
9 Unsupervised learning

In the previous learning problems we had training examples with feature vectors x and
labels y. In this chapter we discuss unsupervised learning problems in which no labels
are given. The luck of training labeled examples restricts the type of learning that can
be done, but unsupervised has important applications and even can be an important
part in aiding supervised learning. Unsupervised does not mean that the learning is
not guided at all; the learning follows specific principles that are used to organize
the system based on the characteristics provided by the data. We will discuss several
examples in this chapter.

9.1 K-means clustering
The first example is data clustering. In this problem domain we are given unlabelled
data described by feature and asked to put them into k categories. In the first example
of such clustering we categories the data by proximity to a mean value. That is, we
assume a model that specifies a mean feature value of the data and classifies the data
based on the proximity to the mean value. Of course, we do not know this mean value
for each class. The idea of the following algorithm is that we start with a guess for
this mean value and label the data accordingly. We then use the labeled data from this
hypothesis to improve the model by calculating a new mean value, and repeat these
steps until convergence is reached. Such an algorithm usually converges quickly to a
stable solution. More formally, given a training set of data points {x(1), x(2), ..., x(m)}
and a hypothesis of the number of clusters, k, the k-means clustering algorithm is
shown in Figure 9.1.

1. Initialize the means µ1, ...µk randomly.
2. Repeat until convergence: {

Model prediction:
For each data point i, classify data to class with closest mean

c(i) = argminj ||x(i) − µj ||
Model refinement:

Calculate new means for each class
µj =

1 1(c(i)=j)x(i)

1 1(c(i)=j)

} convergence

Fig. 9.1 k-means clustering algorithm

An example is shown in Figure ??. The corresponding program is shown is
%% Demo of k-mean clustering on Gaussian data

Unsupervised learning122 |

0 4 6 8 10

0

1

3

4

5

6

7

8

0 4 6 8 10

0

1

3

4

5

6

7

8

0 4 6 8 10

0

1

3

4

5

6

7

8

0 4 6 8 10

0

1

3

4

5

6

7

8

0 4 6 8 10

0

1

3

4

5

6

7

8

0 4 6 8 10

0

1

3

4

5

6

7

8

A Unlabeled data B Data with initial centroids C 1st classi!cation

D 2nd classi!cation E 3rd classi!cation F 1st classi!cation

Fig. 9.2 Example of k-means clustering with two clusters.

% Thomas Trappenberg, March 09
clear; clf; hold on;

%% training data generation; 2 classes, each gaussian with mean (1,1) and (2,2) and diagonal unit variance
n0=100; %number of points in class 0
n1=100; %number of points in class 1

x=[1+randn(n0,1), 1+randn(n0,1); ...
5+randn(n1,1), 5+randn(n1,1)];

% plotting points
plot(x(:,1),x(:,2),’ko’);

%two centers
mu1=[5 1]; mu2=[1 5];

while(true)
waitforbuttonpress;

plot(mu1(1),mu1(2),’rx’,’MarkerSize’,12)
plot(mu2(1),mu2(2),’bx’,’MarkerSize’,12)

for i=1:n0+n1;
d1=(x(i,1)-mu1(1))^2+(x(i,2)-mu1(2))^2;

| 123Mixture of Gaussian and the EM algorithm

d2=(x(i,1)-mu2(1))^2+(x(i,2)-mu2(2))^2;
y(i)=(d1<d2)*1;

end

waitforbuttonpress;

x1=x(y>0.5,:);
x2=x(y<0.5,:);

clf; hold on;

plot(x1(:,1),x1(:,2),’rs’);
plot(x2(:,1),x2(:,2),’b*’);

mu1=mean(x1);
mu2=mean(x2);

end

9.2 Mixture of Gaussian and the EM algorithm

We have previously discussed generative models where we assumed specific models for
the in-cass distributions. In particular, we have discussed linear discriminant analysis
where we had labelled data and assumed that each class is Gaussian distributed. Here
we assume that we have k Gaussian classes, where each class is chosen randomly from
a multinominal distribution,

z(i) ∝ multinomial(Φj) (9.1)

x(i)|z(i) ∝ N(µj ,Σj) (9.2)

This is called a Gaussian Mixture Model. The corresponding log-likelihood function
is

l(Φ, µ,σ) =
m�

i=1

log
k�

z(i)=1

p(x(i)|z(i);µ,Σ)p(z(i);Φ). (9.3)

Since we consider here unsupervised learning in which we are given data without
labels, the random variables z(i) are latent variables. This makes the problem hard. If
we would be give the class membership, than the log-likelihood would be

l(Φ, µ,σ) =
m�

i=1

log p(x(i); z(i), µ,Σ), (9.4)

which we could use to calculate the maximum likelihood estimates of the parameter
(see equations 6.27-6.29),

Unsupervised learning124 |

φk =
1

m

m�

i=1

11(z(i) = j) (9.5)

µk =

�m
i=1 11(z

(i) = j)x(i)

�m
i=1 11(z

(i) = j)
(9.6)

Σk =

�m
i=1 11(z

(i) = j)(x(i) − µj)(x(i) − µj)T�m
i=1 11(y

(i) = k)
. (9.7)

While we do not know the class labels, we can follow a similar strategy to the k-
means clustering algorithm and just propose some labels and use them to estimate
the parameters. We can then use the new estimate of the distributions to find better
labels for the data, and repeat this procedure until a stable configuration is reached. In
general, this strategy is called the EM algorithm for expectation-maximization. The
algorithm is outlined in Fig.9.3. In this version we do not hard classify the data into
one or another class, but we take a more soft classification approach that considers the
probability estimate of a data point belonging to each class.

1. Initialize parameters φ, µ,Σ randomly.
2. Repeat until convergence: {

E step:
For each data point i and class j (soft-)classify data as

w(i)
j = p(z(i) = j|x(i);φ, µ,Σ)

M step:
Update the parameters according to

φj =
1
m

�m
i=1 w

(i)
j

µj =
�m

i=1 w(i)
j x(i)

�m
i=1 w(i)

j

Σk =
�m

i=1 w(i)
j (x(i)−µj)(x

(i)−µj)
T

�m
i=1 11w(i)

j

.

} convergence

Fig. 9.3 EM algorithm

An example is shown in Fig. 9.4. In this simple world, data are generated with
equal likelihood from two Gaussian distributions, one with meanµ1 = −1 and standard
deviation σ1 = 2, the other with mean µ2 = 4 and standard deviation σ2 = 0.5. These
two distributions are illustrated in Fig. 9.4A with dashed lines. Let us assume that we
know that the world consists only of data from two Gaussian distributions with equal
likelihood, but that we do not know the specific realizations (parameters) of these
distributions. The pre-knowledge of two Gaussian distributions encodes a specific
hypothesis which makes up this heuristic model. In this simple example, we have
chosen the heuristics to match the actual data-generating system (world), that is, we
have explicitly used some knowledge of the world.

