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ABSTRACT

In this chapter a brief review is given of computational systems that are motivated by
information processing in the brain, an area that is often called neurocomputing or
artificial neural networks. Whilethisisnow awell studied and documented ar ea, specific
emphasis is given to a subclass of such models, called continuous attractor neural
networks, which are beginning to emerge in a wide context of biologically inspired
computing. The frequent appearance of such modelsin biologically motivated studies
of brain functions gives some indication that this model might capture important
information processing mechanisms used in the brain, either directly or indirectly.
Most of this chapter is dedicated to an introduction to this basic model and some
extensions that might be important for their application, either as a model of brain
processing, or in technical applications. Direct technical applications are only
emerging slowly, but some examples of promising directions are highlighted in this
chapter.

INTRODUCTION

Computer sciencewas, fromitsearly days, strongly influenced by thedesiretobuild
intelligent machines, and a close look at human information processing was always a
source of inspiration. Walter Pitts and Warren McCulloch published a paper in 1943
entitled “A Logical Calculus of Ideas Immanent in Nervous Activity,” in which they
formulated a basic processing element that resembled basic properties of neurons that
are thought to be essential for information processing in the brain (McCulloch & Pitts,
1943). Such nodes, or similar nodes resembling more detailed neuronal models, can be
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assembled into networks. Several decades of neural network research have shown that
such specific networks are able to perform complex computational tasks.

An early exampleof biologically inspired computation with neural networksissome
work by Frank Rosenblatt and colleaguesin the late 1950s and early 1960s (Rosenbl att,
1962). They showed that a specific version of an artificial neural network, which they
termed perceptron, isabletotranslatevisual representationsof | etters(such asthesignal
comingfromadigital camera) into signal srepresenting their meaning (such asthe ASCI|
representation of aletter). Their machine was one of the first implementations of an
optical character recognition solution. Mappings between different representationsare
common requirements of advanced computer applications such as natural language
processing, event recognition systems, or robotics.

Much of theresearch and development in artificial neural networkshasfocused on
perceptrons and their generalization, so-called multilayer perceptrons. Multilayer
perceptrons have been shown to be universal approximators in the sense that given
enough nodes and the right choice of parameters, such as the individual strength of
connection between different nodes, multilayer perceptrons can approximate any func-
tionarbitrarily close (Hornik et al ., 1989). M uch progress hasbeen madein the devel op-
ment and understanding of algorithms that can find appropriate values for the strength
of connections in multilayer perceptrons based on examples given to the system. Such
algorithms are generally known as (supervised) learning or training algorithms. The
most prominent exampl e of atraining algorithmfor multilayer preceptrons, whichishighly
important for practical applications of such networks, is the error-back-propagation
algorithmthat waswidely popularizedinthelate 1980sand early 1990s (Rumelhart et al .,
1986). Many useful extensionsto thisbasic algorithm have been made over theyears (see
for example Amari, 1998; Neal, 1992; Watrous, 1987), and multilayer-perceptronsinthe
form of back-propagation networks are now standard tools in computer science.

Multi-layer perceptrons, which are characterized by strict feed-forward processing,
can be contrasted with networks that have feedback connections. A conceptually
important class of such networks has been studied considerably since the seventies
(Cohen & Grossberg, 1983; Grossberg, 1973; Hopfield, 1982; Wilson & Cowan, 1973).
Systems with feedback connections are dynamical systems that can be difficult to
understand in a systematic way. Indeed, systems with positive feedback are typically
avoided in engineering solutions, asthey are known to create the potential for systems
that aredifficultto control. The networksstudied inthischapter aretypically trained with
associative learning rules. Associative learning, which seemsto be a key factor in the
organization and functionality of the brain, can be based on local neural activity, which
was already suggested in 1948 by Donald Hebb in his famous and influential book The
Organization of Behavior (Hebb, 1948). Thelocality of the learning rulesisuseful also
in artificial systems asthey allow efficient implementation and parallelization of such
information processing systems.

Recurrent networks of associative nodes have attractive features that can solve a
variety of computational tasks. For example, these networks have been proposed as a
model of associativememory, wherethememory states correspond to the point attractors
in these dynamical systems that are imprinted by Hebbian learning. These types of
recurrent networks are therefore frequently called (point) attractor neural networks
(ANNSs). Theassociativememory implemented by such networkshasinteresting features
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such astheability to recognize previously stored patternfrom partial input, ahigh degree
of fault tolerance with respect to a partial loss of the network, and the efficiency of
learning from single examples; all features that are of major interest to computer
scientists.

Another closely related class of recurrent network models have a specifically
organized connectivity structure and are now commonly termed continuous attractor
neural network (CANN) models. Such models have been studied in conjunction with
many diversebrainfunctionsincludinglocal cortical processing (Hansel & Sampolinski,
1998), saccadic motor programming (Kopecz & Schéner, 1995), working memory (Compte
et al., 2000; Wang, 2001), and spatial representation (Redish et al., 1996; Skaggset al .,
1995; Zhang, 1996). The diversity of application of thismodel in computational neuro-
scienceindicatesthat related mechanismsare used widely intheinformation processing
in the brain. In this chapter we outline some of the features of such networks and only
start to explore how these mechanisms can be used in technical applications. Some
examples of basic operations implemented by such networks are briefly outlined,
specifically theimplementation of an arg max functionthrough cooperation and compe-
titioninsuch networks, and the maximum likelihood decoding of distributed information
representations.

COMPUTATIONAL NEUROSCIENCE AND
BIOLOGICALLY FAITHFUL MODELING

While artificial neural networks, especially in the form of back-propagation net-
works, have been developed into useful engineering tools, they have been developed
in adirection that is not strictly biologically plausible. Thisis acceptable in technical
applications that do not have to claim biological relations. However, the study of
biologically plausibleinformation processing has important aspects that should not be
forgotten. Thisincludes the desire to understand how the brain works, which will, for
example, enable the development of new treatment methods for brain diseases. The
experimental knowledge of brain functions has increased tremendously over the last
several decades, and has particularly accelerated recently after the arrival of powerful
new brain imaging techniques such as functional Magneto Resonance Imaging (fMRI)
and advanced single cell recording methods. Such methods advanced considerably our
understanding of whereand how informationisrepresentedinneuronal activity, and the
scientific area of computational neuroscience seeks to understand how the processing
of such information is achieved in the brain.

Of course, modeling of complex systemssuch asthebrain hasto bedoneon multiple
levels. Indeed, the art of scientific explanationsisto find the right level of abstraction
rather than the detailed reproduction of nature. It can be questioned if rebuilding a
completebrain in silicon would advance our knowledge; | would argue that thiswould
mainly demonstrate the state of our knowledge. In contrast, finding the right level of
description can considerably enhance our understanding and technical abilities. A good
example is the advent of thermodynamics that describe large particle systems on a
macroscopic level, by Ludwig Boltzmann and JWillard Gibbs in the late 19" century.
Surely, agasisasystem of weakly interacting particles, but their macroscopic description
has advanced our technical abilities considerably.
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Modeling of brain functions has to be viewed in asimilar way. Some models are
abstract representationsof high-level mental processes, whileother modelsdescribethe
detailed biophysics of neurons. Backpropagation networks have made headway in
cognitive science as useful metaphors of cognitive processes (parallel distributed
processing). It does, however, become questionable that such learning algorithms
describe metal processes on alevel of networks of neurons. Although some attempts
have been made to justify their biological plausibility (see for example O'Reilley &
Munakata, 2000), several questionsremainwhenit comesto thebiological justification
of such networkson aneuronal level. Thisdoesnot only includethelearning ruleitself,
which requires the questionabl e backpropagation of error signal through the network,
but al soincludesother constrainson network architectures, including thetypical drastic
constraint on the number of hidden nodesin multilayer feed-forward networksrequired
tofacilitate generalizationin such networks. Whilethe brain might still useinformation
processing along the lines of mapping networks, networks that translate a distributed
representation of somekindinto another, it seemsthat themajority of cortical processing
isbased on different principles of network operations, including diverging-converging
chains (Abeles, 1991) and Hebbian-typelearning (Hebb, 1949).

