
Rao, Olshausen and Lewicki: Probabilistic Models of the Brain 2001/09/11 04:47

1 Bayesian Modelling of Visual Perception

Pascal Mamassian, Michael Landy and Laurence T. Maloney

Introduction

Motivation

Through perception, an organism arrives at decisions about the external world, decisions based
on both current sensory information and prior knowledge concerning the environment. Unfortu-
nately, the study of perceptual decision-making is distributed across sub-disciplines within psy-
chology and neuroscience. Perceptual psychologists and neuroscientists focus on the information
available in stimuli, developmental researchers focus on how knowledge about the environment is
acquired, researchers interested in memory study how this knowledge is encoded, and other cog-
nitive psychologists might be primarily interested in the decision mechanisms themselves. Any
perceptual task evidently involves all of these components and, at first glance, it would seem that
any theory of perceptual decision making must draw on heterogeneous models and results from
all of these areas of psychology.

Many researchers have recently proposed an alternative (see chapters in [8]). They suggested that
Bayesian Decision Theory (BDT) is a convenient and natural framework that allows researchers to
study all aspects of a perceptual decision in a unified manner. This framework involves three basic
components: the task of the organism, prior knowledge about the environment, and knowledge
of the way the environment is sensed by the organism [6]. In this chapter, we summarize the key
points that make the Bayesian framework attractive as a framework for the study of perception
and we illustrate how to develop models of visual function based on BDT.

We emphasize the role played by prior knowledge about the environment in the interpretation
of images, and describe how this prior knowledge is represented as prior distributions in BDT. For
the sake of terminological variety, we will occasionally refer to prior knowledge as “prior beliefs”
or “prior constraints”, but it is important to note that this prior knowledge is not something the
observer need be aware of. Yet, as we shall see, these implicit assumptions can be revealed through
psychophysical experimentation.

To introduce the Bayesian approach, we illustrate how to model a simplified problem of three-
dimensional perception. The problem is not realistic but our intent in presenting it is to introduce
the terminology, concepts, and methods of Bayesian modeling. Following the example, we illus-
trate how the framework can be used to model slightly more realistic problems concerning the
perception of shape from shading and from contours. We conclude with a general discussion of
the main issues of the Bayesian approach. Other tutorials on Bayesian modelling of visual per-
ception with more technical details include Knill, Kersten & Yuille [7], Yuille & Bülthoff [18], and
Maloney [9].
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Figure 1.1: Multistable figures. Figures A and D typically engender one of two interpretations (B
or C for A, and E or F for D). When viewed long enough, the interpretation will alternate between
B and C and between E and F. The interpretation might vary when the figure is repeatedly
presented or when the observer blinks or changes fixation.

Before introducing Bayesian modelling, we first remind the reader what makes three-dimensional
perception difficult.

Visual perception as an ill-posed problem

Consider the line drawing in Fig. 1.1A. Even though this line drawing is consistent with an infinite
number of polyhedra, human observers usually report only two distinct interpretations, illustrated
in Figs. 1.1B and C. Similarly, Fig. 1.1D is usually interpreted as shown in Figs. 1.1E or F. If
Fig. 1.1A is viewed long enough, the observer will usually experience alternation between the
interpretations suggested in Figs. 1.1B and C, but only one interpretation is seen at any point in
time.

Two questions arise: (1) Why are only two of an infinite number of possible interpretations seen?
(2) And why do we see only one interpretation at a time rather than, say, a superposition of all of
the possible interpretations?

A proper answer to the first question requires that we explain why the visual system favors
certain interpretations over others a priori. Within the Bayesian framework, this mechanism will
prove to be the prior distribution. An answer to the second question will lead us to consider how
perceptual decisions are made within the Bayesian framework.

Because space perception is ill-posed with many possible scenes consistent with the available
sensory information, Bayesian modelling will prove to be particularly appropriate (for a recent
review of visual space perception, see [5]).
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Figure 1.2: Perception of 3D angles. The angle
�

between two line segments in 3D space projects
as an angle � in the image. A demon spins the physical stimulus about a horizontal axis, resulting
in a random value of slant. The task of the observer is to infer

�
given � .

A Simple Example: 3D Angle Perception

In this section we introduce the key concepts of Bayesian modelling by means of a simple example.
We will not attempt here to model the interpretation of the line drawings in Fig. 1.1. That would
require too much investment in mathematical notation (to represent figures made out of lines in
space) and would serve to obscure rather than display the elements of Bayesian modelling. Instead,
we consider a perceptual task that is extremely simple, rather unrealistic, but plausibly related
to perceptual interpretation of the drawings in Fig. 1.1: estimation of the angle formed by two
intersecting lines in space given only the projection of the lines onto a single retina.

Task

The problem is illustrated in Fig. 1.2: Given two intersecting lines in an image forming angle
� , what is the angle � between the two lines in three-dimensional space? Just as for Fig. 1.1,
the observer looks at a two-dimensional image and has to make an inference about some three-
dimensional property of the scene.

