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Chapter XVI

Continuous Attractor
Nueral Networks

Thomas P. Trappenberg, Delhousie University, Canada

ABSTRACT
In this chapter a brief review is given of computational systems that are motivated by
information processing in the brain, an area that is often called neurocomputing or
artificial neural networks. While this is now a well studied and documented area, specific
emphasis is given to a subclass of such models, called continuous attractor neural
networks, which are beginning to emerge in a wide context of biologically inspired
computing. The frequent appearance of such models in biologically motivated studies
of brain functions gives some indication that this model might capture important
information processing mechanisms used in the brain, either directly or indirectly.
Most of this chapter is dedicated to an introduction to this basic model and some
extensions that might be important for their application, either as a model of brain
processing, or in technical applications. Direct technical applications are only
emerging slowly, but some examples of promising directions are highlighted in this
chapter.

INTRODUCTION
Computer science was, from its early days, strongly influenced by the desire to build

intelligent machines, and a close look at human information processing was always a
source of inspiration. Walter Pitts and Warren McCulloch published a paper in 1943
entitled “A Logical Calculus of Ideas Immanent in Nervous Activity,” in which they
formulated a basic processing element that resembled basic properties of neurons that
are thought to be essential for information processing in the brain (McCulloch & Pitts,
1943). Such nodes, or similar nodes resembling more detailed neuronal models, can be
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assembled into networks. Several decades of neural network research have shown that
such specific networks are able to perform complex computational tasks.

An early example of biologically inspired computation with neural networks is some
work by Frank Rosenblatt and colleagues in the late 1950s and early 1960s (Rosenblatt,
1962). They showed that a specific version of an artificial neural network, which they
termed perceptron, is able to translate visual representations of letters (such as the signal
coming from a digital camera) into signals representing their meaning (such as the ASCII
representation of a letter). Their machine was one of the first implementations of an
optical character recognition solution. Mappings between different representations are
common requirements of advanced computer applications such as natural language
processing, event recognition systems, or robotics.

Much of the research and development in artificial neural networks has focused on
perceptrons and their generalization, so-called multilayer perceptrons. Multilayer
perceptrons have been shown to be universal approximators in the sense that given
enough nodes and the right choice of parameters, such as the individual strength of
connection between different nodes, multilayer perceptrons can approximate any func-
tion arbitrarily close (Hornik et al., 1989). Much progress has been made in the develop-
ment and understanding of algorithms that can find appropriate values for the strength
of connections in multilayer perceptrons based on examples given to the system. Such
algorithms are generally known as (supervised) learning or training algorithms. The
most prominent example of a training algorithm for multilayer preceptrons, which is highly
important for practical applications of such networks, is the error-back-propagation
algorithm that was widely popularized in the late 1980s and early 1990s (Rumelhart et al.,
1986). Many useful extensions to this basic algorithm have been made over the years (see
for example Amari, 1998; Neal, 1992; Watrous, 1987), and multilayer-perceptrons in the
form of back-propagation networks are now standard tools in computer science.

Multi-layer perceptrons, which are characterized by strict feed-forward processing,
can be contrasted with networks that have feedback connections. A conceptually
important class of such networks has been studied considerably since the seventies
(Cohen & Grossberg, 1983; Grossberg, 1973; Hopfield, 1982; Wilson & Cowan, 1973).
Systems with feedback connections are dynamical systems that can be difficult to
understand in a systematic way. Indeed, systems with positive feedback are typically
avoided in engineering solutions, as they are known to create the potential for systems
that are difficult to control. The networks studied in this chapter are typically trained with
associative learning rules. Associative learning, which seems to be a key factor in the
organization and functionality of the brain, can be based on local neural activity, which
was already suggested in 1948 by Donald Hebb in his famous and influential book The
Organization of Behavior (Hebb, 1948). The locality of the learning rules is useful also
in artificial systems as they allow efficient implementation and parallelization of such
information processing systems.

Recurrent networks of associative nodes have attractive features that can solve a
variety of computational tasks. For example, these networks have been proposed as a
model of associative memory, where the memory states correspond to the point attractors
in these dynamical systems that are imprinted by Hebbian learning. These types of
recurrent networks are therefore frequently called (point) attractor neural networks
(ANNs). The associative memory implemented by such networks has interesting features
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such as the ability to recognize previously stored pattern from partial input, a high degree
of fault tolerance with respect to a partial loss of the network, and the efficiency of
learning from single examples; all features that are of major interest to computer
scientists.

Another closely related class of recurrent network models have a specifically
organized connectivity structure and are now commonly termed continuous attractor
neural network (CANN) models. Such models have been studied in conjunction with
many diverse brain functions including local cortical processing (Hansel & Sampolinski,
1998), saccadic motor programming (Kopecz & Schöner, 1995), working memory (Compte
et al., 2000; Wang, 2001), and spatial representation (Redish et al., 1996; Skaggs et al.,
1995; Zhang, 1996). The diversity of application of this model in computational neuro-
science indicates that related mechanisms are used widely in the information processing
in the brain. In this chapter we outline some of the features of such networks and only
start to explore how these mechanisms can be used in technical applications. Some
examples of basic operations implemented by such networks are briefly outlined,
specifically the implementation of an arg max function through cooperation and compe-
tition in such networks, and the maximum likelihood decoding of distributed information
representations.

COMPUTATIONAL NEUROSCIENCE AND
BIOLOGICALLY FAITHFUL MODELING
While artificial neural networks, especially in the form of back-propagation net-

works, have been developed into useful engineering tools, they have been developed
in a direction that is not strictly biologically plausible. This is acceptable in technical
applications that do not have to claim biological relations. However, the study of
biologically plausible information processing has important aspects that should not be
forgotten. This includes the desire to understand how the brain works, which will, for
example, enable the development of new treatment methods for brain diseases. The
experimental knowledge of brain functions has increased tremendously over the last
several decades, and has particularly accelerated recently after the arrival of powerful
new brain imaging techniques such as functional Magneto Resonance Imaging (fMRI)
and advanced single cell recording methods. Such methods advanced considerably our
understanding of where and how information is represented in neuronal activity, and the
scientific area of computational neuroscience seeks to understand how the processing
of such information is achieved in the brain.