A well-recognizedfact of brain networks, whichisconceptually very different from
multilayer perceptrons, isthat thereisan abundance of reciprocal connections between
brain areas that defy the strict layered architecture of perceptrons. While the role of
feedback connections between distinct brain areas is still under investigation with
regardsto the system-level implementation of information processinginthebrain, some
progress has been made in understanding local organizations of brain networks that
exhibitlocal (collateral) feedback connections(seefor exampleGrossberg & Williamson,
2001). A primeexampleof thisisthe processinginthe CA3areaof thehippocampus(Rolls
& Treves, 1998). Themodel sdescribedinthischapter fall inthecategory of network-level
model sthat can berelated to brain networkscomprised of afew cubic millimetersof brain
tissue with internal recurrent connections.

THE BASIC PROCESSING ELEMENT

The basic processing element in the networks described here is called a node to
remind ourselves that these are typically only rough approximations of biological
neurons. The term artificial neuron is also commonly used to label such processing
elements, although it has been argued extensively in recent years that such nodes, most
commonly used in neural network computing, are better interpreted as describing the
average behavior of apopulation of neurons (Gerstner, 2000; Wilson & Cowan, 1973).

A basic nodeisillustrated in Figure 1a. Thisnodereceivesinput values on each of
its input channels, and each of the input values is then multiplied by the weight value
associated with the respectiveinput channel. The nodethen sumsall theweighted input
valuesand generates an output based on again function g(x), wherethe argument of this
function is the sum of the weighted input values. The gain function thus describes the
specific activation characteristics of the node. Some examples of frequently used gain
function are summarized in the table shown in Figure 1b.

This simple node is only a very rough abstraction of a biological neuron. A
schematic exampleof abiological neuronisillustratedin Figure 1c. Theanal ogy of these
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processing elements stems from the basic fact that a neuron can receive input signals
from different neurons through the release of chemicals at the end of the sending of
neurons. These chemicals, called neurotransmitters, can produce a change in the
potential of the receiving neuron. The strength of the generated potential change can
thereby vary for different input channels. Changes of the electrical potential from
different sourcessimply addto each other, sothat theneuronisinitssimplest abstraction
basically summing all the weighted inputs. An output signal, which typically takesthe
form of an electrical impulse called a spike, is generated by the neuron if the potential
change generated by all theinputsin acertaintimewindow reachessomethreshold. The
generated spike can then trigger the release of neurotransmitters at the sending ends of
this neuron.

Many of the biochemical mechanisms of the information transduction of aneuron
outlined above are known in much more detail and can beincorporated in more detailed
modelsof neurons(Connor & Stevens, 1971; FitzHugh, 1961; Hodgkin & Huxley, 1952;
Nagumo et al., 1962; Wilson, 1999). Indeed, models of spiking neurons (see Maass &
Bishop, 1998, for some general introduction), which have been first introduced in the
early 20" century (L apicque, 1907), are becoming increasingly incorporated in detailed
models of brain tissue. However, many of the information processing principlesin the
brain, specifically onalarger system|evel that comprises many thousand of neurons, are
often studied with networks of nodes that represent average firing rates of neurons.
Indeed, it can be shown that a node of the type illustrated in Figure 1a can properly
represent the average response of a collection of neuronswith similar response proper-

Figure 1: (A) Basic Nodein a Neural Network that Represents Population Activity (B)
Examples of Gain Functions Frequently Used in Technical Applications of Artificial
Neural Network (C) Schematic Outline of a Biological Neuron
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tiesif variousconditionsarefulfilled, including slow varying changesin the population
and the absence of spike synchronization effects (Gerstner, 2000). The basic message
hereisthat the population averages of neuronal responsesof braintissue can bemodeled
to some degreewith simple processing elementsasillustrated in Figure 1a, and thatitis
possible that many different forms of gain functions can be realized by small neuronal
networks. We could study the specific realization of specific nodesin biological terms
in more detail, but we choose here to move forward in the direction of exploring the
computational consequences of specific networks of such simple nodes.

FEED-FORWARD VS.
RECURRENT NETWORKS

As mentioned in the introduction, a very popular organization of nodes into
networks is the layered structure as outlined in Figure 2a. Such networks operatein a
strictly feed-forward manner, in which each nodein each layer receivesinputsfromthe
previous layers and generates outputs that are used in the subsequent layers. An input
pattern fed to such anetwork can take the form of avector with one component for each
of the input nodes. The output can be represented as a vector with the number of
components equal to the number of output nodes. With this formulation of the system
afeed-forward network can be seen asimplementing amapping function from onevector
spaceinto another. Asmentioned above, amultilayer perceptroncaninprinciplerealize
any mapping between two vector spaces with the proper assignment of parameters
(Hornik et al., 1989). Finding the appropriate parametersin order to realize a specific
mapping functionisthetask of alearning al gorithm, of whichtheerror-backpropagation
algorithm isthe most prominent examplefor such networks. Thisalgorithmisbased on
the maximization of an objectivefunction (or minimization of an energy function) witha
gradient-ascent (or gradient-descent) method. Many training samples are typically
required to discover the statistical structure of the underlying mapping function.

Another network organization of simple nodes, which isthe focus of this chapter,
isillustrated in Figure 2b. Thereis only one layer in this network architecture, and the
output of thislayer isfed back asinput to the network in addition to potential external
input such networks can receive. Thus, even with a constant input, the state of the
network can changewithin each execution step astheeffectiveinput of the network might
changeover time. Such anetwork isadynamical system, andit turnsout that the behavior
of this system depends strongly on the values of the connection weight parameters.
There are many possible choices of weight values, and we will meet two proceduresin
this chapter to choose specific values, either setting these parameters in an organized
way according to a predefined function, or using a learning procedure to adapt these
parameters based on examples shown to the network.

The learning algorithms typically used with such network architectures are so-
called Hebbian rules, which are learning algorithms that change the weight values
according to the state (activity) of the nodes that frame a specific connection (the link
between the nodes). Such rules arelocal because the change in the connection strength
dependsonly oninformationfiringintheframing nodesof eachlink. Thenetwork activity
during the learning phase is kept clamped to constant values supplied by the external
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Figure 2: Two Principal Network Architecture Used Frequently in Neural Network
Computing, that of a Multilayer Perceptron (A) and a Recurrent Network (B)
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input. The recurrent connections have therefore no effect during this learning phase.
Thisisimportant, asthe recurrent connections could otherwise modify the node values
in complex ways and thereby destroy the information that we seek to store in such
networks. Note that the resulting weight values in Hebbian rules will ultimately be
symmetricinthe sensethat aconnection from node ato node b will have the samevalue
as a connection from node b to node a.

Recurrent networkstrained on random patterns with a Hebbian learning rule have
interesting propertieswhen it comesto aretrieval phase after learning. In such aphase
thenetwork isinitialized with apossiblenoisy version of oneof thetraining patternsthat
was used during learning. During the updating of the network the state of the network
evolves with each update-iteration, until the network reaches a point where the node
activitiesdo not changeany more. Such astateisapoint attractor inthedynamical system
of thisrecurrent network, and such networks are therefore often called (point) attractor
neural networks (ANNs). ANNSs are useful devices because the point attractors can
correspond to stored pattern in such networks. Thus, stored patterns can be retrieved
from partial information (associative memories) or noisy versions of a stored pattern
(noise reduction). An example of a program that demonstrates the associative storage
abilities of an ANN network isdetailed in Appendix A.