At the outset, our problem appears impossible. We do not even know whether the two lines
intersect in space! Even if we somehow knew that they did, we still don’t know how to go from
the proximal angle � to the distal angle � . Clearly there can be no deterministic rule that takes us
from proximal to distal angles, for there are many values of distal angle � that all lead to the same
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value of the proximal angle � . But perhaps we can, given the proximal angle � , rank the possible
values of the distal angle � as candidates by some measure of plausibility.

To do so, we need to understand how the scene was generated. Let’s imagine that the scene
is completely under the control of a “Demon” who first draws the angle on a transparent sheet of
acrylic (Fig. 1.2), perpendicular to the line of sight of the observer, and then gleefully spins the sheet
of acrylic about a horizontal axis. The spin is so forceful that we can assume that the acrylic sheet
ends up at any slant angle � as likely as any other. While the angle is drawn and the sheet spun,
the observer waits patiently with eyes closed. The angle that the Demon drew is symmetric around
the vertical axis before and after the spin as illustrated in Fig. 1.2. At the Demon’s command, the
observer opens his or her eyes and, challenged by the Demon, must specify the true angle � given
that only the projection � is seen.

Given this generating model, we can say quite a lot about the relation between � and the possible
� s that might have given rise to it. As the acrylic sheet gets more slanted relative to the line-of-sight,
the projected angle � in Fig. 1.2 increases to 180 degrees (when the sheet is horizontal) and then
decreases back to the true value, when the acrylic sheet is upside down. The projected angle � is
always greater than or equal to the true angle � . We can say more than this, though. Given the
known value of � and what we know about the generating model, we can compute the probability
that any particular value of the unknown � was the angle that the Demon drew. This probability
distribution is the first element of Bayesian modeling that we introduce and it is the likelihood
function.

Likelihood function

Let us assume that the angle � between the two lines in the image is measured to be 135 degrees.
What is the likelihood that any given world angle � , say, 95 degrees, was the angle that the Demon
chose to draw? To answer this question, we can imagine the following simulation. We take our own
acrylic sheet with two lines painted on it separated by 95 degrees and we then spin it ourselves,
repeatedly, simulating what the Demon did, over and over. Following each simulation of the
Demon’s spin, we measure the resulting angle � . If the projected angle is approximately1 the angle

� that we measured (say, 135 degrees plus or minus 5 degrees), we decide that the simulation is a
“hit”, otherwise it is a “miss”. Repeating this procedure 1000 times, we end up with 5 hits and 995
misses. We conclude that the probability of obtaining an image angle of approximately 135 degrees
given a world angle of 95 degrees is about 0.005.

If we repeat our simulation experiment for all possible values of the world angle, we obtain a
histogram estimation of the likelihood function (Fig. 1.3). The likelihood is a function of both the
known image angle � and the unknown world angle � .

Note that � is a random variable whereas � is considered as a fixed parameter (cf. [1]). For this
reason, we prefer to think of the likelihood function as a function of the distal angle � indexed by
the proximal angle � . It is important to understand that the likelihood function is not a probability
distribution function since the integral over all values of the distal angle � need not be 1; it is the
integral over all values of the proximal angle � that must equal 1. We introduce the following
notation for the likelihood function:
���������	��
�������� ������� � ��� ����� (1.1)

1. Note that angle is a continuous variable, so we are dealing with a continuous distribution. The probability
of any particular value (e.g. an image angle of precisely 135 degrees) is zero. Such distribution functions are
not easily estimated using Monte Carlo simulations without approximating them as discrete distributions
(e.g. binning the angles into bins of width 10 degrees).
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Figure 1.3: The likelihood function (when the image angle is 135 degrees). The likelihood charac-
terizes the chances that a particular world angle projects as a given image angle.

The Demon is still waiting for a response. Given the likelihood function in Fig. 1.3, it would be
foolish to guess that the Demon drew an angle as small as, say, 10 degrees. The likelihood that
a world angle of 10 degrees would lead to the observed value of � (135 degrees) is very small
relative to larger angles. The likelihood increases for world angles up to 135 degrees at which
point the likelihood drops to zero. (Recall that the reason for the zero values above 135 degrees
is that the projected angle is always larger than the world angle so it is impossible for a world
angle larger than 135 degrees to produce an image angle of 135 degrees. The largest likelihood is
therefore reached for a world angle equal to 135 degrees.) The world angle that is most likely to
have given rise to the observed � is 135 degrees.

If we choose this angle as our estimate of the response variable, we follow the strategy called
Maximum Likelihood Estimation (MLE) [17]. We choose, as our response, the world angle that
had the highest probability of generating the observed sensory information. This decision rule is
close in spirit to the Likelihood Principle proposed by Helmholtz [4].

The likelihood function captures all of the sensory information we have. What happens if
we have extra knowledge or beliefs beyond the simple geometrical knowledge included in the
likelihood function? Suppose that we know that our Demon has a marked bias toward world
angles near 90 degrees and an aversion toward smaller or larger angles.

Prior distributions

We represent our knowledge about the Demon’s preference for some world angles over others as
a prior distribution, a probability distribution function on the response variable:

��� �	� � � ������� � ����� (1.2)
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Figure 1.4: Prior distribution (discretized Normal distribution with a mean of 90 deg and a
standard deviation of 30 deg). The prior distribution represents the prior belief of the observer as
the frequency of occurrence of various world angles.

