Ending a command with semicolon (;) suppresses the printing of the result on screen.
It is therefore generally included in our programs unless we want to view some
intermediate results. All text after a percentage sign (%) is not interpreted and thus
treated as comment,

>> b=’Hello World!’; % delete the semicolon to echo Hello World!

This example also demonstrates that the type of a variable, such as being an integer,
a real number, or a string, is determined by the values assigned to the elements. This
is called dynamic typing. Thus, variables do not have to be declared as in some other
programming languages. While dynamic typing is convenient, a disadvantage is that
a mistyped variable name can not be detected by the compiler. Inspecting the list of
created variables is thus a useful step for debugging.

All the variables that are created by a program are kept in a buffer called workspace.
These variable can be viewed with the command whos or displayed in the workspace
window of the MATLAB desktop. For example, after declaring the variables above,
the whos command results in the responds

>> whos

Name Size Bytes Class Attributes

a 1x1 8 double

b 1x12 24 char

It displays the name, the size, and the type (class) of the variable. The size is often
useful to check the orientation of matrices as we will see below. The variables in the
workspace can be used as long as MATLAB is running and as long as it is not cleared
with the command clear. The workspace can be saved with the command save

filename, which creates a file filename.mat with internal MATLAB format. The
saved workspace can be reloaded into MATLAB with the command load filename.
The load command can also be used to import data in ASCII format. The workspace
is very convenient as we can run a program within a MATLAB session and can then
work interactively with the results, for example, to plot some of the generated data.

Variables in MATLAB are generally matrices (or data arrays), which is very con-
venient for most of our purposes. Matrices include scalars (1× 1 matrix) and vectors
(1×N matrix) as special cases. Values can be assigned to matrix elements in several
ways. The most basic one is using square brackets and separating rows by a semicolon
within the square brackets, for example (see Fig. 1.2),

>> a=[1 2 3; 4 5 6; 7 8 9]

a =

1 2 3

4 5 6

7 8 9

| 5The MATLAB programming environment

A vector of elements with consecutive values can be assigned by column operators
like

>> v=0:2:4

v =

0 2 4

Furthermore, the MATLAB desktop includes an array editor, and data in ASCII files
can be assigned to matrices when loaded into MATLAB. Also, MATLAB functions
often return matrices which can be used to assign values to matrix elements. For
example, a uniformly distributed random 3 × 3 matrix can be generated with the
command

>> b=rand(3)

b =

0.9501 0.4860 0.4565

0.2311 0.8913 0.0185

0.6068 0.7621 0.8214

The multiplication of two matrices, following the matrix multiplication rules, can be
done in MATLAB by typing

>> c=a*b

c =

3.2329 4.5549 2.9577

8.5973 10.9730 6.8468

13.9616 17.3911 10.7360

This is equivalent to

c=zeros(3);

for i=1:3

for j=1:3

for k=1:3

c(i,j)=c(i,j)+a(i,k)*b(k,j);

end

end

end

which is the common way of writing matrix multiplications in other programming
languages. Formulating operations on whole matrices, rather than on the individual
components separately, is not only more convenient and clear, but can enhance the
programs performance considerably. Whenever possible, operations on whole matrices
should be used. This is likely to be the major change in your programming style
when converting from another programming language to MATLAB. The performance
disadvantage of an interpreted language is often negligible when using operations on

Programming with Matlab6 |

whole matrices.
The transpose operation of a matrix changes columns to rows. Thus, a row vector

such as v can be changed to a column vector with the MATLAB transpose operator
(’),
>> v’

ans =

0

2

4

which can then be used in a matrix-vector multiplication like
>> a*v’

ans =

16

34

52

The inconsistent operation a*v does produce an error,
>> a*v

??? Error using ==> mtimes

Inner matrix dimensions must agree.

Component-wise operations in matrix multiplications (*), divisions (/) and potentia-
tion ∧ are indicated with a dot modifier such as
>> v.^2

ans =

0 4 16

The most common operators and basic programming constructs in MATLAB are
similar to those in other programming languages and are listed in Table 1.1.

1.1.3 Control flow and conditional operations

Besides the assignments of values to variables, and the availability of basic data
structures such as arrays, a programming language needs a few basic operations for
building loops and for controlling the flow of a program with conditional statements
(see Table 1.1). For example, the for loop can be used to create the elements of the
vector v above, such as
>> for i=1:3; v(i)=2*(i-1); end

>> v

v =

| 7The MATLAB programming environment

Table 1.1 Basic programming contracts in MATLAB.