POINT ATTRACTOR VS.
CONTINUOUSATTRACTOR NETWORKS

Another way in which the basic recurrent networks discussed here are used to
model brain functions are models in which the weight values are preassigned with
specific values. A common choice in neuroscience is thereby marked by a specific
interaction structure, that of local cooperation and global competition. Thisisimple-
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mented with weight values that only depend on the distance between nodes: nodes that
are“close” haveapositiveweight value (excitatory), whereaswei ght values of mutually
“distant” nodeshave negative (inhibitory) weight values. Wewill discussbel ow inmore
detail the meanings“close” and “distant” can have, but for now it is sufficient to think
of achain of nodesasillustrated in Figure 2b and to use the Euclidean distance between
the nodes as a measure of their closeness.

A positive weight value between close nodes creates localized positive feedback
loopsinwhichany initial nodeactivity getsreinforced between such nodes. Wecall such
activity an activity packet. Theeffect of an activity packet on other nodesinthe network
is that it suppresses other network activity through the long-range inhibition. This
balance between local excitation and global inhibition isthe source of the formation of
an activity packetinthenetwork. Anexampl e of thetimeevol ution of thenetwork activity
in such anetwork isshown in Figure 3a. A corresponding example MATLAB program
that specifiesthe details of the model isgiven in the Appendix B. The network was, in
theshown experiment, initialized with equal nodeactivity, but an external input centered
on the central nodes in the network was applied for the first 10 iterations (time-steps).
The strong response in node activity to the external input is clearly visible, but what is
most important for our following discussionsisthat an activity packet persistseven after
the external input isremoved. This activity packet is an attractor state of the network.
Any external input that is symmetric around the center of thisattractor statewill lead to
the same asymptotic activity packet after the external input isremoved.

How many different attractor statesexistinthisnetwork?Innetworkswith perfectly
shift invariant interaction structuresit is possible to stabilize an activity packet around
each node of the network by applying an initial external input centered on the node on
which the activity packet should be stored. The number of attractor state doesthusscale
with the number of nodes in the network. It follows that it is possible to increase the

Figure 3: (A) Time Evolution of Network Statesin a CANN Model (B) Isolated Point
Attractors and Basin of Attractionsin ANN Models (C) A Line of Point Attractorsin
a CANN Model
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number of attractor statesby increasing thedensity of nodesinthe network. M athemati-
callyitispossibleto think about acontinuum of nodesthat representsaneural field. Such
aneural field model hasthen acontinuous manifold of point attractors, which motivated
the name continuous attractor neural networks (CANNSs) for such models. Those
networks are still point attractor neural networks but with a specific point attractor
structure, that of a continuous manifold of point attractors. Although truly continuous
manifoldsof point attractorsexist only inthelimit of aninfinitenumber of nodes, thename
CANN isalso used for discrete models when the number of nodesis sufficiently large
to approximate the continuous case sufficiently. This convention is adopted in the
following.

The different attractor structures of recurrent networks discussed here are illus-
trated in Figure3band Figure 3c. Thepreviously discussed associativememory networks
have point attractors that are surrounded by a basin of attraction. The network state
evolvestothe point attractor that lieswithin the basin of attractioninwhichthe network
isstarted. Thisiswhy apoint attractor structure with separated point attractorsisuseful
as associative memory. A continuous attractor network is not useful as associative
memory because perturbations of a network state that are not symmetric to an initial
activity packet can trigger different attractor states. However, these networks can still
be used as memories in the sense that they can hold information given to the network
over aperiod of time. Such networksaretherefore short-term (erasable) memory stores,
and there are indications that the brain uses these mechanisms for such purposes
(Compteetal., 2000; Wang, 2001). However, thereare al so several other featuresof such
networks that might not only be utilized in the brain, but might allow the use of such
networksin technical applications. Some of the features and possible applicationswill
be explored below.

TRAINING CONTINUOUS
NEURAL NETWORKS

CANN modelsin the neuroscience literature are commonly employed with preas-
signed weight vales. A typical example of the weight profilesisaGaussian function of
the weight values as afunction of the Euclidean distance, asillustrated in Figure 4. We
mentioned abovethat itisnecessary for CANN to haveinteraction structureswith short-
distance excitation and long-distanceinhibition, but we can always absorb the negative
valuesfor long distancesin aglobal inhibition constant that shiftsthe Gaussian toward
negative values. We can therefore simplify the following description by outlining the
following thoughtswith only positiveweight valueswhilekeeping in mind that aglobal
constant inhibition is part of the network operation (see Appendix B).

The preassigned interaction structure can bewell motivated in biological systems.
Such a structure can, for example, evolve from the growth of neural structuresin a
systematic way, with short excitatory neurons that project to local neurons, and
inhibitory neurons that project to more distant neurons. Cortical organizations are not
obviously consistent with this view as inhibitory interneurons are typically short-
ranged. However, it ispossiblethat thelong-rangeinhibition isan emerging property of
the pool of inhibitory interneurons. It is also possible that the cortex employs the
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mechanisms discussed in the following only on alocal level. The basic CANN model
discussed here should be viewed as a simplified model that allows the outline of some
general properties of such networks. Nevertheless, some brain areas have been shown
to be consistent with an effective interaction structure typical to CANN models. An
exampleisthe superior colliculus, amidbrain areathat isimportant in theintegration of
information to guide saccadic eyemovements (Trappenberg et al ., 2001; see Figure4b).

Althoughtherearemany biologically plausible mechanismsto assign very system-
atic neuronal interaction structuresin the brain, such a pre-assignment is not possible
if the effective network architecture has to be able to adapt to changing environments.
Adaptive mechanisms of weight values are then mandatory, and training algorithms
become central for such applications. An areain the brain that has an unusual number
of feedback connectionsto the samebrain areaisthe CA3 structureinthe hippocampus,
abrainareathat isassociated with episodic memories. Episodic memoriesare memories
of specific events as opposed to memories with more generic content such as acquired
motor skills. The anatomic organization of thisbrain structure, aswell as many experi-
mental findingsfrom cell recordings, strongly suggeststhat associative memoriesof the
recurrent network type discussed here might be a mechanism used in this brain areato
support episodic memories, and that Hebbian learning could be the principal biological
mechanism that supportsthe adaptationin thisbrain structure. Indeed, the hippocampus
was the area where long-term potentiation (L TP) and long-term depression (LTD), the
synaptic expression underlying Hebbianlearninginthebrain, wasfirst discovered (Bliss
& Lomo, 1973).

Interestingly, studies of the hippocampus in rodents indicate that this brain
structure is used to represent spatial information of specific environments in these

Figure 4: (A) lllustration of the Connection Strength Between Nodes in a One-
Dimensional CANN Model with Gaussian Profile (The solid line represents the
connection strength between the center node and all the other nodes in the network.
Thisnode is connected most strongly to itself, followed by the connection to its nearest
neighbors. The dotted lines represent the corresponding curves for the other nodesin
the network.) (B) Normalized Effective Interaction Profile in the Monkey Superior
Colliculus (see Trappenberg et al., 2001) (The data points with different symbols are
values derived from different cell recordings, while the solid line is a model fit.)
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animals. Neurons that respond in a specific way to the location of an animal have been
termed place cells. The physiological properties of place cells havelong been modeled
with CANNSs. However, atopographical structurethat relatesthe physical location of a
cell tothefeaturevaluesit representswithitsactivity response has not been found. This
indicates that if CANN models are the underlying mechanisms of place cells, the
systematic interaction structure in CANN models must be able to evolve through
learning. Asthe hippocampusexhibitsLTPand LTD itisobviousthat Hebbian learning
should beabletoformthe specificinteraction structuresfrom specifictraining examples.
Indeed, applying Hebbian learning to all attractor states of a continuous attractor does
result in weight values that only depend on the distance of neuronswith respect to their
response properties (e.g., distance in feature space) with local excitation and global
inhibition (Stringer etal., 2002).