Figure 1.4 shows one such prior distribution chosen to be a Gaussian distribution with a mean
of 90 degrees and a standard deviation of 30 degrees. The value of the standard deviation in effect
represents how strong the Demon’s preference for 90 is. When the standard deviation is very small,
the resulting Gaussian will be almost a spike at 90. If this distribution accurately captured the
Demon’s behavior, then we would know the Demon almost always picked an angle of 90 degrees
or very close to it. Even without sensory information, we would expect to be able to make a very
good estimate of the world angle. If, on the other hand, the standard deviation is very large, the
resulting Gaussian tends to a uniform distribution. This case represents a very slight preference of
the Demon for 90 degrees such that knowledge of the prior is not helping us much in our estimation
task. We shall assume for now that the Demon’s preference is well captured by a Gaussian with
standard deviation of 30 degrees as shown in Fig. 1.4: the bias toward 90 is strong but not so strong
as to tempt us to ignore the sensory information embodied in the likelihood function.

So far, we have encountered two elements found in any Bayesian model: the likelihood function
and the prior. The former represents everything we know about the process that turns the state of
the world into sensory information. The latter describes what we know about the relative plausibil-
ity of different states of the world. Both represent knowledge in probabilistic terms, permitting us
to combine sensory information and prior knowledge about the world using probability calculus.

Bayes’ theorem and the posterior distribution

The Demon is still waiting for an answer. We next need to combine likelihood and prior to compute
a posterior distribution, our estimate of the probability of different states of the world (here,

� ) given everything we know. The following formula describes how to compute the posterior
distribution:

� � ��� � � �	� � � � ��������� ���������	��
�������� ����� � � ��� � � ���	� (1.3)

where � is a constant chosen so that the posterior is indeed a probability distribution function (i.e.,
the integral over all possible values of � is one). Intuitively, the posterior of one world angle � is
simply the likelihood weighted by the prior probability of occurrence of � . The formula is derived
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Figure 1.5: Posterior distribution (given that the image angle was 135 degrees). The posterior
distribution represents the likelihood of occurrence of the response variable weighted by prior
beliefs.

from Bayes’ Theorem, a simple mathematical result concerning computations with conditional
probabilities:

� � � � � ����� � � � ����� � � ��� � � � � ��� (1.4)

The left-hand side is the posterior, � � � � ��� is the likelihood, and � � � � is the prior.
Comparing the last two equations, we note that � equals the inverse of � � � � , but it is easy to

avoid computing it (or even thinking about it) since (1) it is the constant needed to make the
posterior distribution a distribution, and (2) given the uses to which the posterior is put, it often
turns out that the normalization by � is not necessary.

The posterior distribution is our estimate of the probability distribution of the unknown angle
� after both the sensory data and the prior distribution are taken into account. Fig. 1.5 shows the
posterior distribution when the likelihood function was computed as in Fig. 1.3 and the prior
probability was chosen as in Fig. 1.4 . Note that the peak of the posterior distribution is located
between the peaks of the likelihood function (Fig. 1.3) and the prior distribution (Fig. 1.4).

In effect, the two sources of information we have are being pooled. The likelihood function
would lead us to pick values of � near 135 degrees as our maximum likelihood guess, the prior
would lead us to favor a guess nearer 90 degrees, reflecting knowledge of the Demon’s preference.
The two pieces of information average out to a posterior whose peak falls around 125 degrees,
about 22% of the way from the likelihood peak to the prior peak.

We could imagine redoing this example with different values of the standard deviation of the
prior. When the standard deviation is smaller, the peak of the posterior moves toward the peak of
the prior (i.e., 90 degrees), when it is larger, the peak of the posterior moves toward the peak of the
likelihood function (i.e., 135 degrees). The standard deviation of the prior is effectively controlling
the relative importance of prior and sensory information. When the Demon’s preference toward
90 is known to be very strong, we should favor our prior knowledge and downweight conflicting
sensory data. Alternatively, we should favor the sensory data when the prior is weak.

Intelligent selection of the distributional form for the prior is an important part of modeling.
Within the Bayesian framework, the prior encodes all we know about the state of the world
independently of the current sensory input.
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Still, the Demon is becoming impatient. The posterior distribution is what we have, but what we
need is an estimate of � , a “best guess”. That’s what the Demon wants from us.

Gain, loss, and the decision rule

The decision rule links the posterior distribution with the action taken by the observer. The action
can be an explicit motor act, such as orienting the hand appropriately to grasp an object, or an
estimate of some aspect of the world such as the angle � . One possible criterion for choosing an
action is to pick the mode of the posterior distribution, the most probable value of � according to
the posterior distribution. If we used such a Maximum a Posteriori (MAP) Rule, our response to the
Demon’s challenge would be “125 degrees”. This rule is widely used in the Bayesian literature and
it is a plausible choice of decision rule.

Within the framework of Bayesian Decision Theory the choice of decision rule is remarkably
simple and principled. It begins by assuming that, for every action we might take, there are
consequences that depend upon the true state of the World: a numerical gain or loss, where a loss
is merely a negative gain. In the example we have been pursuing, we have neglected to describe
the consequences of our actions. Let us remedy this deficiency now.