Of course, modeling of complex systems such as the brain has to be done on multiple
levels. Indeed, the art of scientific explanations is to find the right level of abstraction
rather than the detailed reproduction of nature. It can be questioned if rebuilding a
complete brain in silicon would advance our knowledge; I would argue that this would
mainly demonstrate the state of our knowledge. In contrast, finding the right level of
description can considerably enhance our understanding and technical abilities. A good
example is the advent of thermodynamics that describe large particle systems on a
macroscopic level, by Ludwig Boltzmann and J Willard Gibbs in the late 19th century.
Surely, a gas is a system of weakly interacting particles, but their macroscopic description
has advanced our technical abilities considerably.
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Modeling of brain functions has to be viewed in a similar way. Some models are
abstract representations of high-level mental processes, while other models describe the
detailed biophysics of neurons. Backpropagation networks have made headway in
cognitive science as useful metaphors of cognitive processes (parallel distributed
processing). It does, however, become questionable that such learning algorithms
describe metal processes on a level of networks of neurons. Although some attempts
have been made to justify their biological plausibility (see for example O’Reilley &
Munakata, 2000), several questions remain when it comes to the biological justification
of such networks on a neuronal level. This does not only include the learning rule itself,
which requires the questionable backpropagation of error signal through the network,
but also includes other constrains on network architectures, including the typical drastic
constraint on the number of hidden nodes in multilayer feed-forward networks required
to facilitate generalization in such networks. While the brain might still use information
processing along the lines of mapping networks, networks that translate a distributed
representation of some kind into another, it seems that the majority of cortical processing
is based on different principles of network operations, including diverging-converging
chains (Abeles, 1991) and Hebbian-type learning (Hebb, 1949).

A well-recognized fact of brain networks, which is conceptually very different from
multilayer perceptrons, is that there is an abundance of reciprocal connections between
brain areas that defy the strict layered architecture of perceptrons. While the role of
feedback connections between distinct brain areas is still under investigation with
regards to the system-level implementation of information processing in the brain, some
progress has been made in understanding local organizations of brain networks that
exhibit local (collateral) feedback connections (see for example Grossberg & Williamson,
2001). A prime example of this is the processing in the CA3 area of the hippocampus (Rolls
& Treves, 1998). The models described in this chapter fall in the category of network-level
models that can be related to brain networks comprised of a few cubic millimeters of brain
tissue with internal recurrent connections.

THE BASIC PROCESSING ELEMENT
The basic processing element in the networks described here is called a node to

remind ourselves that these are typically only rough approximations of biological
neurons. The term artificial neuron is also commonly used to label such processing
elements, although it has been argued extensively in recent years that such nodes, most
commonly used in neural network computing, are better interpreted as describing the
average behavior of a population of neurons (Gerstner, 2000; Wilson & Cowan, 1973).

A basic node is illustrated in Figure 1a. This node receives input values on each of
its input channels, and each of the input values is then multiplied by the weight value
associated with the respective input channel. The node then sums all the weighted input
values and generates an output based on a gain function g(x), where the argument of this
function is the sum of the weighted input values. The gain function thus describes the
specific activation characteristics of the node. Some examples of frequently used gain
function are summarized in the table shown in Figure 1b.

This simple node is only a very rough abstraction of a biological neuron. A
schematic example of a biological neuron is illustrated in Figure 1c. The analogy of these
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processing elements stems from the basic fact that a neuron can receive input signals
from different neurons through the release of chemicals at the end of the sending of
neurons. These chemicals, called neurotransmitters, can produce a change in the
potential of the receiving neuron. The strength of the generated potential change can
thereby vary for different input channels. Changes of the electrical potential from
different sources simply add to each other, so that the neuron is in its simplest abstraction
basically summing all the weighted inputs. An output signal, which typically takes the
form of an electrical impulse called a spike, is generated by the neuron if the potential
change generated by all the inputs in a certain time window reaches some threshold. The
generated spike can then trigger the release of neurotransmitters at the sending ends of
this neuron.

Many of the biochemical mechanisms of the information transduction of a neuron
outlined above are known in much more detail and can be incorporated in more detailed
models of neurons (Connor & Stevens, 1971; FitzHugh, 1961; Hodgkin & Huxley, 1952;
Nagumo et al., 1962; Wilson, 1999). Indeed, models of spiking neurons (see Maass &
Bishop, 1998, for some general introduction), which have been first introduced in the
early 20th century (Lapicque, 1907), are becoming increasingly incorporated in detailed
models of brain tissue. However, many of the information processing principles in the
brain, specifically on a larger system level that comprises many thousand of neurons, are
often studied with networks of nodes that represent average firing rates of neurons.
Indeed, it can be shown that a node of the type illustrated in Figure 1a can properly
represent the average response of a collection of neurons with similar response proper-

Figure 1: (A) Basic Node in a Neural Network that Represents Population Activity (B)
Examples of Gain Functions Frequently Used in Technical Applications of Artificial
Neural Network (C) Schematic Outline of a Biological Neuron
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ties if various conditions are fulfilled, including slow varying changes in the population
and the absence of spike synchronization effects (Gerstner, 2000). The basic message
here is that the population averages of neuronal responses of brain tissue can be modeled
to some degree with simple processing elements as illustrated in Figure 1a, and that it is
possible that many different forms of gain functions can be realized by small neuronal
networks. We could study the specific realization of specific nodes in biological terms
in more detail, but we choose here to move forward in the direction of exploring the
computational consequences of specific networks of such simple nodes.

FEED-FORWARD VS.
RECURRENT NETWORKS

As mentioned in the introduction, a very popular organization of nodes into
networks is the layered structure as outlined in Figure 2a. Such networks operate in a
strictly feed-forward manner, in which each node in each layer receives inputs from the
previous layers and generates outputs that are used in the subsequent layers. An input
pattern fed to such a network can take the form of a vector with one component for each
of the input nodes. The output can be represented as a vector with the number of
components equal to the number of output nodes. With this formulation of the system
a feed-forward network can be seen as implementing a mapping function from one vector
space into another. As mentioned above, a multilayer perceptron can in principle realize
any mapping between two vector spaces with the proper assignment of parameters
(Hornik et al., 1989). Finding the appropriate parameters in order to realize a specific
mapping function is the task of a learning algorithm, of which the error-backpropagation
algorithm is the most prominent example for such networks. This algorithm is based on
the maximization of an objective function (or minimization of an energy function) with a
gradient-ascent (or gradient-descent) method. Many training samples are typically
required to discover the statistical structure of the underlying mapping function.