Learning the parameters of the two Gaussians would be easy if we had access
to the information about which data point was produced by which Gaussian, that is,
which cause produced the specific examples. Unfortunately, we can only observe the
data without a teacher label that could supervise the learning. We choose therefore a

| 125Mixture of Gaussian and the EM algorithm

-10 0 100

0.2

0.4

0.6

0.8

1

-10 0 100

0.2

0.4

0.6

0.8

1

-10 0 100

0.2

0.4

0.6

0.8

1

A. Initial condition B. After 3 updates C. After 9 updates

xx x

p(x) p(x)p(x)

Fig. 9.4 Example of the expectation maximization (EM) algorithm for a world model with two
Gaussian distributions. The Gaussian distributions of the world data (input data) are shown with
dashed lines. (A) The generative model, shown with solid lines, is initialized with arbitrary param-
eters. In the EM algorithm, the unlabelled input data are labelled with a recognition model, which
is, in this example, the inverse of the generative model. These labelled data are then used for
parameter estimation of the generative model. The results of learning are shown in (B) after three
iterations, and in (C) after nine iterations .

self-supervised strategy, which repeats the following two steps until convergence:

E-step: We make assumptions of training labels (or the probability that the data were
produced by a specific cause) from the current model (expectation step); and

M-step: use this hypothesis to update the parameters of the model to maximize the
observations (maximization step).

Since we do not know appropriate parameters yet, we just chose some arbitrary values
as the starting point. In the example shown in Fig. 9.4A we used µ1 = 2, µ2 = −2,
σ1 = σ2 = 1. These distributions are shown with solid lines. Comparing the generated
data with the environmental data corresponds to hypothesis testing.

The results are not yet very satisfactory, but we can use the generative model to
express our expectation of the data. Specifically, we can assign each data point to the
class which produces the larger probability within the current world model. Thus, we
are using our specific hypothesis here as a recognition model. In the example we can
use Bayes’ rule to invert the generative model into a recognition model as detailed in
the simulation section below. If this inversion is not possible, then we can introduce
a separate recognition model, Q, to approximate the inverse of the generative model.
Such a recognition model can be learned with similar methods and interleaved with
the generative model.

Of course, the recognition with the recognition model early in learning is not
expected to be exact, but estimation of new parameters from the recognized data in the
M-step to maximize the expectation can be expected to be better than the model with
the initial arbitrary values. The new model can then be compared to the data again
and, when necessary, be used to generate new expectations from which the model is
refined. This procedure is known as the expectation maximization (EM) algorithm.
The distributions after three and nine such iterations, where we have chosen new data
points in each iteration, are shown in Figs 9.4B and C.

Unsupervised learning126 |
Table 9.1 Program ExpectationMaximization.m

1 %% 1d example EM algorithm
2 clear; hold on; x0=-10:0.1:10;
3 var1=1; var2=1; mu1=-2; mu2=2;
4 normal= @(x,mu,var) exp(-(x-mu).^2/(2*var))/sqrt(2*pi*var);
5 while 1
6 %%plot distribution
7 clf; hold on;
8 plot(x0, normal(x0,-1,4),’k:’);
9 plot(x0, normal(x0,4,.25),’k:’);
10 plot(x0, normal(x0,mu1,var1),’r’);
11 plot(x0, normal(x0,mu2,var2),’b’);
12 waitforbuttonpress;
13 %% data
14 x=[2*randn(50,1)-1;0.5*randn(50,1)+4;];
15 %% recogintion
16 c=normal(x,mu1,var1)>normal(x,mu2,var2);
17 %% maximization
18 mu1=sum(x(c>0.5))/sum(c);
19 var1=sum((x(c>0.5)-mu1).^2)/sum(c);
20 mu2=sum(x(c<0.5))/(100-sum(c));
21 var2=sum((x(c<0.5)-mu2).^2)/(100-sum(c));
22 end

Simulation

The program used to produce Fig. 9.4 is shown in Table 9.1. The vector x0, defined
in Line 2, is used to plot the distributions later in the program. The arbitrary random
initial conditions of the distribution parameters are set in Line 3. Line 4 defines an
inline function of a properly normalized Gaussian since this function is used several
times in the program. An inline function is an alternative to writing a separate function
file. It defines the name of the functions, followed by a list of parameters and an
expression, as shown in Line 4. The rest of the program consist of an infinite loop
produced with the statement while 1, which is always true. The program has thus to
be interrupted by closing the figure window or with the interruption command Ctrl
C. In Lines 7–12, we produce plots of the real-world models (dotted lines) and the
model distributions (plotted with a red and a blue curve when running the program).
The command waitforbuttonpress is used in Line 12 so that we can see the results
after each iteration.

In Line 14 we produce new random data in each iteration. Recognition of this data
is done in Line 16 by inverting the generative model using Bayes’ formula,

P (c|x;G) =
P (x|c;G)P (c;G)

P (x;G)
. (9.8)

In this specific example, we know that the data are equally distributed from each
Gaussian so that the prior distribution over causes, P (c;G) is 1/2 for each cause.

| 127Dimensionality reduction

Also, the marginal distribution of data is equally distributed, so that we can ignore
this normalizing factor. The recognition model in Line 16 uses the Bayesian decision
criterion, in which the data point is assigned to the cause with a larger recognition
distribution, P (c|x;G). Using the labels of the data generated by the recognition
model, we can then use the data to obtain new estimates of the parameters for each
Gaussian in Lines 17–21.

Note that when testing the system for a long time, it can happen that one of the
distributions is dominating the recognition model so that only data from one distribution
are generated. The model of one Gaussian would then be explaining away data from
the other cause. More practical solutions must take such factors into account.

9.3 Dimensionality reduction

Eigenspace and PCA, ICA, factor analysis, nonlinear dimensionality reduction (?),
spectral clustering.

on-board object recognition

9.4 The Boltzmann machine

9.4.1 General one-layer module

Our last model that uses unsupervised learning is again a general learning machine in-
vented by Geoffrey Hinton and Terrance Sejnowski in the mid 1980 called Boltzmann
machine. This machine is a general form of a recurrent neural network with visible
nodes that receive input or provide output, and hidden notes that are not connected
to the outside world directly. Such a stochastic dynamic network, a recurrent system
with hidden nodes, together with the adjustable connections, provide the system with
enough degrees of freedom to approximate any dynamical system. While this has been
recognized for a long time, finding practical training rules for such systems have been
a major challenge for which there was only recently major progress. These machines
use unsupervised learning to learn hierarchical representations based on the statistics
of the world. Such representations are key to more advanced applications of machine
learning and to human abilities.

The basic building block is a one-layer network with one visible layer and one
hidden layer. An example of such a network is shown in Fig. 9.5. The nodes represent

Hidden
nodes

Visible
nodes

Fig. 9.5 A Boltzmann machine with one visible and one hidden layer.