Programming Command Syntax
construct
Assignment = a=b

Arithmetic add a+b

operations multiplication a*b (matrix), a.*b (element-wise)
division a/b (matrix), a./b (element-wise)
power a∧b (matrix), a.∧b (element-wise)

Relational equal a==b

operators not equal a∼=b
less than a<b

Logical AND a & b

operators OR a‖b
Loop for for index=start:increment:end

statement
end

while while expression
statement

end

Conditional if statement if logical expressions
command statement

elseif logical expressions
statement

else

statement
end

Function function [x,y,...]=name(a,b,...)

0 2 4

Table 1.1 lists, in addition, the syntax of a while loop. An example of a conditional
statement within a loop is

>> for i=1:10; if i>4 & i<=7; v2(i)=1; end; end

>> v2

v2 =

0 0 0 0 1 1 1

In this loop, the statement v2(i)=1 is only executed when the loop index is larger
than 4 and less or equal to 7. Thus, when i=5, the array v2 with 5 elements is created,
and since only the elements v2(5) is set to 1, the previous elements are set to 0 by
default. The loop adds then the two element v2(6) and v2(7). Such a vector can also
be created by assigning the values 1 to a specified range of indices,

>> v3(4:7)=1

v3 =

Programming with Matlab8 |

0 0 0 1 1 1 1

A 1×7 array is thereby created with elements set to 0, and only the specified elements
are overwritten with the new value 1. Another method to write compact loops in
MATLAB is to use vectors as index specifiers. For example, another way to create a
vector with values such as v2 or v3 is

>> i=1:10

i =

1 2 3 4 5 6 7 8 9 10

>> v4(i>4 & i<=7)=1

v4 =

0 0 0 0 1 1 1

1.1.4 Creating MATLAB programs

If we want to repeat a series of commands, it is convenient to write this list of
commands into an ASCII file with extension ‘.m’. Any ASCII editor (for example;
WordPad, Emacs, etc.) can be used. The MATLAB package contains an editor that has
the advantage of colouring the content of MATLAB programs for better readability and
also provides direct links to other MATLAB tools. The list of commands in the ASCII
file (e.g. prog1.m) is called a script in MATLAB and makes up a MATLAB program.
This program can be executed with a run button in the MATLAB editor or by calling
the name of the file within the command window (for example, by typing prog1). We
assumed here that the program file is in the current directory of the MATLAB session
or in one of the search paths that can be specified in MATLAB. The MATLAB desktop
includes a ‘current directory’ window (see desktop menu). Some older MATLAB
versions have instead a ‘path browser’. Alternatively, one can specify absolute path
when calling a program, or change the current directories with UNIX-style commands
such as cd in the command window (see Fig. 1.3).

Functions are another way to encapsulate code. They have the additional advan-
tage that they can be pre-compiled with the MATLAB CompilerTM available from
MathWorks, Inc. Functions are kept in files with extension ‘.m’ which start with the
command line like

function y=f(a,b)

where the variables a and b are passed to the function and y contains the values returned
by the function. The return values can be assigned to a variable in the calling MATLAB

| 9The MATLAB programming environment

Run program

Fig. 1.3 Two editor windows and a command window.

script and added to the workspace. All other internal variables of the functions are local
to the function and will not appear in the workspace of the calling script.

MATLAB has a rich collection of predefined functions implementing many algo-
rithms, mathematical constructs, and advanced graphic handling, as well as general
information and help functions. You can always search for some keywords using the
useful command lookfor followed by the keyword (search term). This command
lists all the names of the functions that include the keywords in a short description
in the function file within the first comment lines after the function declaration in
the function file. The command help, followed by the function name, displays the
first block of comment lines in a function file. This description of functions is usually
sufficient to know how to use a function. A list of some frequently used functions is
listed in Table 1.1.4.