Another network organization of simple nodes, which is the focus of this chapter,
is illustrated in Figure 2b. There is only one layer in this network architecture, and the
output of this layer is fed back as input to the network in addition to potential external
input such networks can receive. Thus, even with a constant input, the state of the
network can change within each execution step as the effective input of the network might
change over time. Such a network is a dynamical system, and it turns out that the behavior
of this system depends strongly on the values of the connection weight parameters.
There are many possible choices of weight values, and we will meet two procedures in
this chapter to choose specific values, either setting these parameters in an organized
way according to a predefined function, or using a learning procedure to adapt these
parameters based on examples shown to the network.

The learning algorithms typically used with such network architectures are so-
called Hebbian rules, which are learning algorithms that change the weight values
according to the state (activity) of the nodes that frame a specific connection (the link
between the nodes). Such rules are local because the change in the connection strength
depends only on information firing in the framing nodes of each link. The network activity
during the learning phase is kept clamped to constant values supplied by the external
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input. The recurrent connections have therefore no effect during this learning phase.
This is important, as the recurrent connections could otherwise modify the node values
in complex ways and thereby destroy the information that we seek to store in such
networks. Note that the resulting weight values in Hebbian rules will ultimately be
symmetric in the sense that a connection from node a to node b will have the same value
as a connection from node b to node a.

Recurrent networks trained on random patterns with a Hebbian learning rule have
interesting properties when it comes to a retrieval phase after learning. In such a phase
the network is initialized with a possible noisy version of one of the training patterns that
was used during learning. During the updating of the network the state of the network
evolves with each update-iteration, until the network reaches a point where the node
activities do not change any more. Such a state is a point attractor in the dynamical system
of this recurrent network, and such networks are therefore often called (point) attractor
neural networks (ANNs). ANNs are useful devices because the point attractors can
correspond to stored pattern in such networks. Thus, stored patterns can be retrieved
from partial information (associative memories) or noisy versions of a stored pattern
(noise reduction). An example of a program that demonstrates the associative storage
abilities of an ANN network is detailed in Appendix A.

POINT ATTRACTOR VS.
CONTINUOUS ATTRACTOR NETWORKS
Another way in which the basic recurrent networks discussed here are used to

model brain functions are models in which the weight values are preassigned with
specific values. A common choice in neuroscience is thereby marked by a specific
interaction structure, that of local cooperation and global competition. This is imple-

Figure 2: Two Principal Network Architecture Used Frequently in Neural Network
Computing, that of a Multilayer Perceptron (A) and a Recurrent Network (B)
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mented with weight values that only depend on the distance between nodes: nodes that
are “close” have a positive weight value (excitatory), whereas weight values of mutually
“distant” nodes have negative (inhibitory) weight values. We will discuss below in more
detail the meanings “close” and “distant” can have, but for now it is sufficient to think
of a chain of nodes as illustrated in Figure 2b and to use the Euclidean distance between
the nodes as a measure of their closeness.

A positive weight value between close nodes creates localized positive feedback
loops in which any initial node activity gets reinforced between such nodes. We call such
activity an activity packet. The effect of an activity packet on other nodes in the network
is that it suppresses other network activity through the long-range inhibition. This
balance between local excitation and global inhibition is the source of the formation of
an activity packet in the network. An example of the time evolution of the network activity
in such a network is shown in Figure 3a. A corresponding example MATLAB program
that specifies the details of the model is given in the Appendix B. The network was, in
the shown experiment, initialized with equal node activity, but an external input centered
on the central nodes in the network was applied for the first 10 iterations (time-steps).
The strong response in node activity to the external input is clearly visible, but what is
most important for our following discussions is that an activity packet persists even after
the external input is removed. This activity packet is an attractor state of the network.
Any external input that is symmetric around the center of this attractor state will lead to
the same asymptotic activity packet after the external input is removed.

How many different attractor states exist in this network? In networks with perfectly
shift invariant interaction structures it is possible to stabilize an activity packet around
each node of the network by applying an initial external input centered on the node on
which the activity packet should be stored. The number of attractor state does thus scale
with the number of nodes in the network. It follows that it is possible to increase the

Figure 3: (A) Time Evolution of Network States in a CANN Model (B)  Isolated Point
Attractors and Basin of Attractions in ANN Models (C) A Line of Point Attractors in
a CANN Model
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number of attractor states by increasing the density of nodes in the network. Mathemati-
cally it is possible to think about a continuum of nodes that represents a neural field. Such
a neural field model has then a continuous manifold of point attractors, which motivated
the name continuous attractor neural networks (CANNs) for such models. Those
networks are still point attractor neural networks but with a specific point attractor
structure, that of a continuous manifold of point attractors. Although truly continuous
manifolds of point attractors exist only in the limit of an infinite number of nodes, the name
CANN is also used for discrete models when the number of nodes is sufficiently large
to approximate the continuous case sufficiently. This convention is adopted in the
following.

The different attractor structures of recurrent networks discussed here are illus-
trated in Figure 3b and Figure 3c. The previously discussed associative memory networks
have point attractors that are surrounded by a basin of attraction. The network state
evolves to the point attractor that lies within the basin of attraction in which the network
is started. This is why a point attractor structure with separated point attractors is useful
as associative memory. A continuous attractor network is not useful as associative
memory because perturbations of a network state that are not symmetric to an initial
activity packet can trigger different attractor states. However, these networks can still
be used as memories in the sense that they can hold information given to the network
over a period of time. Such networks are therefore short-term (erasable) memory stores,
and there are indications that the brain uses these mechanisms for such purposes
(Compte et al., 2000; Wang, 2001). However, there are also several other features of such
networks that might not only be utilized in the brain, but might allow the use of such
networks in technical applications. Some of the features and possible applications will
be explored below.

TRAINING CONTINUOUS
NEURAL NETWORKS

CANN models in the neuroscience literature are commonly employed with preas-
signed weight vales. A typical example of the weight profiles is a Gaussian function of
the weight values as a function of the Euclidean distance, as illustrated in Figure 4. We
mentioned above that it is necessary for CANN to have interaction structures with short-
distance excitation and long-distance inhibition, but we can always absorb the negative
values for long distances in a global inhibition constant that shifts the Gaussian toward
negative values. We can therefore simplify the following description by outlining the
following thoughts with only positive weight values while keeping in mind that a global
constant inhibition is part of the network operation (see Appendix B).