Suppose that, if we guess the Demon’s angle � to within, say, 5 degrees, he goes away ( � �����
,

a gain). If we miss by more than 5 degrees, he draws a new angle, spins the acrylic sheet anew,
and continues to torment us ( ��� � , a loss). We shall call such a specification of gain and loss a
gain function. We can then choose the action that maximizes our expected gain (cf. also chapter 6 by
Nadal). The Bayes decision rule is precisely the choice of action � that, given the posterior, maximizes
expected gain:

�	� � �	
 � ��� �� ��� � � � ��� ���
� � ��� � � ��� � � � ��� � �� ����� � � ����� �� (1.5)

The particular gain function we chose in this example is an example of a discrete Dirac or Delta
gain function which takes on two values only. The larger gain is obtained when the angle estimate
(the action) is within a small interval surrounding the correct angle, otherwise the lesser gain is
obtained. If the small interval is infinitesimally small, then, it turns out that the Bayes decision
rule corresponding to the Delta gain function is precisely the MAP rule. When the interval is small
but finite, as in our example, the Bayes decision rule is approximately the MAP rule. Thus, if we
wish to be rid of the Demon as quickly as possible, we should pick the most probable value of �
according to the posterior distribution. Any other choice prolongs, on average, our encounter with
the Demon.

But suppose that the gains and losses are different from those just specified. What if the Demon
appears with his acrylic sheet and announces that, today, he will force the observer to pay him,
in dollars, the square of the difference in degrees between his estimate and the true value of � . A
five degree error costs $25, a 10 degree error, $100. This gain/loss function is the least-square loss
function, a very commonly used loss criterion in statistical estimation. The Observer’s immediate
question is likely to be “Is the MAP still the best rule to use?” The answer turns out to be no. The
rule which minimizes his expected loss now is to pick the mean of the posterior distribution, not
the mode. The Bayes rule associated with the least-square loss function is the mean. The mean of
the posterior distribution in Fig. 1.5 is

��� � degrees, significantly less than the MAP estimate, which
was 125.

We have already noted that the prior distribution is responsible for the shift of the peak of the
posterior probability away from the peak of the likelihood function. If the prior distribution is
uniform (i.e. there is no evidence for any bias for the Demon’s behavior), the maximum of the
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posterior equals the maximum of the likelihood. In this limit case, the maximum a posteriori (MAP)
rule is identical to the maximum likelihood estimate (MLE) rule.

While the Delta gain function and the associated MAP rule are appealing for their simplicity,
this decision rule is sometimes prone to favor unstable interpretations such as scenes viewed from
accidental viewpoints [3, 18]. One possible cure to this problem is to choose a loss function that
gracefully increases when the estimate of the world angle � deviates from the real world angle � .
The least-square loss function described above is one such function.

It is important to emphasize that there is not one computation applied to the posterior distribu-
tion that defines uniquely the Bayes rule. Rather, the rule varies as the gains and losses vary. The
Bayes rule is always: do whatever you must to maximize expected gain.

The Bayesian framework allows us to model the consequences of gains and losses on behavior
and to represent performance in different tasks in a common framework so long as the effect of a
change of task can be modeled as a change in possible gains and losses. See Berger [1] or Maloney
[9] for a more detailed discussion.

One important property of the decision rules we have discussed so far is that the same action
will be chosen whenever the same stimulus � is seen. This must be contrasted with the variable
behavior of any biological organism. There are at least two approaches to modelling this variability.
The first approach is to recognize that we have neglected to model photon noise and sources of
noise in the visual system. Introduction of these as contributors to the likelihood component of a
Bayesian model would introduce variability into human responses to identical stimuli. The second
approach is to abandon the Bayes rule as a realistic decision rule. For instance, Mamassian & Landy
[11] have modeled human response variability with what they termed a “non-committing” rule.
According to this non-deterministic rule, an action is chosen with a probability that matches its
posterior probability. Actions with high posterior probabilities are selected more often than those
with low posterior probabilities, but any action may potentially be chosen. This decision is also
known as probability matching [13] and is often observed in human and animal choice behavior
when the gain function is the Delta gain function described above. It is important to note that
this rule is not optimal (the MAP rule always leads to higher gain). Even though the MAP Rule
is optimal in this case, humans and other animals persist in probability matching to a remarkable
degree. In fact, it might be a better strategy for an animal since it allows exploration of the state
space for learning (for an introduction to learning by exploration, see [16]).

Discussion

In this section, we have defined the three fundamental steps in Bayesian modelling of visual
perception (Fig. 1.6). The first step is to define the prior distributions to represent what we know
about the probability of encountering different states of the world. The second step is to compute
the likelihood function by determining all the ways the stimuli could have been generated and
their frequency of occurrence. Using Bayes’ theorem, likelihood and priors can be combined to
produce a posterior distribution, i.e., the best estimate of the probability of each possible state of
the world given the sensory data and the prior distribution. The third and last step is to settle on
a decision rule that transforms the posterior distribution into an action. In a full Bayesian model,
this decision rule is computed from Bayes’ rule and is fully described by the gain function.
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Figure 1.6: Flowchart of the steps involved in Bayesian modelling.