1.1.5 Graphics

MATLAB is a great tool for producing scientific graphics. We want to illustrate this
by writing our first program in MATLAB: calculating and plotting the sine function.
The program is

x=0:0.1:2*pi;

y=sin(x);

plot(x,y)

The first line assigns elements to a vector x starting with x(1) = 0 and incrementing
the value of each further component by 0.1 until the value 2π is reached (the variable

Programming with Matlab10 |

Name Brief description
abs absolute functions
axis sets axis limits
bar produces bar plot
ceil round to larger interger
colormap colour matrix for surface plots
cos cosine function
diag diagonal elements of a matrix
disp display in command window
errorbar plot with error bars
exp exponential function
fft fast Fourier transform
find index of non-zero elements
floor round to smaller integer
hist produces histogram
int2str converts integer to string
isempty true if array is empty
length length of a vector
log logarithmic function
lsqcurevfit least mean square curve

fitting (statistics toolbox)
max maximum value and index
mix minimum value and index
mean calculates mean
meshgrid creates matrix to plot grid

Name Brief description
mod modulus function
num2str converts number to string
ode45 ordinary differential equation solver
ones produces matrix with unit elements
plot plot lines graphs
plot3 plot 3-dimensional graphs
prod product of elements
rand uniformly distributed random variable
randn normally distributed random variable
randperm random permutations
reshape reshaping a matrix
set sets values of parameters in structure
sign sign function
sin sine function
sqrt square root function
std calculates standard deviation
subplot figure with multiple subfigures
sum sum of elements
surf surface plot
title writes title on plot
view set viewing angle of 3D plot
xlabel label on x-axis of a plot
ylabel label on y-axis of a plot
zeros creates matrix of zero elements

Table 1.2 MATLAB functions used in this course. The MATLAB command help cmd, where
cmd is any of the functions listed here, provides more detailed explanations.

pi has the appropriate value in MATLAB). The last element is x(63) = 6.2. The
second line calls the MATLAB function sin with the vector x and assigns the results
to a vector y. The third line calls a MATLAB plotting routine. You can type these
lines into an ASCII file that you can name plot sin.m. The code can be executed by
typing plot sin as illustrated in the command window in Fig. 1.2, provided that the
MATLAB session points to the folder in which you placed the code. The execution of
this program starts a figure window with the plot of the sine function as illustrated on
the right in Fig. 1.2.

The appearance of a plot can easily be changed by changing the attributes of the
plot. There are several functions that help in performing this task, for example, the
function axis that can be used to set the limits of the axis. New versions of MATLAB
provide window-based interfaces to the attributes of the plot. However, there are also
two basic commands, get and set, that we find useful. The command get(gca)

returns a list with the axis properties currently in effect. This command is useful for
finding out what properties exist. The variable gca (get current axis) is the axis handle,
which is a variable that points to a memory location where all the attribute variables are
kept. The attributes of the axis can be changed with the set command. For example,
if we want to change the size of the labels we can type set(gca,’fontsize’,18).

| 11A first project: modelling the world

There is also a handle for the current figure gcf that can be used to get and set other
attributes of the figure. MATLAB provides many routines to produce various special
forms of plots including plots with error-bars, histograms, three-dimensional graphics,
and multi-plot figures.

1.2 A first project: modelling the world

Suppose there is a simple world with a creature that can be in three distinct states,
sleep (state value 1), eat (state value 2), and study (state value 3). An agent, which
is a device that can sense environmental states and can generate actions, is observing
this creature with poor sensors, which add white (Gaussian) noise to the true state.
Our aim is to build a model of the behaviour of the creature which can be used by
the agent to observe the states of the creature with some accuracy despite the limited
sensors. For this exercise, the function creature state() is available on the course
page on the web. This function returns the current state of the creature. Try to create
an agent program that predicts the current state of the creature. In the following we
discuss some simple approches.

A simulation program that implements a specific agent a with simple world model
(a model of the creature), which also evaluates the accuracy of the model, is given in
Table 1.3. This program, also available on the web, is provided in file main.m. This
program can be downloaded into the working directory of MATLAB and executed by
typing main into the command window, or by opening the file in the MATLAB editor
and starting it from there by pressing the icon with the green triangle. The program
reports the percentage of correct perceptions of the creature’s state.

Line 1 of the program uses a comment indicator (%) to outline the purpose of the
program. Line 2 clears the workspace to erase all eventual existing variables, and sets
a counter for the number of correct perceptions to zero. Line 4 starts a loop over 1000
trials. In each trial, a creature state is pulled by calling the function creature state()

and recording this state value in variable x. The sensory state s is then calculated by
adding a random number to this value. The value of the random number is generated
from a normal distribution, a Gaussian distribution with mean zero and unit variance,
with the MATLAB function randn().