Unsupervised learning128 |

random variable similar to the Bayesian networks discussed before. We will specifically
consider binary nodes that mimic neuronal states which are either firing or not. The
connections between the have weights wij which specify how much they influence the
on-state of connected nodes. Such systems can be described by an energy function.
The energy between two nodes that are symmetrically connected with strength wij is

Hnm = −1

2

�

ij

wijs
n
i s

m
j . (9.9)

The state variables, s, have superscripts n or m which can have values (v) or (h) to
indicate visible and hidden nodes. We consider again the probabilistic update rule,

p(sni = +1) =
1

1 + exp(−β
�

j wijsnj)
, (9.10)

with inverse temperature, β, which is called the Glauber dynamics in physics and
describes the competitive interaction between minimizing the energy and the ran-
domizing thermal force. The probability distribution for such a stochastic system is
called the Boltzmann–Gibbs distribution. Following this distribution, the distribution
of visible states, in thermal equilibrium, is given by

p(sv;w) =
1

Z

�

m∈h

exp(−βHvm), (9.11)

where we summed over all hidden states. In other words, this function describes
the distribution of visible states of a Boltzmann machine with specific parame-
ters, w, representing the weights of the recurrent network. The normalization term,
Z =

�
n,m exp(−βHnm), is called the partition function, which provides the cor-

rect normalization so that the sum of the probabilities of all states sums to one. These
stochastic networks with symmetrical connections have been termed Boltzmann ma-
chines by Ackley, Hinton and Sejnowski.

Let us consider the case where we have chosen enough hidden nodes so that the
system can, given the right weight values, implement a generative model of a given
world. Thus, by choosing the right weight values, we want this dynamical system to
approximate the probability function, p(sv), of the sensory states (states of visible
nodes) caused by the environment. To derive a learning rule, we need to define an
objective function. In this case, we want to minimize the difference between two
density functions. A common measure for the difference between two probabilistic
distributions is the Kulbach–Leibler divergence (see Appendix 2.1.6),

KL(p(sv), p(sv;w))=
v�

s

p(sv) log
p(sv)

p(sv;w)
(9.12)

=
v�

s

p(sv) log p(sv)−
v�

s

p(sv) log p(sv;w). (9.13)

To minimize this divergence with a gradient method, we need to calculate the derivative
of this ‘distance measure’ with respect to the weights. The first term in the difference in

| 129The Boltzmann machine

eqn 9.13 is the entropy (see Appendix ??) of sensory states, which does not depend on
the weights of the Boltzmann machine. Minimizing the Kulbach–Leibler divergence
is therefore equivalent to maximizing the average log-likelihood function,

l(w) =
v�

s

p(sv) log p(sv;w) = �log p(sv;w)�. (9.14)

In other words, we treat the probability distribution produced by the Boltzmann ma-
chine as a function of the parameters, wij, and choose the parameters which maximize
the likelihood of the training data (the actual world states). Therefore, the averages of
the model are evaluated over actual visible states generated by the environment. The
log-likelihood of the model increases the better the model approximates the world. A
standard method of maximizing this function is gradient ascent, for which we need
to calculate the derivative of l(w) with respect to the weights. We omit the detailed
derivation here, but we note that the resulting learning rule can be written in the form

∆wij = η
∂l

∂wij
= η

β

2
(�sisj�clamped − �sisj�free) . (9.15)

The meaning of the terms on the right-hand side is as follows. The term labelled
‘clamped’ is the thermal average of the correlation between two nodes when the states
of the visible nodes are fixed. The termed labelled ‘free’ is the thermal average when
the recurrent system is running freely. The Boltzmann machine can thus be trained,
in principle, to represent any arbitrary density functions, given that the network has a
sufficient number of hidden nodes.

This result is encouraging as it gives as an exact algorithm to train general recurrent
networks to approximate arbitrary density functions. The learning rule looks interesting
since the clamped phase could be associated with a sensory driven agent during an
awake state, whereas the freely running state could be associated with a sleep phase.
Unfortunately, it turns out that this learning rule is too demanding in practice. The
reason for this is that the averages, indicated by the angular brackets in eqn 9.15, have
to be evaluated at thermal equilibrium. Thus, after applying each sensory state, the
system has to run for a long time to minimize the initial transient response of the
system. The same has to be done for the freely running phase. Even when the system
reaches equilibrium, it has to be sampled for a long time to allow sufficient accuracy
of the averages so that the difference of the two terms is meaningful. Further, the
applicability of the gradient method can be questioned since such methods are even
problematic in recurrent systems without hidden states since small changes of system
parameters (weights) can trigger large changes in the dynamics of the dynamical
systems. These problems prevented, until recently, more practical progress in this area.
Recently, Hinton and colleagues developed more practical, and biologically more
plausible, systems which are described next.

9.4.2 The restricted Boltzmann machine and contrastive Hebbian
learning

Training of the Boltzmann machine with the above rule is challenging because the
states of the nodes are always changing. Even with the visible states clamped, the

Unsupervised learning130 |

Hidden
nodes

Visible
nodes

Fig. 9.6 Restricted Boltzmann machine in which recurrences within each later are removed.

states of the hidden nodes are continuously changing for two reasons. First, the update
rule is probabilistic, which means that even with constant activity of the visible nodes,
hidden nodes receive variable input. Second, the recurrent connections between hidden
nodes can change the states of the hidden nodes rapidly and generate rich dynamics
in the system. We certainly want to keep the probabilistic update rule since we need
to generate different responses of the system in response to sensory data. However,
we can simplify the system by eliminating recurrent connections within each layer,
although connections between the layers are still bidirectional. While the simplification
of omitting collateral connections is potentially severe, much of the abilities of general
recurrent networks with hidden nodes can be recovered through the use of many layers
which bring back indirect recurrencies. A restricted Boltzmann machine (RBM) is
shown in Fig. 9.6.

When applying the learning rule of eqn 9.15 to one layer of an RBM, we can
expect faster convergence of the rule due to the restricted dynamics in the hidden
layer. We can also write the learning rule in a slightly different form by using the
following procedure. A sensory input state is applied to the input layer, which triggers
some probabilistic recognition in the hidden layer. The states of the visible and hidden
nodes can then be used to update the expectation value of the correlation between these
nodes, �svi shj �0, at the initial time step. The pattern in the hidden layer can then be
used to approximately reconstruct the pattern of visible nodes. This alternating Gibbs
sampling is illustrated in Fig. 9.7 for a connection between one visible node and one
hidden node, although this learning can be done in parallel for all connections. The
learning rule can then be written in form,

∆wij ∝ �svi shj �0 − �svi shj �∞. (9.16)

t=1 t=2 t=3 t= 8

Fig. 9.7 Alternating Gibbs sampling.