The preassigned interaction structure can be well motivated in biological systems.
Such a structure can, for example, evolve from the growth of neural structures in a
systematic way, with short excitatory neurons that project to local neurons, and
inhibitory neurons that project to more distant neurons. Cortical organizations are not
obviously consistent with this view as inhibitory interneurons are typically short-
ranged. However, it is possible that the long-range inhibition is an emerging property of
the pool of inhibitory interneurons. It is also possible that the cortex employs the
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mechanisms discussed in the following only on a local level. The basic CANN model
discussed here should be viewed as a simplified model that allows the outline of some
general properties of such networks. Nevertheless, some brain areas have been shown
to be consistent with an effective interaction structure typical to CANN models. An
example is the superior colliculus, a midbrain area that is important in the integration of
information to guide saccadic eye movements (Trappenberg et al., 2001; see Figure 4b).

Although there are many biologically plausible mechanisms to assign very system-
atic neuronal interaction structures in the brain, such a pre-assignment is not possible
if the effective network architecture has to be able to adapt to changing environments.
Adaptive mechanisms of weight values are then mandatory, and training algorithms
become central for such applications. An area in the brain that has an unusual number
of feedback connections to the same brain area is the CA3 structure in the hippocampus,
a brain area that is associated with episodic memories. Episodic memories are memories
of specific events as opposed to memories with more generic content such as acquired
motor skills. The anatomic organization of this brain structure, as well as many experi-
mental findings from cell recordings, strongly suggests that associative memories of the
recurrent network type discussed here might be a mechanism used in this brain area to
support episodic memories, and that Hebbian learning could be the principal biological
mechanism that supports the adaptation in this brain structure. Indeed, the hippocampus
was the area where long-term potentiation (LTP) and long-term depression (LTD), the
synaptic expression underlying Hebbian learning in the brain, was first discovered (Bliss
& Lomo, 1973).

Interestingly, studies of the hippocampus in rodents indicate that this brain
structure is used to represent spatial information of specific environments in these

Figure 4: (A) Illustration of the Connection Strength Between Nodes in a One-
Dimensional CANN Model with Gaussian Profile (The solid line represents the
connection strength between the center node and all the other nodes in the network.
This node is connected most strongly to itself, followed by the connection to its nearest
neighbors. The dotted lines represent the corresponding curves for the other nodes in
the network.)  (B) Normalized Effective Interaction Profile in the Monkey Superior
Colliculus (see Trappenberg et al., 2001) (The data points with different symbols are
values derived from different cell recordings, while the solid line is a model fit.)
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animals. Neurons that respond in a specific way to the location of an animal have been
termed place cells. The physiological properties of place cells have long been modeled
with CANNs. However, a topographical structure that relates the physical location of a
cell to the feature values it represents with its activity response has not been found. This
indicates that if CANN models are the underlying mechanisms of place cells, the
systematic interaction structure in CANN models must be able to evolve through
learning. As the hippocampus exhibits LTP and LTD it is obvious that Hebbian learning
should be able to form the specific interaction structures from specific training examples.
Indeed, applying Hebbian learning to all attractor states of a continuous attractor does
result in weight values that only depend on the distance of neurons with respect to their
response properties (e.g., distance in feature space) with local excitation and global
inhibition (Stringer et al., 2002).

It is worth highlighting again that the network has to be trained on all attractor
states, which is an infinite number in the case of a true continuous attractor network for
a neural field model. The number of attractor states can still be very large in the discrete
approximation of such models with a finite number of nodes. However, the training on
all possible states is only necessary in a strict mathematical sense. With small modifica-
tions of the model, which are outlined in the next section, it is possible to achieve
sufficient training with a small fraction of the possible states in the network.

NOISE AND TRAINING ON SMALL
TRAINING SETS: NMDA STABILIZATION
A continuous manifold of attractors in recurrent network models only exists if the

weight profile is shift invariant. This means that the weight values do only depend on
the distance between nodes and not on their index numbers. For example, a weight value
between node number 12 and 17 has to be exactly the same as the weight value between
nodes 240 and 245 if the nodes are spaced equidistantly and numbered in sequence. Any
small fluctuation of the strict equivalence results in a drift of an activity packet, and the
model has then isolated point attractors instead of the continuous manifold of point
attractors. An example of the drift of the activity packets is shown in Figure 5a. In this
experiment a Gaussian weight function was augmented by noise. The figure displays
several lines; each line represents the time evolution of the center of mass of the network
activity after initializing the network with an activity packet at a different node in the
network. Figure 5b shows an example of a similar experiment where the network was
trained on only a subset of all possible states (10 out of 100). No noise was added to the
resulting weight values, but the training on the subset of possible training patterns
resulted again in an attractor structure with isolated point attractors.

To solve the problem of drifting activity packets in such CANN models, Stringer et
al. (2001) proposed a modification of the basic CANN model in which the firing threshold
is decreased for the nodes that were active in the previous time step. A possible neuronal
equivalent of such a mechanism is provided by the voltage dependence of NMDA-
mediated ion channels. An NMDA receptor is a specific subclass of a glutamate receptor
that can be activated with the pharmacological substance N-methyl-D-aspartic acid
(NMDA). Most important for the mechanisms explored here is the characteristic of the
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associated ion channels that their permeability for ions depends on the postsynaptic
potential. When these ion channels are opened by glutamate while the postsynaptic
potential is at rest, then the ion channel is blocked by magnesium ions. Depolarization
of the membrane removes this blockage so that sodium and potassium ions, as well as
a small number of calcium ions, can enter the cell. NMDA synapses are typically co-
located with non-NMDA synapses that do not depend on the postsynaptic potential.
The net effect of these two channels is thus a lower excitation threshold of the neuron
following previous excitation, which is the mechanism implemented in the simulations.
We refer to this mechanism as NMDA-stabilization.

When including NMDA-stabilization in the computer simulations of the previous
experiment, in which the network was trained on only a subset of all possible training
patterns, an increase of the number of attractor states can be seen (Figure 5c). It is
possible to achieve a different number of attractor states by varying the amount by which
the firing threshold is decreased after a node becomes active. However, it is important
to adjust this amount carefully to not disrupt the CANN features in this network.