The Study of Human Priors: Perception of Embossed Surfaces

Issues

In the previous part of the chapter, we have provided a model of perceptual decision making based
on sensory information, a priori knowledge, and the choice of a decision rule. The critical question
is, of course, “Are Bayesian models appropriate for human vision?” While it is too early to answer
this question conclusively, a first test of the model is to analyze the compatibility of the model with
human data. At this point, it is important to keep in mind that even if visual processing could be
perfectly represented as a Bayesian model, the modeler’s choice of distribution, likelihood, gain
function, or decision rule may be different from what is actually embodied in visual processing.
Our first endeavor should therefore be to learn more about the form of the prior distributions, gain
functions, and decision rules that accurately model human vision.

Assuming for now that we know how to compute the likelihood function and the decision rule,
we shall use Bayesian models to investigate how prior knowledge is encoded in the visual system.
As a first guess, it is convenient to model prior knowledge as a Gaussian distribution (or von
Mises distribution for periodic variables such as angles; cf. [12]). The advantage of the Gaussian
distribution is that it is fully parameterized by only two parameters, namely its mean and variance.
This prior encodes a preference in favor of the mean value and values near it. The variance of the
Gaussian is inversely related to the strength of the evidence in favor of the prior mean. As the
variance increases, the prior distribution converges to the uniform distribution. It is important to
note that while the Gaussian distribution is everywhere non-zero, other non-Gaussian priors can
be zero across an interval; in this case, no amount of sensory data can beat the prior.

In this section we consider simple visual tasks that are sufficiently ambiguous that we can hope
to observe the influence of prior distributions in visual performance. We summarize here our work
on the perception of shaded embossed surfaces with parallel contours [10, 11, 12].

Assumption of illumination from above-left

Light sources are usually located above our head. It is commonly believed that this regularity
of the illumination position is at the origin of the change in perceived relief of figures that are
turned upside-down [2, 14]. We have been interested in quantifying this prior assumption used
by the visual system [10]. We report the results of this experiment with reference to the Bayesian
framework developed in the previous part of this chapter.

Stimuli were shaded embossed surfaces as shown in Fig. 1.7. These stimuli can be interpreted as
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Figure 1.7: Stimulus used in the illumination experiment. This figure was presented at different
orientations in the image plane. Observers indicated whether they perceived the wide or narrow
strips bulging in relief.

planar frontal surfaces with either narrow or wide strips bulging towards the observer. When the
figure is rotated in the image plane, the perception alternates between these two interpretations.
The fact that the very same figure can be interpreted in two different ways with a mere rotation
indicates that the visual system is using additional knowledge beyond the stimulus information.
We presented the figure at different orientations to human adult observers and asked them whether
they perceived the bulging strips as being narrow or wide. Each orientation was presented multiple
times to estimate the variability of responses for each orientation.

Results for one observer are shown in Fig. 1.8. Let us call narrow score the proportion of times the
stimulus was interpreted as formed by narrow strips bulging. The plot shows the narrow score as
a function of the orientation of the figure in the image plane. It is clear from the plot that responses
depended strongly on the orientation of the stimulus. When the bright contours of the figure are
interpreted as edges facing the light source and dark contours in shadow, the peak narrow score
should occur when the stimulus orientation is zero. Remarkably, the center of the peak of the
narrow score is shifted to the right of zero, corresponding to a stimulus most consistent with light
coming from above and slightly to the left of the observer (for a similar demonstration of an above-
left illumination bias, see [15]).

The smooth curve in Fig. 1.8 shows the best fit of the Bayesian model to the human data. The
model has knowledge about the shape of the object, the illumination and viewing conditions. The
object is modeled as a flat surface with strips in relief. The narrow strips are either raised or lowered
relative to the background flat surface and the orientation of the edge between the strip and the
background defines the bevel angle (positive values correspond to the narrow strips being in relief).
The illumination conditions are modeled with an ambient and a point light source of different
intensities. In addition, the illumination model includes commonly used shading assumptions
(uniform Lambertian reflectance). Finally, the viewpoint is modeled as the orientation of the
viewing direction relative to the surface, thereby disregarding the distance between viewer and
object.

The object, illumination, and viewing models have degrees of freedom that can be described as
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Figure 1.8: Results for the illumination experiment (for one observer). The dots indicate the
proportion of times an observer perceived the narrow strips in relief, and the solid line shows
the performance of the model.

free parameters. Each parameter has its own prior distribution. For most parameters, we have no
a priori knowledge and hence assume uniform prior distributions for these parameters. To model
the prior assumptions that we anticipated to exist, we gave the corresponding parameter a non-
uniform distribution, generally a Gaussian distribution specified by a mean (the value toward
which observers were biased) and a variance (inversely related to the effectiveness). In this way, we
allowed for biases on the thickness of the strips in relief (i.e., bevel angle), the light source tilt (i.e.,
light direction from approximately above) and the surface tilt (i.e., view-from-above, discussed in
the next section).