Alternating Gibbs sampling becomes equivalent to the Boltzmann machine learning
rule (eqn 9.15) when repeating this procedure for an infinite number of time steps, at
which point it produces pure fantasies. However, this procedure still requires averaging
over long sequences of simulated network activities, and sufficient evaluations of
thermal averages can still take a long time. Also, the learning rule of eqn 9.16 does

| 131The Boltzmann machine

not seem to correspond to biological learning. While developmental learning also
takes some time, it does not seems reasonable that the brain produces and evaluates
long sequences of responses to individual sensory stimulations. Instead, it seems more
reasonable to allow some finite number of alternations between hidden responses and
the reconstruction of sensory states. While this does not formally correspond to the
mathematically derived gradient leaning rule, it is an important step in solving the
learning problem for practical problems, which is a form of contrastive divergence
introduced by Geoffrey Hinton. It is heuristically clear that such a restricted training
procedure can work. In each step we create only a rough approximation of ideal
average fantasies, but the system learns the environment from many examples, so that
it continuously improves its expectations. While it might be reasonable to use initially
longer sequences, as infants might do, Hinton and colleagues showed that learning with
only a few reconstructions is able to self-organize the system. The self-organization,
which is based on input from the environment, is able to form internal representations
that can be used to generate reasonable sensory expectations and which can also be
used to recognize learned and novel sensory patterns.

The basic Bolzmann machine with a visible and hidden layer can easily be com-
bined into hierarchical networks by using the activities of hidden nodes in one layer
as inputs to the next layer. Hinton and colleagues have demonstrated the power of
restricted Boltzmann machines for a number of examples. For example, they ap-
plied layered RBMs as auto-encoders where restricted alternating Gibbs sampling was
used as pre-training to find appropriate initial internal representations that could be
fine-tuned with backpropagation techniques to yield results surpassing support vector
machines. However, for our discussions of brain functions it is not even necessary to
yield perfect solutions in a machine learning sense, and machines can indeed outper-
form humans in some classification tasks solved by machine learning methods. For us,
it is more important to understand how the brain works.

Simulation 1: Hinton

To illustrate the function of an anticipating brain model, we briefly outline a demon-
stration by the Hinton group. The online demonstration can be run in a browser from
http://www.cs.toronto.edu/∼hinton/adi, and a stand alone version of this
demonstration is available at this book’s resource page. MATLAB source code for
restricted Boltzmann machines are available at Hinton’s home page. An image of the
demonstration program is shown in Fig. 9.8. The model consists of a combination of
restricted Boltzmann machines and a Helmholz machine. The input layer is called the
model retina in the figure, and the system also contains a recognition-readout-and-
stimulation layer. The model retina is used to apply images of handwritten characters
to the system. The recognition-readout-and-stimulation layer is a brain imaging and
stimulation device from and to the uppermost RBM layer. This device is trained by
providing labels as inputs to the RBM for the purpose of ‘reading the mind’ of the
system and to give it high-level instructions. This device learns to recognize patterns
in the uppermost layer and map them to their meaning, as supplied during supervised
learning of this device. This is somewhat analogous to brain–computer interfaces
developed with different brain-imaging devices such as EEG, fMRI, or implanted
electrodes. The advantage of the simulated device is that it can read the activity of

Unsupervised learning132 |

every neuron in the upper RBM layer. The device can also be used with the learned
connections in the opposite direction to stimulate the upper RBM layer with typical
patterns for certain image categories.

Model retina

RBM layers

Recognition readout and stimulation

Image input

Concept input

RBM/Helm-
holtz layers

Fig. 9.8 Simulation of restricted Boltzmann machine by Geoffrey Hinton and colleagues, available
at www.cs.toronto.edu/∼hinton/adi.

The model for this demonstration was trained on images of handwritten numbers
from a large database. Some example images can be seen on the left-hand side. All
layers of this model were first treated as RBMs with symmetrical weights. Specifically,
these were trained by applying images of handwritten characters to the model retina
and using three steps of alternating Gibbs sampling for training the different layers.
The evolving representations in each layer are thus purely unsupervised. After this
basic training, the model was allowed, for fine-tuning purposes, to develop different
weight values for the recognition and generative model as in Helmholtz machines with
a wake–sleep training algorithm as mentioned above.

The simulations provided by Hinton demonstrate the ability of the system after
training. The system can be tested in two ways, either by supplying a handwritten
image and asking for recognition, or by asking the system to produce images of a
certain letter. These two modes can be initiated by selecting either an image or by
selecting a letter category on the left-hand side. In the example shown in Fig. 9.8, we
selected an example of an image of the number 4. When running the simulation, this
image triggers response patterns in the layers. These patterns change in every time
step, due to the probabilistic nature of the updating rule. The recognition read-out of
the uppermost layer does, therefore, also fluctuate. In the shown example, the response
of the system is 4, but the letter 9 is also frequently reported. This makes sense, as

| 133Sparse representations

this image does also look somewhat like the letter 9. A histogram of responses can be
constructed when counting the responses over time, which, when properly normalized,
corresponds to an estimate of the probability over high-level concepts generated by
this sensory state. Thus, this mode tests the recognition ability of the model.

The stimulation device connected to the upper RBM layer allows us to instruct
the system to ‘visualize’ specific letters, which corresponds to testing the generative
ability of the model. For example, if we ask the system to visualize a letter 4 by
evoking corresponding patterns in the upper layer, the system responds with varying
images on the model retina. There is not a single right answer, and the answers of
the system change with time. In this way, the system produces examples of possible
images of letter 4, proportional to some likelihood that these images are encountered
in the sensory world on which the system was trained. The probabilistic nature of the
system much better resembles human abilities to produce a variety of responses, in
contrast to the neural networks that have been popular in the 1980s, so called multilayer
perceptrons, which were only able to produce single answers for each input.

Simulation 2: Simplified one layer model

A simplified version of the RBM trained on some letters are included in folder RBM
example on the web resource page. The overage reconstruction error and some exam-
ples of reconstructions after training are shown in Fig.9.9.

0 100 200 3000

0.05

0.1

0.15

0.2

0.25

epoch

av
g

er
ro

r

A. Training Error B. Reconstructions

Fig. 9.9 (A) Reconstruction error during training of alphabet letters the letters, and (B) reconstruc-
tions after learning.

9.5 Sparse representations

Part V

Reinforcement learning

10 Markov Decision Process

This chapter is an introduction to reinforcement learning. We introduce here the general
idea and formulation of reinforcement learning, and we will then then concentrate in
this chapter on the most basic case of a Markov Decision Process (MDP). These
processes are characterized by completely observable states of the system and by
transition processes that only depend on the last states. In the next chapters this will
be extended to temporal difference (TD) learning and partially observable situations.

10.1 Learning from reward and the credit assignment
problem

We discussed in previous chapters supervised learning in which a teacher showed
an agent the desired response y to a given input state x. We are now moving to the
problem when the agent must discover the right action to choose and only receives some
qualitative feedback from the environment such as reward or punishment. The reward
feedback does not tell the agent directly which action to take. Rather, it indicates which
states-action pairs are desirable (rewarded) or not (punished). The agent has to discover
the right sequence of actions to take to optimize the reward over time. Choosing the
right action of an actuator is traditionally the subject of control theory, and this subject
is thus also called optimal control.