It is worth highlighting again that the network has to be trained on all attractor
states, which isan infinite number in the case of atrue continuous attractor network for
aneural field model. The number of attractor statescan still bevery largeinthediscrete
approximation of such modelswith afinite number of nodes. However, the training on
all possiblestatesisonly necessary in astrict mathematical sense. With small modifica-
tions of the model, which are outlined in the next section, it is possible to achieve
sufficient training with a small fraction of the possible states in the network.

NOISE AND TRAINING ON SMALL
TRAINING SETS: NMDA STABILIZATION

A continuous manifold of attractorsin recurrent network modelsonly existsif the
weight profile is shift invariant. This means that the weight values do only depend on
the distance between nodes and not on their index numbers. For example, aweight value
between node number 12 and 17 hasto be exactly the same asthe weight val ue between
nodes 240 and 245 if the nodes are spaced equidistantly and numberedin sequence. Any
small fluctuation of the strict equivalenceresultsin adrift of an activity packet, and the
model has then isolated point attractors instead of the continuous manifold of point
attractors. An example of the drift of the activity packetsis shown in Figure 5a. In this
experiment a Gaussian weight function was augmented by noise. The figure displays
several lines; each linerepresentsthetimeevolution of the center of mass of the network
activity after initializing the network with an activity packet at a different node in the
network. Figure 5b shows an example of asimilar experiment where the network was
trained on only a subset of all possible states (10 out of 100). No noise was added to the
resulting weight values, but the training on the subset of possible training patterns
resulted again in an attractor structure with isolated point attractors.

Tosolvetheproblem of drifting activity packetsin such CANN models, Stringer et
al. (2001) proposed amodification of the basic CANN model inwhichthefiring threshold
isdecreased for the nodesthat were activeinthe previoustimestep. A possibleneuronal
equivalent of such a mechanism is provided by the voltage dependence of NMDA-
mediatedion channels. AnNM DA receptor isaspecific subclassof aglutamate receptor
that can be activated with the pharmacological substance N-methyl-D-aspartic acid
(NMDA). Most important for the mechanisms explored here isthe characteristic of the
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Figure 5: Drifting Activity Packet in a Network with Noisy Connections (A) and
Partially Trained Network (B) (C) Inclusion of Some NMDA Stabilization in the
Partially Trained Network
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associated ion channels that their permeability for ions depends on the postsynaptic
potential. When these ion channels are opened by glutamate while the postsynaptic
potential is at rest, then theion channel is blocked by magnesium ions. Depolarization
of the membrane removes this blockage so that sodium and potassium ions, as well as
a small number of calcium ions, can enter the cell. NMDA synapses are typically co-
located with non-NMDA synapses that do not depend on the postsynaptic potential.
The net effect of these two channelsisthus alower excitation threshold of the neuron
following previous excitation, which isthe mechani sm implemented in the simulations.
Werefer to this mechanism as NMDA -stabilization.

When including NM DA -stabilization in the computer simulations of the previous
experiment, in which the network was trained on only a subset of all possible training
patterns, an increase of the number of attractor states can be seen (Figure 5¢). It is
possibleto achieveadifferent number of attractor statesby varying theamount by which
the firing threshold is decreased after a node becomes active. However, it isimportant
to adjust this amount carefully to not disrupt the CANN features in this network.

L OAD CAPACITY OF ATTRACTOR MODELS

As mentioned above, the point attractor states in ANN models are useful as
associative memory states because they correspond to patterns on which the network
was trained, and these memories can be triggered by patterns with some sufficient
overlapwiththetrained patterns. The number of stored patternsP relativeto the number
of connections per node C in the network is called the load o.=P/C of the network. Itis
possibleto add attractor statesthrough Hebbian learning in such networksuntil acritical
load a_ is reached; at which point all the attractor states related to the stored pattern
become unstable. Thiscritical load isalso called theload capacity of the network. The
load capacity achieved with Hebbian [earning on random binary patternsis o =k/(alog(a)),
wherekisaconstant withvaluek =0.2-0.3, and aisthe average sparseness of the pattern,
which istheratio of onesto zerosin the case of binary patterns (Rolls & Treves, 1998).
Themaximal possibleload capacity, which can beachieved with an optimal learningrule,
isk=2 (Gardner, 1987). We are considering here fully connected networksin which the
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number of connections per nodeisequal to the number of nodesinthenetwork. Theload
capacity of these point attractor networks doestherefore scal e with the number of nodes
in the network.

Attractors can be stabilized around each node in CANN models, and the load
capacity of CANN models does therefore also scale with the number of nodes in the
network. However, asmentioned above, theseattractor statesare only of limited usewith
respect to associative memory states. Neverthel ess, these states are still memory states
in the sense that they keep theinformation that was given to them by aninitial input that
subsequently disappeared. This is the basis for using CANN models as short-term
memory stores. Hence, rather than counting the number of attractor states in these
networks, it is more crucial to ask how many short-term memories can be stored
simultaneously in such networks. The answer is one and only one. The competitive
nature of network activity in these networks enforces the survival of only one activity
packet after external input tothe systemsisremoved, evenif theexternal input hasseveral
peaksin the activity distribution. Indeed, thisisamajor feature of these networks that
can be used for specific information processing implementations discussed further
below.

Before we leave the load capacity issueit isworth mentioning that the number of
concurrent activity packets can be increased with theinclusion of NMDA-stabilization
inthemodel (Stringer et al., 2003; Trappenberg, 2003). However, activity packetshave
still to besufficiently distant from each other, for they woul d otherwiseattract each other
and merge to one activity packet. The possible number of concurrent activity packets
doesthusdepend onthesize of theactivity packet, whichisinturnafunction of thewidth
of the weight function. Typical values of such widths, which are consistent with
physiological evidence in the brain, allow only a small number of concurrent activity
packetsin such networks even with the inclusion of stabilization mechanismsalong the
lines discussed in the previous section. Thisis a possible explanation of the source of
the limited storage capacity of human working memory (Trappenberg, 2003), whichis
known to be severely limited to asmall number such as 7+2 (Miller, 1956).

APPLICATIONS OF CANNS:
WINNER-TAKES-ALL AND
POPULATION DECODING

Continuous attractor neural networks are of central importance in computational
neuroscience as there are strong indications that such mechanisms are used frequently
forinformation processinginthebrain (Amari, 1977; Compteet al ., 2000; Grossberg, 1973;
Taylor & Alavi, 1995; Trappenberg et al., 2001; Wilson & Cowan, 1973). The study of
CANN models, ingeneral aswell asin specific computational circumstances, isimportant
in order to seeif such models can explain measured effects, or if, on the contrary, the
experimental dataindicatethat other mechanismsmust beat work inthebrain. Whilethere
are strong beliefsthat CANN mechanisms are central for information processing in the
brain, the exploration of their potential in technical applications has only begun.

A basic feature of CANN modelsit that aninitial distributed input will evolveinto
stereotyped activity packet, where the position of the activity packet is determined by
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the support it getsfromtheinitial input pattern. Through the cooperation between close
nodes and the competition between distant nodes, locations with the strongest support
will win the competition. The support isthereby a combination of theinitial activity of
single nodes in combination with the activity of neighboring nodes, and the CANN
modelsimplement thereby aspecific version of awinner-take-all algorithm. Thiswinner-
take-all algorithm could beof practical useinmany applications. A standard winner-take-
all algorithmreliesbasically on an arg max function that returnstheindex of thelargest
component of avector. Thisisaglobal operation and assuch computationally inefficient.
CANN modelsoffer aninteresting version of suchfunctionswiththe potential of efficient
implementationsinadistributed system. Theutilization of CANN inapplicationsthat rely
onwinner-take-all or winner-take-most algorithmsshould beexploredinfurther research.