The model calculates the posterior probability � � ����������� �
	�����
������	 � by first calculating that
probability for each possible combination of illumination and viewpoint parameters, and then
summing them:�

� � ����������� � ���������
������������ ��� ��������������� � 	�����!������	 �#" � ��������!������������ ��" � � ��������������� ��� (1.6)

The integrand is expanded using Bayes’ theorem into a likelihood and a prior term. The prior prob-
ability term, � � ����������� � ��������!���$�������� ��� ���%����������� � , is further expanded by assuming that illumination
and viewpoint parameters are independent. Finally, the output of the model is obtained after ap-
plication of the non-committing decision rule. That is, the proportion of times observers respond
“narrow” is the same as the calculated posterior probability that the stimulus arose from an object
with bulging narrow strips.

Each parameter can now be estimated from the best fit of the model to the human data. The
advantage of the model is that each parameter has a straightforward meaning. The best-fitted
parameter for the light source direction indicates a bias of approximately &�� degrees to the left of
the vertical. The effectiveness of this bias on the light source position and the bias for the viewpoint
can be estimated by looking at the variance of the corresponding prior distributions. In addition,
there was a very slight bias to prefer narrow rather than wide strips in relief.
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Figure 1.9: Stimuli used in the viewpoint experiment. The line drawing shown in A can be
interpreted as an egg-shaped patch or saddle-shaped patch depending on its orientation in the
frontal plane. Figure B tends to be seen as egg-shaped more often, whereas C is more often
seen as saddle-shaped. Each stimulus was presented at different orientations in the image plane.
Observers indicated whether they perceived an egg-shaped or saddle-shaped patch.

Assumption of viewpoint from above

Using the line drawing shown in Fig. 1.9, we showed that observers have a bias to interpret contour
drawings as if they were viewing the object from above [11]. In this experiment, observers reported
whether the line drawing appeared to be the projection of a surface patch which was egg-shaped
or saddle-shaped. Again, these images were shown at various orientations in the image plane,
and observers indicated whether they initially perceived the object as egg- or saddle-shaped. We
rely on the initial interpretation, averaged across multiple presentations of the same stimulus, to
determine the observer’s propensity to perceive the stimulus in one way or the other.

The data in Fig. 1.10 clearly showed that responses again depended strongly on the stimulus
orientation. The preference for a viewpoint located above the scene can be modeled as a preference
for the normal to the surface to point upwards [11]. This preference can therefore be modeled as
a bias on the tilt of the surface normal, with the preferred tilt equal to 90 degrees. The bias on the
surface normal results in a bias to interpret contours that are convex-upward in the image as being
convex toward the observer.

We again fit a Bayesian model using exactly the same strategy as in the illumination case
above. Here, the scene description included parameters related to the surface shape (same-sign
principal curvatures correspond to egg-shaped surfaces), the viewpoint (i.e. the surface orientation
as defined by its slant, tilt and roll), and the way surface contours were painted on the surface
patch (defined by their orientation relative to the principal lines of curvature). Most parameters
were given uniform prior distributions except for the surface tilt (corresponding to our suspected
bias for a viewpoint above the object), the surface curvature (for a good fit we required a bias
for perceiving 3D contours as convex) and the surface contour orientations (which were biased
to be closely aligned with the principal lines of curvature). Again, the non-committing rule was
used. From the best fit of a Bayesian model that included these prior constraints, we estimated
the standard deviation of the prior distribution on surface tilt orientation to be approximately

� �
degrees.

The prior assumption on the surface tilt probably plays a role in the interpretation of the
Necker cube shown in Fig. 1.1A. We have already noted that only two interpretations out of an
infinite number are preferred by human observers (Figs. 1.1B and 1.1C). With prolonged viewing,
observers alternate between these two interpretations with a frequency that can be well-modeled
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Figure 1.10: Results for the viewpoint experiment (averaged over 7 observers). The elliptic score
(i.e. the proportion of times observers indicated Fig. 1.9A was egg-shaped) is shown as a function
of the orientation in the image plane. The best fit of the Bayesian model is shown as a solid line.

by a Gamma distribution. The mean time spent in each interpretation, however, is different. One
direct prediction from the results of this section is that the preferred cube interpretation will be the
one for which most of the normals to its faces point upwards.

Interaction of prior assumptions

In the last two sections, we have seen that the interpretation of ambiguous figures is guided by
two assumptions: a preference for the illumination to be located above (and to the left) of the
observer and a similar preference to have the viewpoint located above the scene. In this section,
we look at stimuli for which both of these assumptions can be used to disambiguate the figure. For
some orientations of each stimulus the two prior constraints were in agreement as to the preferred
interpretation of the stimulus, and in others they were in conflict. An example stimulus is shown
in Fig. 1.11 [12].

These stimuli can again be perceived as embossed surfaces with either narrow or wide strips in
relief. The data show that the observer’s interpretation changed as the figure was rotated in the
frontal plane (Fig. 1.12).

The human performance was well modeled by a Bayesian model that included both the illumi-
nation and the viewpoint priors described in the previous sections. The model was of exactly the
same form as the previous two, including parameters for the surface shape (i.e. the bevel angle),
the illumination and viewpoint. Again, the non-committing rule was used and the parameters of
the prior distributions were varied to best fit the data. The best fit of the model allowed us to ex-
tract the parameters of the prior distributions. The light direction bias was

���
degrees to the left of

the vertical (the viewpoint bias was set to
� �

degrees for the surface tilt). The standard deviation
of the illumination prior was about � � degrees, whereas the standard deviation of the viewpoint
prior was about � � degrees. In addition, there was a very slight bias to prefer narrow over wide
strips in relief.