Reward learning introduces several challenges. For example, in typical circum-
stances reward is only received after a long sequence of actions. The problem is then
how to assign the credit for the reward to specific actions. This is the temporal credit
assignment problem. To illustrate this, let us think about a car that crashed into a
wall. It is likely that the driver used the breaks before the car crashed into the wall,
though the breaks could not prevent the accident. However, from this we should not
conclude that breaking is not good and lead to crashes. In some distributed systems
there is in addition a spatial credit assignment problem which is the problem of
how to assign the appropriate credit when different parts of a system contributed to a
specific outcome.

Another challenge in reinforcement learning is the balance between exploitation
and exploration. That is, we might find a way to receive some small food reward
if we repeat certain actions, but if we only repeat these specific actions, we might
never discover a bigger reward following different actions. Some escape from self-
reinforcement is important.

The idea of reinforcement learning is to use the reward feedback to build up a
value function that reflect the expected future payoff of visiting certain states and
taking certain actions. We can use such a value function to make decisions of which
action to take and thus which states to visit. This is called a policy. To formalize

Markov Decision Process138 |

these ideas we start with simple processes where the transitions to new states depend
only on the current state. A process which such a characteristics is called a Markov
process. In addition to the Markov property, we also assume at first that the agent has
full knowledge its environment. Finally, it is again important that we acknowledge
uncertainties and possible errors. For example, we can take error in motor commands
into account by considering probabilistic state transitions.

10.2 The Markov Decision Process
Before formalizing the decision processes in this chapter, let us begin with an example
to illustrate a common setting. In this example we consider an agent that should learn
to navigate through the maze shown in Figure 10.1. The states of the maze are the
possible discrete positions that are simply numbered consecutively in this example, that
is, S = {1, 2, ..., 18}. In The possible actions of the agent is to move one step forward,
either to the north, east, south and west, that is, A = {N,E, S,W}. However, even
though the agents gives these commands to its actuators, stochastic circumstances
– such as faulty hardware or environmental conditions (e.g. someone ‘kicking’ the
agent) – make the agent end up in different states with certain probabilities specified
by probabilistic transition matrix T (s�|s, a). For example, the probability of following
actions a = N might just be 80%, and the agent could then take actions a = W and
a = E in 10% of the cases each, but never go south. We assume for now that the
transition probability is given explicitly, although in many practical circumstances we
might need to estimate this from examples (e.g. supervised learning). Of course, some
directions are not possible from all states. Such situations can be handled in different
ways such as by a reduced set of states for these positions, or by the action that the
agent returns to the sending state when taking these actions. We will use the later case
in the example here. Finally, the agent is given reward or punishment when the agent
is moving into a new state s. For example, we can consider a deterministic reward
function in which the agent is given a large reward when finding the exit to the maze
(r(18) = 1 in the example of Figure 10.1). In practice it is also common and useful to
give some small negative reward to the other states. This could, for example, represent
the battery resource that the Lego robot consumes when moving to a cell in the grid,
whereas it gets recharged at the exit of the maze.

A common approach to solve a maze navigation problem is path planing based
on some search algorithms such as the A∗ search algorithm. However, the task here
is different in that the agent must discover itself the task of completing the maze.
Indeed, the agent might not even be aware of this as the main task for the agent is
simply to optimize future reward. Also, the probabilistic nature of the state transition is
challenging for traditional search algorithms, although this can be accomplished with
some dynamic extensions of the standard search algorithms. So what is the benefit of
this approach? The great thing about reinforcement learning is that it is very general
and can readily be applied to many task. Also, being a learning system, we can even
change the task at any point by changing the reward feedback, and there should be no
need to change anything in the program of the agent. Indeed, when training animals,
this is usually the main way that we can communicate with the animals in learning
situations since we can not verbally communicate the task goal.

| 139The Markov Decision Process

We now formalize such an environment as a Markov Decision Process (MDP). A
MDP is characterized by a set of 5 quantities, expressed as (S,A, T (s�|s, a), R(r|s, a), θ).
The meaning of these quantities are as follows.

• S is a set of states.
• A is a set of actions.
• T (s�|s, a) is a transition probability, for reaching state s� when taking action
a from state s. This transition probability only depends on the previous state,
which is called the Markov condition; hence the name of the process.

• R(r|s) is the probability of receiving reward when getting to state s. This
quantity provides feedback from the environment. r is a numeric value with
positive values indicating reward and negative values indicating punishment.

• θ are specific parameters for some of the different kinds of RL settings. This
will be the discount factor γ in our first examples.

Start

Goal
R=1

R=-0.1

R=-0.1

R=-0.1 R=-0.1R=-0.1R=-0.1

R=-0.1 R=-0.1R=-0.1R=-0.1 R=-0.1

R=-0.1 R=-0.1

R=-0.1

R=-0.1R=-0.1

R=-0.1

1 6

5

4

3

72

7

8

9

10 11

12

13

14

15

16

17

18

Fig. 10.1 A maze where each state is rewarded with a value r.

An MDP is fully determined by these 5 quantities that characterize the environment
completely. However, to make decisions we define two quantities that will guide the
behaviour of an agent. The first quantities is the value function Qπ(s, a) that specifies
how valuable state s is under the policyπ for different actions a. This quantity is defined
as the expected reward as formalized below. The second quantity is the policy π(a|s)
which is the probability of choosing action a from state s. Note that we have kept the
formulation here very general by considering probabilistic rewards and probabilistic
policies, although some applications can be formulated with deterministic functions
for these quantities. Since the action is uniquely determined for deterministic policies,
one can then use the state value function V π(s), although it is important to realize
that it is still specific to the actions taken under the policy. The function Qπ(s, a) is
often called the state-action value function to distinguish it from V π(s). Also, we
consider here rewards that only depend on the state. In same rare cases reward might
depend on the way a state is reached, in which case the reward probability can be easily
extended to R(r|s,a).

Markov Decision Process140 |

Reinforcement learning algorithms are aimed at calculating or estimating value
functions to determine useful actions. However, most of the time we are mostly inter-
ested in finding the best, or optimal policy. Since choosing the right actions from states
is the aim of control theory, this is sometimes called optimal control. The optimal
policy is the policy which maximizes the value (expected reward) for each state. Thus,
if we denote the maximal value as

Q∗(s, a) = max
π

Qπ(s, a), (10.1)

the optimal policy is the policy that maximizes the expected reward,

π∗(a|s) = argmax
π

Qπ(s, a). (10.2)

While direct search in the space of all possible policies is possible in examples with
small sets of states and actions, a major problem of reinforcement learning is the
exploding number of policies and states with increasing dimension, and solving this
‘course of dimensionality’ will be part of the advanced discussions later.