LOAD CAPACITY OF ATTRACTOR MODELS
As mentioned above, the point attractor states in ANN models are useful as

associative memory states because they correspond to patterns on which the network
was trained, and these memories can be triggered by patterns with some sufficient
overlap with the trained patterns. The number of stored patterns P relative to the number
of connections per node C in the network is called the load α=P/C of the network. It is
possible to add attractor states through Hebbian learning in such networks until a critical
load a

c
 is reached; at which point all the attractor states related to the stored pattern

become unstable. This critical load is also called the load capacity of the network. The
load capacity achieved with Hebbian learning on random binary patterns is α

c
=k/(a log(a)),

where k is a constant with value k ≈ 0.2-0.3, and a is the average sparseness of the pattern,
which is the ratio of ones to zeros in the case of binary patterns (Rolls & Treves, 1998).
The maximal possible load capacity, which can be achieved with an optimal learning rule,
is k=2 (Gardner, 1987). We are considering here fully connected networks in which the

Figure 5: Drifting Activity Packet in a Network with Noisy Connections (A) and
Partially Trained Network (B) (C) Inclusion of Some NMDA Stabilization in the
Partially Trained Network
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number of connections per node is equal to the number of nodes in the network. The load
capacity of these point attractor networks does therefore scale with the number of nodes
in the network.

Attractors can be stabilized around each node in CANN models, and the load
capacity of CANN models does therefore also scale with the number of nodes in the
network. However, as mentioned above, these attractor states are only of limited use with
respect to associative memory states. Nevertheless, these states are still memory states
in the sense that they keep the information that was given to them by an initial input that
subsequently disappeared. This is the basis for using CANN models as short-term
memory stores. Hence, rather than counting the number of attractor states in these
networks, it is more crucial to ask how many short-term memories can be stored
simultaneously in such networks. The answer is one and only one. The competitive
nature of network activity in these networks enforces the survival of only one activity
packet after external input to the systems is removed, even if the external input has several
peaks in the activity distribution. Indeed, this is a major feature of these networks that
can be used for specific information processing implementations discussed further
below.

Before we leave the load capacity issue it is worth mentioning that the number of
concurrent activity packets can be increased with the inclusion of NMDA-stabilization
in the model (Stringer et al., 2003; Trappenberg, 2003). However, activity packets have
still to be sufficiently distant from each other, for they would otherwise attract each other
and merge to one activity packet. The possible number of concurrent activity packets
does thus depend on the size of the activity packet, which is in turn a function of the width
of the weight function. Typical values of such widths, which are consistent with
physiological evidence in the brain, allow only a small number of concurrent activity
packets in such networks even with the inclusion of stabilization mechanisms along the
lines discussed in the previous section. This is a possible explanation of the source of
the limited storage capacity of human working memory (Trappenberg, 2003), which is
known to be severely limited to a small number such as 7±2 (Miller, 1956).

APPLICATIONS OF CANNS:
WINNER-TAKES-ALL AND
POPULATION DECODING

Continuous attractor neural networks are of central importance in computational
neuroscience as there are strong indications that such mechanisms are used frequently
for information processing in the brain (Amari, 1977; Compte et al., 2000; Grossberg, 1973;
Taylor & Alavi, 1995; Trappenberg et al., 2001; Wilson & Cowan, 1973). The study of
CANN models, in general as well as in specific computational circumstances, is important
in order to see if such models can explain measured effects, or if, on the contrary, the
experimental data indicate that other mechanisms must be at work in the brain. While there
are strong beliefs that CANN mechanisms are central for information processing in the
brain, the exploration of their potential in technical applications has only begun.

A basic feature of CANN models it that an initial distributed input will evolve into
stereotyped activity packet, where the position of the activity packet is determined by
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the support it gets from the initial input pattern. Through the cooperation between close
nodes and the competition between distant nodes, locations with the strongest support
will win the competition. The support is thereby a combination of the initial activity of
single nodes in combination with the activity of neighboring nodes, and the CANN
models implement thereby a specific version of a winner-take-all algorithm. This winner-
take-all algorithm could be of practical use in many applications. A standard winner-take-
all algorithm relies basically on an arg max function that returns the index of the largest
component of a vector. This is a global operation and as such computationally inefficient.
CANN models offer an interesting version of such functions with the potential of efficient
implementations in a distributed system. The utilization of CANN in applications that rely
on winner-take-all or winner-take-most algorithms should be explored in further research.

Note that CANNs can be even more flexible than functions that look strictly only
for the largest component of a vector. An example can be seen when two initial activity
packets with similar magnitude are supplied as initial input. If such initial activity packets
are close to each other, then it is possible that the two activity packets merge under the
dynamics of the system into an activity packet somewhere in between the two initial
stimuli locations (see Figure 6). This is a form of vector averaging often observed in
related psychophysical processes such as rapid saccades made to two close targets. The
location of the asymptotic activity packet can be a complicated function of the initial
input pattern, and several different solutions are possible with different choices of
weights used in specific networks. There are thus many possible applications of such
networks in systems that need to implement complicated conflict-resolution strategies.

A related interesting application of CANN models, with potential relevance for brain
processes and technical applications, was recently explored in a variety of papers
(Deneve et al., 1999, 2001; Pouget & Zhang, 1997; Wu et al., 2002). It is well established
that the brain represents information, such a sensory input, in a distributed way in the
activity of neural responses (see Abbott & Sejnowski, 1999). Many neurons are typically
involved in the stimulus representation rather than a single neuron, which is the basis
of the distributed nature of information encoding in the brain. Distributed representa-
tions have interesting features for technical applications; not only can such system be
designed to operate in a more efficient way through parallel processing of chunks of
information, but they allow in addition the design of systems that are robust in terms of
losing complete information due to partial system errors. The challenge with distributed
codes is the decoding of the information, the process of deducing the most likely stimulus
given a certain activity pattern of the nodes.