In the first part of this chapter, we argued that the standard deviation of a prior distribution is
inversely related to the effectiveness of this prior. We tested whether this effectiveness could be
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Figure 1.11: Stimuli used for the interaction of priors experiment. Depending on its orientation
in the frontal plane, this figure can be interpreted as an embossed surface with narrow or wide
strips in relief. Both shading and contour cues to shape are present in the stimulus.
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Figure 1.12: Results for the interaction of priors experiment (averaged over 8 observers). The
figure gives the proportion of trials observers indicated that the narrow strips were seen bulging
as a function of the image plane orientation of the stimulus. The solid line shows the best fit of
the Bayesian model.

affected by changing properties of the stimulus. We repeated the prior interaction experiment for
stimuli for which the stimulus contrasts of the shading and surface contours were independently
varied. We fit each contrast condition separately. We found that increasing the shading contrast
decreased the standard deviation of the illumination prior, and similarly, increasing the contour
contrast decreased the standard deviation of the viewpoint prior. These results are consistent with
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the notion that the effectiveness of a prior distribution reflects the reliability of the particular cue
with which it is associated (see chapter 3 by Jacobs for a related finding). It is important to realize
that we have treated these prior distributions as variable things, dependent on aspects of the
stimulus itself. The apparent cue reliability that drives this change can be estimated from ancillary
measures extracted from the stimulus (e.g., the contrast of the shading or contour edges in our
example).

Discussion

In this part of the chapter, we have summarized three studies that looked at the 3D perception of
ambiguous images. We used the Bayesian framework developed in Section 1 to focus on the prior
assumptions used by the visual system. We found a preference for the illumination to come from
above-left and for the viewpoint to be located above the scene. The Bayesian models allowed us to
explain human performance quantitatively.

We also looked at a situation in which the consequences of two prior assumptions must be
combined. We found that our framework was still applicable in predicting human performance,
but only if we allowed the standard deviation of the prior distributions to be affected by the
stimulus properties. In this experiment, different parts of the stimuli changed contrast but the task
of the observer was kept constant. Therefore, we did not change the gain function or the decision
rule to try to explain the shifts of human criteria with stimulus contrast. In addition, while the
likelihood changed with the stimulus contrast, this change was not large enough to explain the
criteria shifts. Only a change in the prior distribution could reasonably explain the changes in
human performance. More specifically, we found that the prior confidence value as measured by
the variance of the prior distribution was inversely related to the contrast of the stimulus attributes
relevant for this prior. This finding is important because it forces us to reconsider a basic tenet
of Bayesian modelling that prior constraints are pieces of knowledge that are independent of the
stimuli and of the task with which observers are confronted. This issue is further discussed in the
next section.

General Discussion

In this chapter, we have described a general framework to study the resolution of ambiguities
arising in three-dimensional perception. We have shown how the framework can be implemented
by describing a few applications. The framework is Bayesian in the sense that it emphasizes the
role played by prior assumptions. In this last part of the chapter, we discuss some of the issues that
are inherent in this framework.

Is this really Bayesian modeling?

The models we discussed in Section 1 were cited as examples of Bayesian modeling of depth
disambiguation. In fact, they stray fairly far from a strict Bayesian interpretation of a decision
making problem. We now describe the Bayesian and non-Bayesian components of our models,
and discuss our motivation for departing from the strict Bayesian approach.

Our models begin in the Bayesian spirit by defining prior distributions on various parameters
that give rise to the stimulus situation. These parameters describe the objects of the physical envi-
ronment, the illumination conditions and the viewing geometry. More specifically in our examples,
objects are parameterized by the bevel angle, reflectances of the various surfaces, principal surface
curvatures, orientation of the surface contours relative to those surface curvatures, and surface
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shape. The illuminant is simply characterized by the position of the light sources and their in-
tensities. Finally, the viewing geometry is parameterized as the orientation of the observed object
relative to the viewer (the viewing distance should also be included in perspective projection).
When we have no reason to expect observers to have a particular bias, we give the corresponding
parameter a uniform prior distribution. In contrast, where biases are expected, the prior is mod-
eled as a non-uniform distribution where the modes of the distribution match the biases. Typically,
we anticipate a single bias along each dimension, so that the prior distribution is unimodal (e.g.
Gaussian). For instance, among all possible light source directions in the frontal plane, only one
direction is preferred. Moreover, we showed how these biases can be estimated experimentally
[11, 12]. So far, this is pretty much the Bayesian methodology.

However, we depart from a strict Bayesian methodology in a number of ways. Let us first
consider the likelihood function. The likelihood characterizes the mapping from world to retinal
image. When the stimulus has very low contrast, photon statistics will affect the image registered
on the retina. Moreover, internal noise will also affect the way stimuli are represented at successive
stages in the visual system (see chapters 2 by Schrater & Kersten and 4 by Weiss & Fleet). These
external and internal sources of noise will cause the proximal stimulus to be stochastic and as
a result, the computed likelihood will vary from trial to trial, and the observer’s decision will
vary when the same distal stimulus is repeatedly presented. In contrast, our likelihood function
is deterministic. Either this set of object, illumination and viewing parameters gives rise to this
image or it does not. We argued that with our high-contrast stimuli, external noise is negligible
and internal noise alone can not reasonably explain the large variations in subjects’ responses.