Finally we need define the value function more precisely. As already stated above,
the value function is defined as the expected value of all future rewards, which is called
the total payoff. The total payoff is the sum of all future reward, that is, the immediate
reward of reaching state s as well as the rewards of subsequent states by taking the
specific actions under the policy. Let us consider the specific episode of consecutive
states s1, s2, s3, ... following s. Note that the states sn are functions of the starting state
s and the actual policy. The cumulative reward for this specific episode when visiting
the consecutive states s1, s2, s3, ... from the starting state s under policy π is thus

r∞(s) = r(s) + r(s1) + r(s2) + r(s3) + (10.3)

One problem with this definition that this value could be unbounded as it runs over
infinitely many states into the future. A possible solution of this problem is to restrict
the sum by considering only a finite reward horizon, for example by only consider
rewards given within a certain finite number of steps such as

r4(s) = r(s) + r(s1) + r(s2) + r(s3). (10.4)

Another way to solve the infinite payoff problem is to consider reward that is discounted
when it is given at later times. In particular, if we consider the discount factor 0 < γ < 1
for each step, we have a total payoff

rγ(s) = r(s) + γr(s1) + γ2r(s2) + γ3r(s3) + (10.5)

Since we consider probabilistic state transitions, policies and rewards, we can only
estimate the expected value of the total payoff when starting at state s and taking
actions according to a policy π(a|s). We denote this expected value with the function
E{Rγ(s)}π . The expected total discounted payoff from state s when following policy
π is thus

Qπ(s, a) = E{r(s) + γr(s1) + γ2r(s2) + γ3r(s3) + ...}π. (10.6)

This is called the value-function for policy pi. Note that this value function not only
depends on a specific state but also on the action taken from state s since it is specific
for a policy. We will now derive some methods to estimate the value-function for a
specific policy before discussing methods of finding the optimal policy.

| 141The Bellman equation

10.3 The Bellman equation

10.3.1 Bellman equation for a specific policy

With a complete knowledge of the system, that includes a perfect knowledge of the state
the agent is in as well as the transition probability and reward function, it is possible
to estimate the value function for each policy π from a self-consistent equation. This
was already noted by Richard Bellman in the mid 1950s, and this method is known
as dynamic programming. To derive the Bellman equation we consider the value
function, equation 10.6 and separate the expected value of the immediate reward from
the expected value of the reward fro visiting subsequent states,

Qπ(s, a) = E{r(s)}π + γE{r(s1) + γr(s2) + γ2r(s3) + ...}π. (10.7)

The second expected value on the right hand side is that of the value function for state
s1, but state s1 is related to state s since state s1 is the state that can be reached with
a certain probability from s when taking action a1 according to policy π, for example
like s1 = s + a1 and sn = sn−1 + an. We can incorporate this into the equation by
writing

Qπ(s, a) = r(s)+γ
�

s�

T (s�|s, a)
�

a�

π(a�|s�)E{r(s�)+γR(s�1)+γ2R(s�2)+ ...}π,

(10.8)
where s�1 is the next state after state s�, etc. Thus, the expression on the right is the state-
value-function of state s�. If we substitute the corresponding expression of equation
10.6 into the above formula, we get the Bellman equation for a specific policy, namely

Qπ(s, a) = r(s) + γ
�

s�

T (s�|s, a)
�

a�

π(a�|s�)Qπ(s�, a�). (10.9)

In the case of deterministic policies, the action a is given by the policy and the value
function Qπ(s, a) reduces to V π(s). In this case the equation simplifies to

V π(s) = r(s) + γ
�

s�

T (s�|s, a)V π(s�). (10.10)

Such a linear equation system can be solved with our complete knowledge of the
environment. In an environment with N states, the Bellman equation is a set of N
linear equations, one for each state, with N unknowns which are the expected value
for each state. We can thus use well known methods from linear algebra to solve for
V π(s). This can be formulated compactly with Matrix notation,

r = (11− γT)Vπ, (10.11)

where r is the reward vector, 11 is the unit diagonal matrix, and T is the transition
matrix. To solve this equation we have to invert a matrix and multiply this with the
reward values,

Vπ = (11− γT)−1rt, (10.12)

where rt is the transpose of r

Markov Decision Process142 |

Note that the analytical solution of the Bellman equation is only possible because
we have complete knowledge of the system, including the reward function r, which
itself requires a perfect knowledge of the state in which the agent is in. Also, while
we used this solution technique from linear algebra, it is much more common to use
the Bellman equation directly and calculate a state-value-function iteratively for each
policy. We can start with a guess V for the value of each state, and calculating from
this a better estimate

V ← r+ γTV (10.13)

until this process converges. While we mainly use this iterative approach, we will also
give an example below of using the analytical example.

10.3.2 Policy iteration

The equations above depends on a specific policy. As mentioned above, in many cases
we are mainly interested in finding the policy that gives us the optimal payoff and we
could simply search for this by considering all possible policies. But this is usually
not practical in most but a small number of examples since the number of possible
policies is equal to the number of actions to the power of the number of states. This
explosion of the problem size with the number of states is one of the main challenges in
reinforcement learning and was termed curse of dimensionality by Richard Bellman.
Most of the problems discussed here have small number of states and small number of
possible actions, so that this is not a major concern here.

However, a much more efficient method is incrementally find the value function
for a specific policy and then use the policy which maximizes this value function for
the next round. The policy iteration algorithm is outlined in Figure 10.2. In addition
to an initial guess of the value function, we have now also to initialize the policy, which
could be randomly chosen from the set of possible actions at each state. For this value
functions we could then calculate the corresponding state-value-function according to
equation 10.9. This step is the evaluating the specific policy. The next step is to take this
value functions and calculate the corresponding best set of actions to take accordingly,
which corresponds to the next candidate policy. This policy is again simply to take the
action from each state that would maximize the corresponding future payoff. These
two steps, the policy evaluation and the policy improvement are repeated the policy
won’t change any more.

To demonstrate this scheme for solving MDPs, we will follow a simple example,
that of a chain of N states. The states of the chain are labeled consecutively from left
to right, s = 1, 2, ..., N . An agent has two possible actions, go to the left (lower state
numbers; a = −1), or go to the right (higher state numbers; a = +1). However, in P
cases the system responds with the opposite move from the intended. The last state in
the chain, state number N , is rewarded with r(N) = 1, whereas going to the first state
in the chain is punished with r(1) = −1. The reward of the intermediate states is set
to a small negative value, such as r(i) = −0.1, 1 < i < N . We consider a discount
factor γ.

The transition probabilities T (s�|s, a) for the chain example are zero expect for the
following elements,

T (1|1,−1) = 1 (10.14)

| 143The Bellman equation

Choose initial policy and value function
Repeat until policy is stable {

1. Policy evaluation
Repeat until change in values is sufficiently small {

For each state {
Calculate the value of neighbouring states when taking

action according to current policy.
Update estimate of optimal value function.

V π

equation 10.9

} each state
} convergence

2. Policy improvement
new policy according to equation 10.21, assuming V ∗ ≈ current V π

} policy

Fig. 10.2 Policy iteration with asynchronous update.

T (N |N,+1) = 1 (10.15)
T (s− a|s, a) = 1− P (10.16)

T (s+ a|s, a) = P (10.17)

The first two entries specify the ends of the chain as absorbing boundaries as the
agent would stay in this state one it reaches these states. We can also write this as two
transfer matrices, one for each possible actions. For a = 1 this is,

1 · · · · · · 0
...

...
0 · · · 0 1− P 0 P 0 · · · 0
...

...
0 · · · · · · 1

(10.18)

and for a = −1 this is

1 · · · · · · 0
...