Population decoding can be a computationally expensive task, and the process is
certainly simplified if we know the principal form of the function of the node responses
with respect to a feature value conveyed by a stimulus. This function is often called the
tuning curve of a node. There is, however, another factor that makes population decoding
challenging in the brain, which is the large amount of noise present in the activation of
neurons. In other words, there is only a certain probability that a specific stimulus
initiates a certain activity of a node. It is hence appropriate and useful to formulate
population decoding in statistical terms, and many statistical methods have been devised
to solve decoding in noisy environments (see for example Abbott & Sejnowski, 1999).
One important method is based on the maximum likelihood estimation. This specific
method is equivalent to a least square fit of the tuning curve to the node responses in
the case that the conditional activation probabilities are Gaussian functions.
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The use of CANN models for population decoding is based on the idea that a
specific form of an activity packet will appear after initializing such networks with
population code to be decoded. The CANN model is then an implementation of a fitting
procedure of a function, which is given by the shape of the attractor states, to data, which
are given as initial states to the network. Tuning curves of neurons in the brain often
appear to be approximately Gaussian-shaped, and the asymptotic activity packets in
CANN models can have a similar form. Indeed, the attractor states can be made exactly
Gaussian with a proper normalization of the weight values in the training procedure
(Deneve et al., 1999). Thus, CANN models can be an efficient implementation of maximum
likelihood decoding of distributed codes (Wu et al., 2002).

A simplified example is shown in Figure 7. A Gaussian signal (dashed line) was
thereby convoluted with additive white noise, which resulted in the noisy signal shown
as dotted line in the figure. This signal was given to a CANN as initial stimulus, and the
network was allowed for several time steps to evolve after the initial input was removed.
The resulting activity packet (solid curve) resembles closely the initial noiseless signal.

UPDATING REPRESENTATIONS FROM
DIFFERENTIAL INFORMATION:

PATH-INTEGRATION
As mentioned above, CANN models are used to model place fields in the hippoc-

ampus of rodents that represent the location of the animal in the environment. Such
models are also used in a similar way to model cells that represent head directions of the
rodents. Such cells are a good example of how the state of an animal, in this case spatial
information, is represented internally in the brain. Of course, such external representa-

Figure 6: Experiment with Two External Gaussian Signals that are Given to the CANN
Until t=10 (The resulting activity packet after equilibration is an average of the two
external locations.)
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tions have to be updated when the position of the animal changes. This can be achieved
efficiently by external stimuli such as the sight of a specific landmark in the environment.
In the CANN model, this corresponds to a new external input to the network that would
trigger the corresponding attractor state.

However, it is also well known that internal spatial representations, such as the
sense of location or direction, can be updated in the dark where visual cues cannot be
used. Self-generated (idiothetic) cues have therefore to be the source of updating the
states of CANN models. An obvious source of such information is the vestibular system,
which is based on motion sensors in the ears. Such idiothetic information does not
represent absolute geographic coordinates but rather the change of positions or
orientations in time. Hence, there must be a mechanism to integrate this information with
the absolute positioning information represented by place or head direction cells. This
mechanism was termed path-integration in the area of place representation, and the term
is now often used generically for updating absolute representations from signals
representing differential information.

The basic idea of enabling path-integration in CANN models is based on a specific
modification of the basic model that result in an effectively asymmetric weight function.
It was mentioned above that the symmetry of the weight function is required to enable
stable, non-shifting activity packets. Asymmetric weight functions support one kind of
neighboring nodes more than others, which results in a shift of the activity packet. The
basic method of enabling path-integration in CANN models is hence to modulate the
asymmetry of a basic symmetric weighting function. This can be achieved through
predefined, specifically organized networks (Skaggs et al., 1995), but it is also possible
to achieve such organizations through learning procedures in CANN models (Stringer
et al., 2002; Zhang, 1996).

Figure 7: Illustration of the Application of CANN for Noisy Population Decoding (The
original signal (dashed line) is convoluted with additive white noise. This noisy input
signal (dotted line) is given to a CANN network as initial state. Resulting firing pattern
of the network is shown as solid line, which resembles closely the original signal.)
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The key ingredient in the path-integration algorithm for CANN networks is the
addition of connections from cells that have activity related to the motion information.
In the case of a head direction system they are called rotation nodes. Activities in the
rotation nodes have the effect of modulating the recurrent connections in the CANN
model. The modified network architecture is illustrated in Figure 8a. Only connections
between neighboring nodes in the recurrent network, and the corresponding connec-
tions between rotation nodes and the CANN nodes, are shown for simplicity. The
connections between the rotation nodes and the CANN nodes can be trained with
Hebbian learning based on the co-activation between the rotation nodes and the CANN
nodes. An example of resulting weight values is shown in Figure 8b. The solid line
represents the symmetric excitatory weights between CANN nodes if none of the rotation
nodes are active. The effective weights between the CANN nodes for some activity of
the clockwise nodes are shown as a dotted line. This asymmetric nature of these weights
drives the activity packet in a clockwise direction.

An example of the resulting network activity is shown in Figure 8c. The network is
initialized after training, with an external input at node number 50 and no activity in the
rotation nodes. After withdrawl of the external input the network maintains the location
of the activity packet through the baseline connections in the network that are symmetric.
An external activation in the clockwise rotation node is then introduced at time t=20t. This

Figure 8: (A) Outline of the Network Architecture to Enable Path-Integration in CANN
Models (B) Effective Weights Between CANN Nodes without Input from the Rotation
Nodes (solid line) and with Input from the Clockwise Rotation Node (dashed line) (C)
Evolution of an Activity Packet in the Path-Integration Network (A clockwise rotation
node is activated at time t=20τ, which drives the activity packet towards positive node
numbers until the rotation node activity is reset to zero. A counter-clockwise rotation
node is then activated more strongly at t=50τ, which increases the velocity of the
reverse movement.
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results in an effective asymmetric weight profile between CANN nodes, which in turn
results in a movement of the activity packet towards higher node numbers with constant
velocity. The movement of the activity packet stops as soon as the activity of the rotation
node is withdrawn. Stimulation of the counterclockwise rotation node results in a
movement of the activity packet in the opposite direction. The velocity of the movement
depends thereby on the activity strength of the rotation node. The activity of the
counterclockwise rotation node was set to twice the value in the clockwise movement
in the specific example shown in Figure 8c. This resulted in an increased movement
velocity of the activity packet in the reverse direction.