Note that CANNSs can be even more flexible than functions that look strictly only
for thelargest component of avector. An example can be seen when two initial activity
packetswith similar magnitudearesuppliedasinitial input. If suchinitial activity packets
are closeto each other, then it is possible that the two activity packets merge under the
dynamics of the system into an activity packet somewhere in between the two initial
stimuli locations (see Figure 6). Thisis aform of vector averaging often observed in
related psychophysical processes such as rapid saccades madeto two closetargets. The
location of the asymptotic activity packet can be a complicated function of the initial
input pattern, and several different solutions are possible with different choices of
weights used in specific networks. There are thus many possible applications of such
networksin systemsthat need to implement complicated conflict-resolution strategies.

A relatedinteresting application of CANN models, with potential relevancefor brain
processes and technical applications, was recently explored in a variety of papers
(Deneveetal., 1999, 2001; Pouget & Zhang, 1997; Wuetal., 2002). Itiswell established
that the brain represents information, such a sensory input, in adistributed way in the
activity of neural responses (see Abbott & Sejnowski, 1999). Many neuronsaretypically
involved in the stimulus representation rather than a single neuron, which is the basis
of the distributed nature of information encoding in the brain. Distributed representa-
tions have interesting features for technical applications; not only can such system be
designed to operate in a more efficient way through parallel processing of chunks of
information, but they allow in addition the design of systemsthat are robust in terms of
losing completeinformation dueto partial system errors. The challengewith distributed
codesisthedecoding of theinformation, the processof deducingthemost likely stimulus
given a certain activity pattern of the nodes.

Population decoding can be a computationally expensive task, and the processis
certainly simplifiedif we know the principal form of the function of the node responses
with respect to afeature value conveyed by astimulus. Thisfunction isoften called the
tuning curveof anode. Thereis, however, another factor that makes population decoding
challenging in the brain, which isthe large amount of noise present in the activation of
neurons. In other words, there is only a certain probability that a specific stimulus
initiates a certain activity of a node. It is hence appropriate and useful to formulate
popul ation decoding in stati stical terms, and many statistical methodshave been devised
to solve decoding in noisy environments (see for example Abbott & Sejnowski, 1999).
One important method is based on the maximum likelihood estimation. This specific
method is equivalent to aleast square fit of the tuning curve to the node responses in
the case that the conditional activation probabilities are Gaussian functions.
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Figure6: Experiment with Two Exter nal Gaussian Signalsthat are Given to the CANN
Until t=10 (The resulting activity packet after equilibration is an average of the two
external locations.)
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The use of CANN models for population decoding is based on the idea that a
specific form of an activity packet will appear after initializing such networks with
population codeto be decoded. The CANN model isthen animplementation of afitting
procedure of afunction, whichisgiven by the shape of theattractor states, to data, which
are given as initial states to the network. Tuning curves of neuronsin the brain often
appear to be approximately Gaussian-shaped, and the asymptotic activity packets in
CANN modelscan haveasimilar form. Indeed, the attractor states can be made exactly
Gaussian with a proper normalization of the weight values in the training procedure
(Deneveetal., 1999). Thus, CANN model scan bean efficient impl ementati on of maximum
likelihood decoding of distributed codes (Wu et al ., 2002).

A simplified exampleis shown in Figure 7. A Gaussian signal (dashed line) was
thereby convoluted with additive white noise, which resulted in the noisy signal shown
asdotted lineinthefigure. Thissignal wasgiventoaCANN asinitial stimulus, and the
network wasallowed for several timestepsto evolveafter theinitial input wasremoved.
Theresulting activity packet (solid curve) resemblesclosely theinitial noiselesssignal.

UPDATING REPRESENTATIONS FROM
DIFFERENTIAL INFORMATION:
PATH-INTEGRATION

As mentioned above, CANN models are used to model place fieldsin the hippoc-
ampus of rodents that represent the location of the animal in the environment. Such
modelsare also used in asimilar way to model cellsthat represent head directionsof the
rodents. Such cells are agood exampl e of how the state of an animal, in this case spatial
information, isrepresented internally in the brain. Of course, such external representa-
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Figure7: lllustration of the Application of CANN for Noisy Population Decoding (The
original signal (dashed line) is convoluted with additive white noise. This noisy input
signal (dotted line) isgivento a CANN network asinitial state. Resulting firing pattern
of the network is shown as solid line, which resembles closely the original signal.)
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tions have to be updated when the position of the animal changes. This can be achieved
efficiently by external stimuli such asthesight of aspecificlandmark intheenvironment.
Inthe CANN model, this correspondsto anew external input to the network that would
trigger the corresponding attractor state.

However, it is also well known that internal spatial representations, such as the
sense of location or direction, can be updated in the dark where visual cues cannot be
used. Self-generated (idiothetic) cues have therefore to be the source of updating the
statesof CANN models. Anobvioussourceof suchinformationisthevestibular system,
which is based on motion sensors in the ears. Such idiothetic information does not
represent absolute geographic coordinates but rather the change of positions or
orientationsintime. Hence, there must beamechanismtointegratethisinformationwith
the absol ute positioning information represented by place or head direction cells. This
mechani sm wastermed path-integrationintheareaof placerepresentation, and theterm
is now often used generically for updating absolute representations from signals
representing differential information.

Thebasicideaof enabling path-integrationin CANN modelsisbased on aspecific
modification of the basic model that result in an effectively asymmetric weight function.
It was mentioned above that the symmetry of the weight function isrequired to enable
stable, non-shifting activity packets. Asymmetric weight functions support one kind of
neighboring nodes more than others, which resultsin a shift of the activity packet. The
basic method of enabling path-integration in CANN models is hence to modulate the
asymmetry of a basic symmetric weighting function. This can be achieved through
predefined, specifically organized networks (Skaggset al., 1995), but it isalso possible
to achieve such organizations through learning proceduresin CANN models (Stringer
etal., 2002; Zhang, 1996).
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Figure8: (A) Outline of the Network Architecture to Enable Path-Integrationin CANN
Models (B) Effective Weights Between CANN Nodes without Input from the Rotation
Nodes (solid line) and with Input from the Clockwise Rotation Node (dashed line) (C)
Evolution of an Activity Packet in the Path-Integration Network (A clockwise rotation
node is activated at time t= 207, which drives the activity packet towar ds positive node
numbers until the rotation node activity is reset to zero. A counter-clockwise rotation
node is then activated more strongly at t=501, which increases the velocity of the
rever se movement.

B. Weight profiles

A. CANN path integration network

CANN nodes
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The key ingredient in the path-integration algorithm for CANN networks is the
addition of connectionsfrom cellsthat have activity related to the motion information.
In the case of a head direction system they are called rotation nodes. Activitiesin the
rotation nodes have the effect of modulating the recurrent connections in the CANN
model. The modified network architectureisillustrated in Figure 8a. Only connections
between neighboring nodes in the recurrent network, and the corresponding connec-
tions between rotation nodes and the CANN nodes, are shown for simplicity. The
connections between the rotation nodes and the CANN nodes can be trained with
Hebbian learning based on the co-activation between the rotation nodes and the CANN
nodes. An example of resulting weight values is shown in Figure 8b. The solid line
representsthe symmetric excitatory weightsbetween CANN nodesif none of therotation
nodes are active. The effective weights between the CANN nodes for some activity of
the clockwise nodes are shown asadotted line. Thisasymmetric nature of theseweights
drivesthe activity packet in a clockwise direction.