...
0 · · · 0 P 0 1− P 0 · · · 0
...

...
0 · · · · · · 1

(10.19)

The corresponding Matlab code for setting up the chain example is
% Chain example:
% Policy iteration with analytical solution of Bellman equation
clear;
N=10; P=0.8; gamma=0.9; % parameters
U=diag(ones(1,N)); % unit diaogonal matrix

Markov Decision Process144 |

T=zeros(N,N,2); % transfer matrix
r=zeros(1,N)-0.1; r(1)=-1; r(N)=1; % reward function

T(1,1,:)=1; T(N,N,:)=1;
for i=2:N-1;

T(i,i-1,1)=P;
T(i,i+1,1)=1-P;
T(i,i-1,2)=1-P;
T(i,i+1,2)=P;

end

The policy iteration part of the program is then given as follows:

% random start policy
policy=floor(2*rand(1,N))+1; %random vector of 1 (going left) and 2 (going right)
Vpi=zeros(N,1); % initial arbitrary value function
iter = 0; % counting iteration
converge=0;
% Loop until convergence

while ~converge
% Updating the number of iterations
iter = iter + 1;
% Backing up the current V
old_V = Vpi;
%Transfer matrix of choosen action
Tpi=zeros(N); Tpi(1,1)=1; T(N,N)=1;
for s=2:N-1;

Tpi(s,s-1)=T(s,s-1,policy(s));
Tpi(s,s+1)=T(s,s+1,policy(s));

end
% Calculate V for this policy
Vpi=inv(U-gamma*Tpi)*r’;
% Updating policy
policy(1)=0; policy(N)=0; %absorbing states
for s=2:N-1

[tmp,policy(s)] = max([Vpi(s-1),Vpi(s+1)])
end
% Check for convergence
if abs(sum(old_V - Vpi)) < 0.01

converge = 1;
end

end
iter, policy

The whole procedure should be run until the policy does not change any more. This
stable policy is then the policy we should execute in the agent.

| 145The Bellman equation

10.3.3 Bellman equation for optimal policy and value iteration

Instead of using the above Bellman equation for the value function and then calculating
the optimal value functions, we can also derive a version of Bellman’s equation for
the optimal value function itself. This second kind of a Bellman equation is given by

V ∗(s) = r(s) + max
a

γ
�

s�

T (s�|s, a)V ∗(s�). (10.20)

The max function is a bit more difficult to implement in the analytic solution, but
we can again easily use and iterative method to solve for this optimal value function.
This is called value iteration. Note that this version includes a max function over all
possible actions in contrast to the Bellman equation for a given policy, equation 10.9.
As outlined in figure 10.3, we start again with a random guess for the value of each
state and then iterate over all possible states using the Bellman equation for the optimal
value function, equation 10.20. More specifically, This algorithm takes an initial guess
of the optimal value function, typically random or all zeros. We then iterate over the
main loop until the change of the value function is sufficiently small. For example,
we could calculate the sum of value functions in each iteration (t) and then terminate
the procedure if the absolute difference of consecutive iterations is sufficiently small,
that is if |

�
s V

∗
t (s)−

�
s V

∗
t−1(s)| <threshold. In each of those iterations, we iterate

over all states and update the estimated optimal value functions according to equation
10.20.

Choose initial estimate of optimal value function
Repeat until change in values is sufficiently small {

For each state {
Calculate the maximum expected value of neigh-

bouring states for each possible action.
Use maximal value of this list to update estimate

of optimal value function.

V ∗

equation 10.20

} each state
} convergence
Calculate optimal value function from equation 10.21

Fig. 10.3 Value Iteration with asynchronous update.

Finally, after convergence of the procedure to get a good approximation of the
optimal value function, we can calculate the optimal policy by considering all possible
actions from each state,

π∗(s) = argmax
a

�

s�

T (s�|s, a)V ∗(s�), (10.21)

which should be used by an agent to achieve good performance.
As a minor side note, the state iteration can be done in various ways. For example,

in the sequential asynchronous updating schema we update each state in sequence
and repeat this procedure over several iterations. Small variations of this schema
are concerned with how the algorithm iterates over states. For example, instead of

Markov Decision Process146 |

iterating sequentially over the states, we could also use a random oder. We could also
first calculate the maximum value of neighbours for all states before updating the value
function for all states with an synchronous updating schema. Since it can be shown
that theses procedure will converge to the optimal solution, all these schemas should
work similarly well though might differ slightly for particular examples. Important is
however that that the agent goes repeatedly to every possible state in the system. While
this works only because we have complete knowledge of the system, it also only works
well in the examples with small state spaces. In general, such iterations over the state
space are problematic for large state space.

The previously discussed policy iteration has some advantages over value iterations.
In value iteration we have to try out all possible actions when evaluating the value
function, and this can be time consuming when there are many possible actions. In
policy iteration, we choose a specific policy, although we have then to iterate over
consecutive policies. In practice it turns out that policy iteration often converges fairly
rapidly so that it becomes a practical method. However, value iteration is a little
bit easier and has more similarities to the algorithms discussed below that are also
applicable to situations where we do not know the environment a priori.

Exercise:

Implement the value iteration for the chain problem and plot the learning curve (how
the error changes over time), the optimal value function, and the optimal policy. Change
parameters such as N , γ, and the number of iterations and discuss the results.

Exercise:

Solve the Russel grid with the policy iteration using the basic Bellman functions
iteratively, and compare this method to the value iteration.

11 Temporal Difference learning and
POMDP

11.1 Temporal Difference learning

Dynamic programming can solve the basic reinforcement learning problem since we
assumed a complete knowledge of the system, which includes the knowledge about
the precise state of the agent, transition probabilities, the reward functions, etc. In
reality, and commonly in robotics, we might not know the state and other quantities
directly but most usually estimate them from interacting with the environment. The
algorithms in this chapter are all focused of solving the reinforcement problem on-line
by interacting with the environment. We will first assume that we still know the exact
state of the agent at each step and will then discuss partially observable situations
below.

Likely the most direct methods of estimating the value of states is to just act in the
environment and thereby sampling and memorizing reward from which the expected
value can be calculated by averaging. Such methods are generally called Monte Carlo
methods. While general monte Carlo methods are very universal and might work
well in some applications, we will concentrate here right away on algorithms which
combine ideas from Monte Carlo methods with that of dynamic programming. Such
influential methods in reinforcement learning have been developed by Rick Satton
and Andrew Barto, and also by Chris Watkins, although some of those methods have
even been applied to learning to play checkers by Arthur Samuel in the late 1950s.
Common to these methods is that they use the difference between expected reward
and actual reward. Such algorithms are therefore generally called temporal difference
(TD) learning. We start again by estimating the value function for a specific policy
before moving to schemas for the estimating the optimal policy.