Path-integration can be realized in different, more direct ways on computer systems,
and it is obvious to ask how such a network implementation of an integration algorithm
could be useful in technical applications. It is, of course, crucial to have such an algorithm
if we want to update feature values that are represented in CANNs, with all their
advantages of distributed systems in terms of fault tolerance and computational effi-
ciency. However, in addition to these obvious advantages it is also interesting to note
that the above path-integration algorithm is adaptive, as the weight values are learned
from specific examples (Stringer et al., 2002). Such systems can hence be used to learn
motor sequences, which opens the doors to a whole world of technical applications.
Examples are robot navigation and speech generation, and many other areas of applica-
tions can be explored. Neuroscientific research indicates that nature does use such
mechanisms in the brain, but more research into the specific advantages and applications
of such networks is required.

HIGHER-DIMENSIONAL MODELS
Most of the discussions in this chapter have been made exemplary for one-

dimensional CANN models that can store one continuous feature value (or attribute)
through the location of an activity packet. However, all the mentioned features of CANN
models can be generalized to higher-dimensional CANN models. Instead of a line of
nodes, leading to a line of point attractors, a two-dimensional sheet of neurons with
corresponding weight structure gives rise to a two-dimensional sheet of point attractors,
and higher-dimensional arrangements of nodes can be used to realize higher-dimensional
attractor manifolds. Predefined weight structures are only one way to realize such
attractor models, and we stressed in this chapter that a training algorithm with specific
training sets could be used to set up this weight structure. This opens the door to an
interesting application of such networks in the discovery of the association structure of
the underlying problem, in particular, the effective dimensionality of data used to train
the networks.

Recurrent networks, in which every node is connected to all the nodes in the
network, can be viewed as a high-dimensional model if we take the number of neighbors
as the defining characteristic of the dimensionality. For example, each node in a chain of
nodes with Gaussian weight profiles has two distinguished neighbors if we take only the
strongest connections into account. A two dimensional grid of nodes with the corre-
sponding two-dimensional Gaussian weight profile has four neighbors. If we set the
weight values before learning to equal numbers for all connections, than we could say
that the effective model is high dimensional just based on the number of nodes that are
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most strongly connected. At some point we might want to choose appropriate definitions
for dimensionality, but for now it is sufficient to outline the principal idea without giving
specific numbers.

The dimensionality discovery ability of the Hebbian-trained recurrent networks is
outlined with an example shown in Figure 9. There we choose a network of 20 nodes that
are arbitrarily numbered and arranged in a circle. The initial equal connection strength
between the nodes is illustrated with connecting lines of equal width in Figure 9a. Each
node was given randomly one of the directions for which it would respond most
vigorously (random preferred directions). The learning phase consisted of presenting
Gaussian activity profiles for all possible direction to the network. That is, for each
pattern the nodes were clamped to a value that decayed according to a Gaussian function
with respect to the distance of the preferred direction of this node with the direction
represented by the training pattern. The resulting weight values of the connections after
training on these training data are shown in Figure 9b, where only the strongest weight
values are shown with line widths that are proportional to the weight strength. No
organized structure can be found in this example. However, in Figure 9C the nodes are
reorganized so that nodes with strong connections are plotted close to each other, and
nodes with weaker connections are plotted more remotely. The resulting structure is one-
dimensional, reflecting the structure of the training space. If the activation of the nodes
during training had been caused by a two-dimensional training set structure, then there
would be connections between the nodes outside the one-dimensional arrangement of
nodes, and a two-dimensional rearrangement of nodes would have to be performed to find
an orderly organization of the connections proportional to their strength values. Even
without realizing the arrangement it is possible to use some form of appropriate counting
of nodes with similar weight values as an indicator of the dimensionality of the underlying
feature space.

Note that this procedure is complementary to a self-organizing map (SOM) as
proposed, for example, by Kohonen (1994). The dimensionality of SOM model is
predefined by the dimensionality of the SOM grid. This can be viewed as a predefined
lateral (recurrent) interactions structure. Indeed, a major step in SOM algorithms is to find
the node that is most activated by a specific training stimulus (winner-takes-most), and
this step can be viewed as a shortcut to a possible neural implementation based on CANN
models. The major difference between the SOM model and CANN model is that the SOM
model trains the receptive fields (input connections) to the recurrent networks based on
a fixed interaction structure in the SOM layer, whereas the trained CANN model adapts
the interaction structure within the recurrent network with fixed receptive fields. An
interesting class of models known as neural gas models (Matinetz & Schulten, 1991) are
set up to train both types of connections. However, this is only useful if different
timescales of the adaptation time for the different types of connections are used.

SUMMARY AND OUTLOOK
Continuous attractor neural networks have been discussed in the neuroscience

related literature for nearly 30 years, and it is increasingly evident that such mechanisms
are used in the brain. Such mechanisms must therefore be useful for information
processing in distributed systems. Continuous attractor networks implement coopera-
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tion and competition between input stimuli, and the network dynamics drive initial input
to one of many attractor states based on some dominating input features. Such networks
can be used to resolve competition in various ways. This is closely related to winner-take-
all mechanisms, but such networks can certainly implement more complicated versions
of such mechanisms than only looking for the largest component in a vector. The recently
explored application of CANNs for population decoding is a good example. CANNs
represent thereby efficient implementations of a maximum likelihood estimator, and
similar applications of such algorithms are likely to emerge. More research into the
application of such networks in related problem domains could be a fruitful endeavor.

CANNs have a strict regularity of the connection weights that define the network,
which can often be set according to a function so that there is no need for lengthy training
algorithms. However, it is also possible to use Hebbian learning to define the weights.
A possible application of such training is the discovery of the relation structure of
training patterns as mentioned in the text, which should be explored further. This is, of
course, closely related to associative learning, and it is good to stress again the close
relation of CANN networks to the more commonly known ANN (attractor or Grossberg-
Hopfield neural networks).

Many additions to the basic CANN model have been proposed in recent years that
are destined for further explorations into various application areas. Among these
additions is an elegant way of updating the memory in such networks from differential
information, commonly known as path-integration. Such mechanisms have many poten-
tial applications in motor control and navigation, as is evident from their possible role
in related biological systems. It is possible to train such networks on specific examples
and thus implement memories of specific movement patterns. Many applications of such
mechanisms are possible, and such mechanisms might be at work in the brain, for example
in the acquisition of motor primitives. Further research is necessary to explore these
possibilities and to establish more specific algorithms based on CANN mechanisms to
solve specific computational problems.