Anexample of theresulting network activity isshownin Figure8c. Thenetwork is
initialized after training, with an external input at node number 50 and no activity inthe
rotation nodes. After withdrawl of the external input the network maintainsthelocation
of theactivity packet through the baseline connectionsinthe network that are symmetric.
Anexternal activationintheclockwiserotation nodeisthenintroduced at timet=20t. This
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resultsin an effective asymmetric weight profile between CANN nodes, whichin turn
resultsinamovement of the activity packet towards higher node numberswith constant
velocity. Themovement of the activity packet stopsassoon astheactivity of therotation
node is withdrawn. Stimulation of the counterclockwise rotation node results in a
movement of theactivity packet intheoppositedirection. Thevelocity of the movement
depends thereby on the activity strength of the rotation node. The activity of the
counterclockwise rotation node was set to twice the value in the clockwise movement
in the specific example shown in Figure 8c. This resulted in an increased movement
velocity of the activity packet in the reverse direction.

Path-integration can berealizedindifferent, moredirect wayson computer systems,
and it isobviousto ask how such anetwork implementation of anintegration algorithm
could beuseful intechnical applications. Itis, of course, crucial to have such analgorithm
if we want to update feature values that are represented in CANNSs, with all their
advantages of distributed systems in terms of fault tolerance and computational effi-
ciency. However, in addition to these obvious advantagesit is also interesting to note
that the above path-integration algorithm is adaptive, as the weight values are learned
from specific examples (Stringer et al., 2002). Such systems can hence be used to learn
motor sequences, which opens the doors to a whole world of technical applications.
Examplesarerobot navigation and speech generation, and many other areas of applica-
tions can be explored. Neuroscientific research indicates that nature does use such
mechanismsinthebrain, but moreresearch into the specific advantagesand applications
of such networksis required.

HIGHER-DIMENSIONAL MODELS

Most of the discussions in this chapter have been made exemplary for one-
dimensional CANN models that can store one continuous feature value (or attribute)
throughthelocation of an activity packet. However, all thementioned featuresof CANN
models can be generalized to higher-dimensional CANN models. Instead of aline of
nodes, leading to a line of point attractors, a two-dimensional sheet of neurons with
corresponding weight structuregivesriseto atwo-dimensional sheet of point attractors,
and higher-dimensional arrangementsof nodescan beused to realize higher-dimensional
attractor manifolds. Predefined weight structures are only one way to realize such
attractor models, and we stressed in this chapter that atraining algorithm with specific
training sets could be used to set up this weight structure. This opens the door to an
interesting application of such networksin the discovery of the association structure of
the underlying problem, in particular, the effective dimensionality of dataused to train
the networks.

Recurrent networks, in which every node is connected to all the nodes in the
network, can beviewed asahigh-dimensional model if wetakethe number of neighbors
asthedefining characteristic of thedimensionality. For example, each nodein achain of
nodeswith Gaussian weight profiles hastwo distinguished neighborsif wetake only the
strongest connections into account. A two dimensional grid of nodes with the corre-
sponding two-dimensional Gaussian weight profile has four neighbors. If we set the
weight values before learning to equal numbers for all connections, than we could say
that the effective model is high dimensional just based on the number of nodes that are
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most strongly connected. At some point we might want to choose appropriatedefinitions
for dimensionality, but for now itissufficient to outlinethe principal ideawithout giving
specific numbers.

Thedimensionality discovery ability of the Hebbian-trained recurrent networksis
outlined with an exampleshownin Figure 9. Therewechooseanetwork of 20 nodesthat
are arbitrarily numbered and arranged in acircle. Theinitial equal connection strength
between the nodesisillustrated with connecting lines of equal width in Figure 9a. Each
node was given randomly one of the directions for which it would respond most
vigorously (random preferred directions). The learning phase consisted of presenting
Gaussian activity profiles for all possible direction to the network. That is, for each
patternthe nodeswere clamped to aval uethat decayed according to aGaussian function
with respect to the distance of the preferred direction of this node with the direction
represented by thetraining pattern. Theresulting weight val ues of the connections after
training on these training data are shown in Figure 9b, where only the strongest weight
values are shown with line widths that are proportional to the weight strength. No
organized structure can be found in this example. However, in Figure 9C the nodes are
reorganized so that nodes with strong connections are plotted close to each other, and
nodeswithweaker connectionsare plotted moreremotely. Theresulting structureisone-
dimensional, reflecting the structure of thetraining space. If the activation of the nodes
during training had been caused by atwo-dimensional training set structure, then there
would be connections between the nodes outside the one-dimensional arrangement of
nodes, and atwo-dimensional rearrangement of nodeswould haveto be performedtofind
an orderly organization of the connections proportional to their strength values. Even
without realizing thearrangement it ispossibleto use someform of appropriate counting
of nodeswith similar weight valuesasanindicator of thedimensionality of theunderlying
feature space.

Note that this procedure is complementary to a self-organizing map (SOM) as
proposed, for example, by Kohonen (1994). The dimensionality of SOM model is
predefined by the dimensionality of the SOM grid. This can be viewed as a predefined
lateral (recurrent) interactionsstructure. Indeed, amajor stepin SOM algorithmsistofind
the node that is most activated by a specific training stimulus (winner-takes-most), and
thisstep can beviewed asashortcut to apossibleneural implementation based on CANN
models. Themajor difference betweenthe SOM model and CANN model isthat the SOM
model trainsthereceptivefields (input connections) to the recurrent networks based on
afixed interaction structureinthe SOM layer, whereasthetrained CANN model adapts
the interaction structure within the recurrent network with fixed receptive fields. An
interesting classof modelsknown asneural gasmodels(Matinetz & Schulten, 1991) are
set up to train both types of connections. However, this is only useful if different
timescal es of the adaptation time for the different types of connections are used.

SUMMARY AND OUTLOOK

Continuous attractor neural networks have been discussed in the neuroscience
related literaturefor nearly 30 years, and itisincreasingly evident that such mechanisms
are used in the brain. Such mechanisms must therefore be useful for information
processing in distributed systems. Continuous attractor networks implement coopera-
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Figure 9: (A) Fully Connected Network of 20 Nodes Before Training when all
Connections have Same Weight (B) Network after Training, where Weight Strength
Indicated with the Line-Width of the Connections (C) Network after Training when
Nodes are Arranged so that Neighboring Nodes have Strong Weights (see also
Trappenberg, 2002)

tion and competition between input stimuli, and the network dynamicsdriveinitial input
to one of many attractor states based on some dominating input features. Such networks
canbeusedto resolvecompetitioninvariousways. Thisisclosely related towinner-take-
all mechanisms, but such networks can certainly implement more complicated versions
of such mechanismsthan only looking for thelargest component inavector. Therecently
explored application of CANNSs for population decoding is a good example. CANNSs
represent thereby efficient implementations of a maximum likelihood estimator, and
similar applications of such algorithms are likely to emerge. More research into the
application of such networksin related problem domains could be afruitful endeavor.

CANNshaveastrict regularity of the connection weightsthat define the network,
which can often be set according to afunction so that thereisno need for lengthy training
algorithms. However, it is also possible to use Hebbian learning to define the weights.
A possible application of such training is the discovery of the relation structure of
training patterns as mentioned in the text, which should be explored further. Thisis, of
course, closely related to associative learning, and it is good to stress again the close
relation of CANN networksto the morecommonly known ANN (attractor or Grossberg-
Hopfield neural networks).