Our second departure from a strict Bayesian approach is the way we treat the decision rule.
In a sense, this follows directly from our choice of a deterministic likelihood function. If the
decision rule is a Bayes rule, it is also deterministic. Examples of Bayes rules include the maximum
likelihood and the MAP rules. When the likelihood and decision rules are both deterministic, the
observer will give the same response to trials that use the same stimuli. This prediction was clearly
violated in our psychophysical experiments. Therefore, instead of following a Bayes rule, we chose
a stochastic rule that we termed a “non-committing decision rule”. According to this rule, the
observer first computes the posterior probability of each possible scene given the image and then
chooses each response with probability equal to its estimated posterior probability. If, for instance,
there are only two possible scenes whose posterior probabilities are 0.7 and 0.3 respectively, then
the observer will choose the first scene with a probability equal to 0.7. This rule is suboptimal
(unless the gains are such that incorrect answers are not penalized) and hence is not a Bayes rule.
However, it is a behavior that is commonly found in humans and animals, and is referred to as
probability matching [13].

Finally, we depart from a Bayesian approach by the way we treat prior constraints. We looked at
the effect of context on prior constraints by varying the stimulus contrast along different parts
of an image (Section 1). We found that the effect of the prior associated with the shading cue
to depth increased with shading contrast (and similarly for the contour cue to depth). We fit
the model to the data separately for each contrast condition, allowing the parameters for the
priors (light-from-above and viewpoint-from-above) to vary between fits. That is, we allowed the
prior distributions to depend on the stimulus. This is distinctly not a Bayesian operation. If the
priors depend on the stimulus, then they are not “prior”! Nevertheless, the results of this exercise
were quite interesting. The variance of the prior distributions, as we have discussed, is inversely
related to their effectiveness in biasing the overall estimate. We found that this effectiveness was a
monotonic function of contrast. This makes sense, even though it is entirely contrary to the notion
that these were parameters of prior distributions.

In summary, we depart from the traditional Bayesian approach by the way we treat the three
basic components of any Bayesian model. We believe that the reasons for these departures were
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well-motivated for the experiments presented in this chapter. Future research will tell us whether
our choices are valuable in other contexts.

Future directions

In this chapter, we have described Bayesian-inspired models of visual perception. These models
provide an explicit account of the interaction between sensory information and prior assumptions,
as well as the decision rule used by the observer in a given task. Each component of the mod-
els is justifiable and experimentally testable. Therefore, Bayesian models appear psychologically
more relevant than previous models that relied on ad-hoc components such as the “smoothness
constraint” (in fact, other frameworks such as regularization are just special cases of the Bayesian
framework; [18]). In spite of its great appeal, Bayesian modelling is still in its infancy. We now
discuss some future directions of research.

The first issue deals with the interaction between the likelihood function and the prior distribu-
tions. In this chapter, we have chosen a likelihood function that faithfully takes all the informa-
tion in the image and that is not affected by noise. This choice implies a highly peaked likelihood
function and a moderate influence of the prior distributions on the posterior distribution. Alter-
natively, the same posterior distribution could have been obtained by a more shallow likelihood
function and a greater influence of the prior distributions (cf. the influence of external noise on
the likelihood function in [7]). More work is needed to understand better how different contextual
situations (such as different amounts of external noise) affect the likelihood function and the prior
distributions (cf. chapter 7 by Yuille & Coughlan).

Another issue deals with the origin and stability of prior constraints. Do prior constraints directly
reflect the statistical regularities of the environment? If so, we can foresee that priors will be
conditional on context (e.g. a forest prior vs. a city prior). When more than one prior can be applied
in a certain context, then these priors will have to compete (for an example on shape from shading,
cf. [18]). Another related question is whether priors can be updated when the environmental
conditions change. Updating a prior constraint means that the visual system has the ability to
sample and memorize an extremely large number of scenes (cf. [19]). This strategy is impractical
unless some sort of approximation is used to build the new priors. Finding biologically plausible
implementations of Bayesian models and their approximations is an area of active research (see the
chapters in the second part of this book).

One final important issue deals with the importance of the task with which the visual system
is faced. It is obvious that different tasks correspond to different decision rules. Some motor tasks
might put the organism more at risk than purely visual exploration tasks, thereby affecting the cost
of making the wrong decision. However, it is perhaps less obvious that the task could also affect
the prior constraints used. Different tasks might indeed direct the attention of the visual system to
different components of the stimulus and their associated priors. Future research should look at
the level(s) within the visual system at which the choice of task has influence.

To conclude, we have reviewed the main principles underlying Bayesian modelling of three-
dimensional perception. The framework entails the derivation of the likelihood function, the
description of prior assumptions and the choice of a decision rule. We believe that this framework
provides a powerful tool to study the mechanisms involved in human visual perception and that
it can have important generalizations in others areas of cognitive neuroscience.
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