Figure 9: (A) Fully Connected Network of 20 Nodes Before Training when all
Connections have Same Weight (B) Network after Training, where Weight Strength
Indicated with the Line-Width of the Connections (C) Network after Training when
Nodes are Arranged so that Neighboring Nodes have Strong Weights (see also
Trappenberg, 2002)
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APPENDIX A

A MATLAB Implementation of an Attractor Neural
Network Simulation

Simulating the recurrent neural networks discussed in this chapter is fairly easy, and
a simple implementation is outlined in the following to specify the details of such
networks. The aim of this section is to run a simple computer experiment that demon-
strates the associative memory features of such networks. The experiment includes the
following five steps:
1. The generation of a set of random pattern vectors
2. The training of the network on these patterns
3. Initializing the network with a random version of one of the training patterns
4. Iterating the network several times
5. Plotting the results in terms of the overlap of the network state after the iterations

in comparison to the training patterns

A complete MATLAB program, one line for each of the steps mentioned above is:

Each of these steps in now explained in more detail.
1. We are choosing here a network with 500 nodes and generating 10 pattern vectors

that will be stored in the network. The MATLAB function rand(n,m) generates a
matrix with n rows and m columns, where each of the elements is a uniformly
distributed value between 0 and 1. Multiplying each of these numbers by 2
produces a random number between 0 and 2. The MATLAB function floor rounds
this number down to the nearest integer; hence this results in a random binary
number of either 0 or 1. By multiplying this number by two and subtracting one we
generate a random number of either -1 or 1. The matrix pat is therefore a random matrix
representing 10 row vectors, each with 500 random elements that are either 1 or -1.

2. We use a fully connected network in which each node is connected to each other
node in the network. The strength of each connection is stored in a weight matrix
w, which is hence a 500 times 500 matrix. Hebbian learning proceeds in the following
way: All the weights are initialized to zero. We then present the first pattern to the
network and add to each weight component the product of the framing nodes of
this connection. The same procedure is used for each of the remaining patterns. The
resulting matrix is equivalent to the matrix that is the matrix product between the
matrix pat and its transposed pat’.

pat=2*floor(2*rand(500,10))-1;           % Create random binary pattern 

w=pat*pat';                              % Hebbian learning 

r=(2*rand(500,1)-1)+0.1*pat(:,1);        % Initialize network 

for t=2:10; r(:,t)=tanh(w*r(:,t-1)); end % Update network 

plot(r'*pat/500)                         % Ploting results    
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3. The activity (rate) of each node at each time step (iteration) of the network is stored
in the vector r(500,t). At the start of the simulation (t=1) the network is initialized
with a random vector ((2*rand(500,1)-1)) that is only slightly biased with the first
training pattern (0.1*pat(:,1)). The starting state of the network is hence a random
version of one of the arbitrarily chosen training pattern.

4. The state of the nodes is then updated for nine additional time steps. In each time
step we calculate the new state of a node by first summing the weighted inputs to
this node from all the other nodes (w*r(:,t-1)). The new state value of the node is
then given by the hyperbolic tangent of this value, where tanh is the specific choice
of the transfer function used in this simulation.

5. Finally, to examine the development of evolution of the network states we plot the
overlap of the network state with all the patterns that we used during training. We
thereby defined the overlap as the dot product between the state of the network
r and each training pattern r’*pat/500.

A resulting plot of running the program is shown in Figure 10.

Figure 10: Results from an ANN Simulation (Each of the 10 lines in the plot corresponds
to the overlap (cosine distance) between the network state at each time step (abscissa)
and a pattern that was used in the learning phase for training. The network state has
initially only a small overlap with all of the stored patterns, but one of the stored
patterns was retrieved completely at time step 9. This is an example with a rather long
convergence time. Many other examples have much smaller convergence times.)
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APPENDIX B

MATLAB Code for CANN Model

Main program:

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% 1-d Continuous Attractor Neural Network with Hebbian learning 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    clear; clf; hold on; 

    nn = 100; dx=2*pi/nn; % number of nodes and resolution in deg 

    

%weight matrices 

    sig = 2*pi/40; 

    w_sym=hebb(nn,sig,dx)/(sqrt(pi)*sig); 

    C=0.2; 

    Aw=100; 

    w=Aw*(w_sym-C); 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%   Experiment    %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

%1%%% external input to initiate bubble 

   u0 = zeros(nn,1)-10; 

   I_ext=zeros(nn,1); for i=-5:5; I_ext(nn/2+i)=10; end 

   param=0; 

   tspan=[0,10]; 

   [t,u]=ode45('rnn_ode_u',tspan,u0,[],nn,dx,w,I_ext); 

   r=f1(u); 

   surf(t',1:nn,r','linestyle','none'); view(0,90);        

 

%2%%% no external input to equilibrate 

   u0 = u(size(t,1),:); 

   I_ext=zeros(nn,1); 

continued
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Function hebb.m:

   param=0; 

   tspan=[10,100]; 

   [t,u]=ode45('rnn_ode_u',tspan,u0,[],nn,dx,w,I_ext); 

   r=f1(u); 

   surf(t',1:nn,r','linestyle','none'); 

function w = hebb(nn,sig,dx) 

% self organization of symmetric cann interactions 

    lrate=1;     % learning rate 

    w=zeros(nn); 

    %%%%%%% learning session 

    for epoch=1:1 

        %w2(epoch,:)=w(50,:); 

        for loc=1:nn; 

            r=in_signal_pbc(loc*dx,1,sig,nn,dx); 

            dw=lrate.*r*r'; 

            w=w+dw; 

        end 

    end 

    w=w*dx; 

return 

Function rnn_ode_u.m:

function udot=rnn(t,u,flag,nn,dx,w,I_ext) 

% odefile for recurrent network 

   tau_inv = 1./1;      % inverse of membrane time constant 

   r=f1(u); 

   sum=w*r*dx+I_ext; 

   udot=tau_inv*(-u+sum+I_ext); 

return 
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Function in_signal_pbc.m:

function y = in_signal_pbc(loc,ampl,sig,nn,dx) 

    y=zeros(nn,1); 

    for i=1:nn; 

         di=min(abs(i*dx-loc),2*pi-abs(i*dx-loc)); 

         y(i)=ampl*exp(-di^2/(2*sig^2)); 

    end 

return 

Function fl.m:

function f1=rnn(u) 

% gain function: logistic 

   beta =.1; alpha=.0;  

   f1=1./(1+exp(-beta.*(u-alpha))); 

return 