Many additionsto the basic CANN model have been proposed in recent yearsthat
are destined for further explorations into various application areas. Among these
additionsis an elegant way of updating the memory in such networks from differential
information, commonly known aspath-integration. Such mechani smshave many poten-
tial applicationsin motor control and navigation, asis evident from their possible role
inrelated biological systems. It ispossible to train such networks on specific examples
and thusimplement memoriesof specific movement patterns. Many applicationsof such
mechanismsare possibl e, and such mechanismsmight beat work inthebrain, for example
in the acquisition of motor primitives. Further research is necessary to explore these
possibilities and to establish more specific algorithms based on CANN mechanismsto
solve specific computational problems.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.



418 Trappenberg

REFERENCES

Abbott, L., & Sejnowski, T.J. (eds.) (1999). Neural codes and distributed representa-
tions: Foundations of neural computation. Cambridge, MA: MIT Press.

Abeles, M. (1991). Corticonics: Neural circuits of the cerebral cortex. Cambridge:
CambridgeUniversity Press.

Amari, S. (1977). Dynamics of pattern formation in lateral inhibition type neural field.
Biological Cybernetic, 27, 77-87.

Amari, S. (1998). Natural gradient worksefficiently inlearning. Neural Computation, 10,
251-276.

Bliss, T.V.P., & Lomo, T. (1973). Long-lasting potentiation of synaptictransmissionin
thedendate areaof anaesthetized rabbit following stimulation of the perforant path.
Journal of Physiology, 232, 551-556.

Cohen,M.A., & Grossberg, S. (1883). Absolute stability of global patternformationand
parallel memory storage by competitive neural networks. |EEE Transactions on
Systems, Man and Cyber netics, SMC-13, 815-26.

Compte, A., Brunel, N., Goldman-Rakic, P.S., & Wang, X.J. (2000). Synaptic mechanisms
and network dynamics underlying spatial working memory in a cortical network
model. Cerebral Cortex, 10, 910-23.

Connor, JA., & Stevens, C.F. (1971). Prediction of repetitive firing behaviour from
voltage clamp data on an isolated neuron soma. Journal of Physiology, 213, 31-53.

Deneve, S., Latham, P.E., & Pouget, A. (1999). Reading population codes: A neural
implementation of theideal observer. Nature Neuroscience, 2, 740-745.

Deneve, S., Latham, P.E., & Pouget, A. (2001). Efficient computation and cueintegration
with noisy population codes. Nature Neuroscience, 4, 826-831.

Deneve, S., Pouget, A., & Latham, P.E. (1999). Divisive normalization, line attractor
networks and ideal observers. Advances in Neural Information Processing Sys-
tems, 11.

FitzHugh, R. (1961). Impulses and physiological statesin theoretical models of nerve
membranes. Biophysics Journal, 1, 445-466.

Gardner, E. (1987). Maximum storage capacity in neural networks. ElectrophysicsLetters,
4,481-485,

Gerstner, W. (2000). Popul ation dynamicsof spiking neurons: Fast transients, asynchro-
nous states, and locking. Neural Computation, 12, 43-89.

Grossberg, S. (1973). Contour enhancement, short-term memory, and constancies in
reverberating neural networks. Studiesin Applied Mathematic, 52, 217-257.

Grossberg, S., & Williamson, J.R. (2001). A neural model of how horizontal andinterlaminar
connections of visual cortex develop into adult circuits that carry out perceptual
groupings and learning. Cerebral Cortex, 11, 37-58.

Hansel, D., & Sampolinsky, H. (1998). Modeling feature selectivity in local cortical
circuits. In C. Koch& |. Segev (Eds.), Methods in neural modeling: Fromionsto
networks (2nd ed.). Cambridge, MA: MIT Press.

Hebb, D.O. (1949). The organization of behavior: A neuropsychological theory. New
York: Wiley.

Hodgkin, A.L., & Huxley, A.F. (1952). A quantitative description of membrane current
and itsapplication to conduction and excitation in nerves. Journal of Physiology,
117,500-544.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



Continuous Attractor Neural Networks 419

Hopfield, J.J. (1982) Neural networks and physical systems with emergent collective
emergent computational abilities. Proceeding of the National Academy of Science
PNAS, 79, 2554-8.

Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networksare
universal approximators. Neural Networks, 2, 359-366.

Kohonen, T. (1984). Self-or ganization and associ ative memory. Berlin: Springer-Verlag.

Kopecz, K., & Schoner, G. (1995). Saccadic motor planning by integrating visual
information and pre-information on neural, dynamic fields. Biological Cybernet-
ics,73,49-60.

Lapicque, L. (1907). Recherchesquantitativessur |’ excitation el ectrique desnerfstraitee
comme une polarization. Journal de Physiologie et Pathologie Général, 9, 620-635.

Maass, W., & Bishop, C.M. (eds.) (1998). Pul sed neural networks. Cambridge, MA: MIT
Press.

Martinetz, T.M., & Schulten, K.J. (1991). A neural-gasnetwork learnstopologies. InT.
Kohonen, K. M&kisara, O. Simula&. J. Kangas(Eds.), Artificial neural networks.
Amsterdam, North-Holland.

McCulloch, W., & Pitts, W. (1943). A logical calculusof theideasimmanent in nervous
activity. Bulletin of Mathematical Biophysics, 5, 115-133.

Miller, G.A. (1956). The magical number seven, plus or minustwo: Some limitson our
capacity for processing information. Psychological Review, 63, 81-97.

Nagumo, J.S., Arimoto, S., & Y oshizawa, S. (1962). An active pulse transmission line
simulating nerveaxon. Proc IRE 50, 2061-2070.

Neal, R.M. (1992). Bayesi an training of backpropagation networksby the hybrid Monte
Carlo method. Report CRG-TR-92-1. University of Toronto, Toronto, Canada.

O'Reilly,R.C., & Munakata, Y. (2000). Computational explorationin cognititve neuro-
science. Cambridge, MA: MIT Press.

Pouget, A., & Zhang, K. (1997). Statistically efficient estimationsusing cortical lateral
connections. InM.C. Mozer, M.l. Jordan & T. Petsche (Eds.), Advancesin Neural
Information Processing Systems, 9, 97.

Pouget, A.,Zhang, K., Deneve, S., & Latham, P.E. (1998). Statistically efficient estimation
using population coding. Neural Computation, 10, 373-401.

Redish,A.,Elga, A., & Touretzky, D. (1996). A coupled attractor model of therodent head
direction system, Network: Computation in Neural Systems, 7, 671-685.

Rolls, E.T., & Treves, A. (1998). Neural networks and brain function. Oxford: Oxford
University Press.

Rosenblatt, F. (1962). Principlesof neurodynamics. New Y ork: Spartan.

Rumelhart, D.E., Hinton, G.E., & Williams, R.J. (1986). L earning representati onsby back-
propagating errors. Nature, 323, 533-536.

Skaggs, W.E., Knierim, J.J., Kudrimoti, H.S., & McNaughton, B.L. (1995). A model of the
neural basisof therat’ ssense of direction. InG. Tesauro, D. Touretzky & T. Leen
(Eds.), Advancesin Neural Information Processing Systems, 7, 173-180.

Stringer, S.M., Rolls, E.T., Trappenberg, T.P., & deAraujo, | .E.T. (2003). Self-organizing
continuousattractor networksand motor function. Neural Networks, 16, 161-182.

Stringer, S.M., Trappenberg, T.P.,Rolls, E.T., & Araujo, |.E.T. (2002). Self-organising
continuous attractor networks and path integration: One-dimensional models of
head direction cells. Network: Computation in Neural Systems, 13, 217-242.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.



420 Trappenberg

Taylor, J.G., & Alavi, F.N. (1995). A global competitive neural network. Biological
Cybernetics, 72,233-248.

Trappenberg, T.P. (2002). Fundamental s of computational neur oscience. Oxford: Ox-
ford University Press.