We are now ready to build a model for the agent to interpret the sensory state. In the
example shown, this model is given in Lines 8–12. This model assumes that a sensory
value below 1.5 corresponds to the state of a sleeping creature (Line 9), a sensory value
between 1.5 and 2.5 corresponds to the creature eating (Line 10), and a higher value
corresponds to the creature studying (Line 11). Note that we made several assumptions
by defining this model, which might be unreasonable in real-world applications. For
example, we used our knowledge that there are three states with ideal values of 1,
2, and 3 to build the model for the agent. Furthermore, we used the knowledge that
the sensors are adding independent noise to these states in order to come up with the
decision boundaries. The major challenge for real agents is to build models without
this explicit knowledge. When running the program we find that a little bit over 50%
of the cases are correctly perceived by the agent. While this is a good start, one could
do better. Try some of your own ideas . . .

Programming with Matlab12 |
Table 1.3 Program main.m

1 % Project 1: simulation of agent which models simple creature

2 clear; correct=0;

3

4 for trial=1:1000

5 x=creature_state();

6 s=x+randn();

7

8 %% perception model

9 if (s<1.5) x_predict=1;

10 elseif (s<2.5) x_predict=2;

11 else x_predict=3;

12 end

13

14 %% calculate accuracy

15 if (x==x_predict) correct=correct+1; end

16 end

17

18 disp([’percentage correct: ’,num2str(correct/1000)]);

. . . Did you succeed in getting better results? It is certainly not easy to guess some
better model, and it is time to inspect the data more carefully. For example, we can
plot the number of times each state occurs. For this we can write a loop to record the
states in a vector,

>> for i=1:1000; a(i)=creature_state(); end

and then plot a histogram with the MATLAB function hist(),

>> hist(a)

The result is shown in Fig. 1.4. This histogram shows that not all states are equally
likely as we implicitly assumed in the above agent model. The third state is indeed
much less likely. We could use this knowledge in a modified model in which we predict
that the agent is sleeping for sensory states less than 1.5 and is eating otherwise. This
modified model, which completely ignores study states, predicts around 65% of the
states correctly. Many machine learning methods suffer from such ‘explaining away’
solutions for imbalanced data, as further discussed in Chapter ??.

It is important to recognize that 100% accuracy is not achievable with the inherent
limitations of the sensors. However, higher recognition rates could be achieved with
better world (creature + sensor) models. The main question is how to find such a
model. We certainly should use observed data in a better way. For example, we
could use several observations to estimate how many states are produced by function
creature state() and their relative frequency. Such parameter estimation is a basic
form of learning from data. Many models in science take such an approach by proposing
a parametric model and estimating parameters from the data by model fitting. The main
challenge with this approach is how complex we should make the model. It is much
easier to fit a more complex model with many parameters to example data, but the

| 13Alternative programming environments: Octave and Scilab

1 1.5 2 2.5 30

100

200

300

400

500

N
um

be
r o

f o
cc

ur
en

ce
s

in
 1

00
0

tr
ia

ls
Creature state value

Fig. 1.4 The MATLAB desktop window histogram of states produced by function
creature state() from 1000 trials.

increased flexibility decreases the prediction ability of such models. Much progress has
been made in machine learning by considering such questions, but those approaches
only work well in limited worlds, certainly much more restricted than the world we
live in. More powerful methods can be expected by learning how the brain solves such
problems.

1.3 Alternative programming environments: Octave and
Scilab

We briefly mention here two programming environments that are very similar to
Matlab and that can, with certain restrictions, execute Matlab scripts. Both of these
programming systems are open source environments and have general public licenses
for non-commercial use.

The programming environment called Octave is freely available under the GNU
general public license. Octave is available through links at http://www.gnu.org/software/octave/.
The installation requires the additional installation of a graphics package, such as gnu-
plot or Java graphics. Some distributions contain the SciTE editor which can be used
in this environment. An example of the environment is shown in Fig. 1.5

Scilab is another scientific programming environment similar to MATLAB. This
software package is freely available under the CeCILL software license, a license
compatible to the GNU general public license. It is developed by the Scilab consortium,
initiated by the French research centre INRIA. The Scilab package includes a MATLAB
import facility that can be used to translate MATLAB programs to Scilab. A screen
shot of the Scilab environment is shown in Fig. 1.6. A Scilab script can be run from
the execute menu in the editor, or by calling exec("filename.sce").

1.4 Exercises

1. Write a Matlab function that takes a character string and prints out the character
string in reverse order. reverses program

2. Write a Matlab program that plots a two dimensional gaussian function.

Programming with Matlab14 |

Fig. 1.5 The Octave programming environment with the main console, and editor called SciTE,
and a graphics window.

Fig. 1.6 The Scilab programming environment with console, and editor called SciPad, and a
graphics window.