Trappenberg, T.P. (2003). Why isour capacity of working memory so large? Submitted
to Neurocomputing: Letters & Reviews.

Trappenberg, T.P, Dorris, M., Klein, R.M, & Munoz, D.P. (2001). A model of saccade
initiation based on the competitive integration of exogenous and endogenous
signalsinthesuperior colliculus. Journal of Cognitive Neuroscience, 13, 256-271.

Wang, X.-J. (2001). Synaptic reverberation underlying mnemonic persistent activity.
Trendsin Neuroscience, 24, 455-463.

Watrous, R.L. (1987). L earning algorithmsfor connectionist networks: Applied gradient
methods of nonlinear optimization. In M. Caudill & C. Butler (Eds.), IEEE First
International Conferencein Neural Networks 2, 619-627, New Y ork, | EEE.

Wilson, H.R. (1999). Simplified dynamicsof humanand mammalian neocortical neurons.
Journal of Theoretical Biology, 200, 375-88.

Wilson, H.R. & Cowan, J.D. (1973). A mathematical theory of thefunctional dynamics
of cortical and thalamic nervous tissue. Kybernetik, 13, 55-80.

Wu, S., Amari, S., & Nakahara, H. (2002). Popul ation coding and decodinginaneural field:
A computational study. Neural Computation, 14, 999-1026.

Zhang, K. (1996). Representation of spatial orientation by theintrinsic dynamicsof head-
direction cell ensembles: A theory. Journal of Neuroscience, 16, 2112-2126.

Copyright © 2005, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



Continuous Attractor Neural Networks 421

APPENDIX A

A MATLAB Implementation of an Attractor Neural

Network Simulation

Simulating therecurrent neural networksdiscussed inthischapterisfairly easy, and
a simple implementation is outlined in the following to specify the details of such
networks. The aim of this section isto run a simple computer experiment that demon-
strates the associative memory features of such networks. The experiment includesthe
following five steps:
The generation of a set of random pattern vectors
The training of the network on these patterns
Initializing the network with arandom version of one of the training patterns
Iterating the network several times
Plotting the resultsin terms of the overlap of the network state after the iterations
in comparison to the training patterns

gabsdwpNpE

A complete MATLAB program, onelinefor each of the steps mentioned aboveis:

pat=2*floor (2*rand(500,10))-1; % Create random binary pattern
w=pat*pat'; % Hebbian learning

r=(2*rand (500,1)-1)+0.1*pat(:,1); % Initialize network

for t=2:10; r(:,t)=tanh(w*r(:,t-1)); end % Update network

plot (r'*pat/500) % Ploting results

Each of these stepsin now explained in more detail.

1  Wearechoosing hereanetwork with 500 nodes and generating 10 pattern vectors
that will be stored in the network. The MATLAB function rand(n,m) generates a
matrix with n rows and m columns, where each of the elements is a uniformly
distributed value between 0 and 1. Multiplying each of these numbers by 2
produces arandom number between 0 and 2. The MATLAB function floor rounds
this number down to the nearest integer; hence this results in a random binary
number of either 0 or 1. By multiplying thisnumber by two and subtracting onewe
generatearandom number of either -1 or 1. Thematrix patisthereforearandom matrix
representing 10 row vectors, each with 500 random elementsthat are either 1 or - 1.

2 Weuseafully connected network in which each nodeis connected to each other
node in the network. The strength of each connection is stored in aweight matrix
w, whichishencea500times500 matrix. Hebbian learning proceedsinthefollowing
way: All theweightsareinitialized to zero. Wethen present thefirst patternto the
network and add to each weight component the product of the framing nodes of
thisconnection. Thesameprocedureisused for each of theremaining patterns. The
resulting matrix is equivalent to the matrix that isthe matrix product between the
matrix pat and its transposed pat’.
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3 Theactivity (rate) of each nodeat eachtimestep (iteration) of the network isstored
inthevector r(500,t). At the start of the simulation (t=1) the network isinitialized
with arandom vector ((2*rand(500,1)-1)) thatisonly slightly biased with thefirst
training pattern (0.1* pat(:,1)). The starting state of the network ishencearandom
version of one of the arbitrarily chosen training pattern.

4.  Thestate of the nodesisthen updated for nine additional time steps. In each time
step we cal culate the new state of anode by first summing the weighted inputsto
this node from all the other nodes (w*r(:,t-1)). The new state value of the nodeis
then given by the hyperbolic tangent of thisvalue, wheretanhisthe specific choice
of the transfer function used in this simulation.

5 Finally, toexaminethedevel opment of evolution of the network stateswe plot the
overlap of the network state with all the patternsthat we used during training. We
thereby defined the overlap as the dot product between the state of the network
r and each training pattern r’* pat/500.

A resulting plot of running the program is shown in Figure 10.

Figure10: Resultsfroman ANN Simulation (Each of the 10 linesin the plot corresponds
to the overlap (cosine distance) between the network state at each time step (abscissa)
and a pattern that was used in the learning phase for training. The network state has
initially only a small overlap with all of the stored patterns, but one of the stored
patterns was retrieved completely at time step 9. Thisisan example with arather long
convergence time. Many other examples have much smaller convergence times.)
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end

10;

Continuous Attractor Neural Networks

I ext(nn/2+1)

number of nodes and resolution in deg

3
3

APPENDIX B

for i=-5:5;

2*pi/nn;

hold on;

clf;
dx:

hebb (nn, sig,dx) / (sgrt (pi) *sig) ;

100;
2*pi/40;
zeros (nn, 1) ;
0;

[0,10];

ode45('rnn _ode u',tspan,ul, [],nn,dx,w,I ext);

zeros (nn,1)-10;

clear;
sig =
C=0.
=100;
=Aw* (w_sym-C) ;
£l (u);

surf(t',l:nn,r', 'linestyle', 'none'); view(0,90);

nn
w_sym
Aw
w
u0
I_ext
param
tspan
[t,u]

1-d Continuous Attractor Neural Network with Hebbian learning
r

%$1%%% external input to initiate bubble

$weight matrices

%
s

Main program:

MATLAB Code for CANN M odel

2%%% no external input to equilibrate

o\

continued

u(size(t,1),:
zeros (nn, 1) ;

I ext

u0
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param=0;

tspan=[10,100] ;
[t,ul=0de45('rnn_ode u',tspan,u0, [],nn,dx,w,I_ext);
r=£f1(u);

surf(t',1l:nn,r','linestyle', 'none') ;

Functionhebb.m:

function w = hebb (nn,sig,dx)
% self organization of symmetric cann interactions
lrate=1; % learning rate
w=zeros (nn) ;
$%%%%%% learning session
for epoch=1:1
$w2 (epoch, :)=w (50, :) ;
for loc=1:nn;
r=in signal_pbc (loc*dx,1,sig,nn,dx) ;
dw=1lrate.*r*r';
w=w+dw;
end
end
w=w*dx;

return

Functionrnn_ode u.m:

function udot=rnn(t,u, flag,nn,dx,w,I_ext)
% odefile for recurrent network
tau inv = 1./1; % inverse of membrane time constant
r=£f1(u);
sum=w*r*dx+I_ext;
udot=tau_inv* (-u+sum+I_ext) ;

return
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Functionin_signal_pbc.m:

function y = in_signal_pbc (loc,ampl, sig,nn,dx)
y=zeros(nn, 1) ;
for i=1:nn;
di=min (abs (i*dx-loc),2*pi-abs (i*dx-loc)) ;
y(i)=ampl*exp (-di*2/ (2*sig™2)) ;
end

return

Functionfl.m:

function fl=rnn (u)

% gain function: logistic
beta =.1; alpha=.0;
f1=1./(1+exp (-beta.* (u-alpha))) ;

return
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