Let us recall Bellman’s equation for value function of a policy π (eq.10.9),

V π(s) = r(s) + γ
�

s��

T (s��|s, a)V π(s��). (11.1)

The sum on the right-hand side is over all the states that can be reached from state s. A
difficulty in practice is often that we don’t know the transition probability and have to
estimate this somehow. The strategy we are taking now is that we approximate the sum
on the right hand side by a specific episode taken by the agent. This interaction of the
interaction with the environment that makes this an on-line learning tasks as in Monte
Carlo methods. But in contrast to Monte Carlo methods we do not take and memorize
the following steps and associated reward but estimate the expected reward of the
following step with the current estimate of the value function which is an estimate
of the reward of the whole episode. Such strategies are sometime called a bootstrap

Temporal Difference learning and POMDP148 |

method as if pulling oneself out of the boots by one owns strap. We will label the actual
state reached by the agent as s�. Thus, the approximation can be written as

�

s��

T (s��|s, a)V π(s��) ≈ V π(s�). (11.2)

While this term makes certainly an error, the idea is that this will still result in an
improvement of the estimation of the value function, and that other trials have the
possibility to evaluate other states that have not been reached in this trial. The value
function should then be updated carefully, by considering the new estimate only
incrementally,

V π(s) ← V π(s) + α{r(s) + γV π(s�)− V π(s)}. (11.3)

This is called TD learning. The constant α is called a learning rate and should be fairly
small. This policy evaluation can then be combined with policy iteration as discussed
already in the section on dynamic programming.

11.2 Temporal difference methods for optimal control
Most of the time we are mainly interested in optimal control that maximizes the reward
receiver over time. We will now turn to this topic. In this section we will explicitly
consider stochastic policies and will thus return to the notation of the state-action value
function. Also, since we are always talking about the optimal value function in the
following, we will drop the star in the formulas and juts use Q(s, a) = Q∗(s, a) for
the optimal value.

A major challenge in on-line learning of optimal control when the agent is interact-
ing with the environment is the trade-off between maximizing the reward in each step
and exploring the environment for larger future reward while excepting some smaller
immediate reward. This was not a problem in dynamic programming since we would
iterate over all states. However, in large state space and in situation where exploring
takes time and resources, typical for robotics applications, we can not expect to iterate
extensively over all states and we must thrive for a good balance between exploration
and exploitation. Without exploration it can easily happen that the agent get stuck in
a suboptimal solution. Indeed, we could only solve the chain problem above because
it included some probabilistic transition matrices that helped us exploring the space.

Optimal control demands to maximize reward and therefore to always go to the
state with the maximal expected reward at each time. But this could prevent finding
even higher payoffs. A essential ingredient of the following algorithms is thus the
inclusion of randomness in the policy. For example, we could follow most of the time
the greedy policy, which chooses another possible actions in a small number � of
times. This probabilistic policy is called the �-greedy policy,

π(a = argmax
a

Q(s, a)) = �. (11.4)

This policy is choosing the policy with the highest expected payoff most of the time
while treating all other actions the same. A more graded approach is using the softmax
policy that choses each action proportional to a Boltzmann distribution

| 149Robot exercise with reinforcement learning

π(a|s) = eQ(s,a)

�
a� eQ(s,a�)

. (11.5)

While there are other possible choices of a probabilistic policy, the general idea of the
following algorithms do not depend on this details, and we therefore use the �-greedy
policy for illustration purposes.

To derive the following on-line algorithms for optimal control, we now consider the
Bellman equation for the optimal value function (eq 10.20) generalized for stochastic
policies,

Q(s, a) = r(s) + max
a

γ
�

s�

T (s�|s, a)
�

a�

π(a�|s�)Q(s�, a�). (11.6)

We again use an online procedure in which the agent takes specific actions. Indeed,
we now always consider policies that choses actions most of the time that lead to the
largest expected payoff. Thus, by taking the action according to the policy we can
write a temporal difference learning rule for the optimal stochastic policy as

Q(s, a) ← Q(s, a) + α{r(s) + γQ(s�, a�)−Q(s, a)}, (11.7)

where the actions a� is the action chosen according to the policy. This on-policy TD
algorithm is called Sarsa for state-action-reward-state-action. Note that the action a�

will not always be the action that maximizes the expected reward since we are using
stochastic policies. Thus, slightly different approach is using only the action to the
maximal expected reward for the value function update while still exploring the state
space through the policy.

Q(s, a) ← Q(s, a) + α{r(s) + max
a�

γQ(s�, a�)−Q(s, a)}. (11.8)

Such a off-policy TD algorithm is called Q-leaning

11.3 Robot exercise with reinforcement learning

11.3.1 Chain example

The first example follows closely the chain example discussed in the text. We consider
thereby an environment with 8 states. An important requirement for the algorithms
is that the robot must know in which state it is in. As discussed in Chapter ??, this
localization problem is a mayor challenge in robotics. We use here the example where
we use a state indicator sheet as used in section ??. You should thereby use the
implemented of the calibration from the earlier exercise.

Temporal Difference learning and POMDP150 |

Choose initial policy and value function
Repeat until policy is stable {

1. Policy evaluation
Repeat until change in values is sufficiently small {
Remembering the value function and reward of current state (eligibility trace)
If rand>�

Go to next state according to policy of equation ??
else

go to different state
Update value function of previous state according to (equation 11.3)
V π(s− 1) ← V π(s− 1) + α(R(s− 1) + γV π(s)− V π(s− 1))

} convergence
2. Policy improvement
new policy according to equation 10.21, assuming V ∗ ≈ current V π

} policy

Fig. 11.1 On-policy Temporal Difference (TD) learning

Our aim is for the robot to learn to always travel to state 8 on the state sheet from
any initial position. It is easy to write a script with explicit instruction for the robot, but
the main point here is that the robot must learn the appropriate action sequence from
only given reward feedback. Here you should implement three RL algorithms. The
first two are the basic dynamic programming algorithms of value iteration and policy
iteration. Note that you can assume at this point that the robot has full knowledge of
the environment so that the robot can find the solution by ‘contemplating’ about the
problem. However, the robot must be able to execute the final policy.

The third algorithm that you should implement for this specific example is the tem-
poral difference (TD) learning algorithm. This should be a full online implementation
in which the robot actively explores the space.

| 151POMDP

11.3.2 Wall Avoider Robot Using Reinforcement Learning

The goal of this experiment is to teach the NXT robot to avoid walls. Use the Tribot
similar with an ultrasonic sensor and a touch sensor mounted at the front. The ultrasonic
sensor should be mounted to the third motor so that the robot can look around. An
example is shown in Fig.11.2. Write a program so that the robot learns to avoid bumping

Fig. 11.2 Tribot configuration for the wall avoidance experiment.

by giving negative feedback when it hits an obstacle.

11.4 POMDP

With the introduction of a probability map, the POMDP can be mapped on a MDP

11.5 Model-based RL

In all of the above discussions we have assumed a discrete state space such as a chain
or a grid. Of course, in practice, we might have a continuous state space, such as the
position of a robot arm or a mobile robot in the environment. While discretizing the
state space is a common and sometimes sufficient approach, it can also be part of
the reason behind the curse of dimensionality since a increasing the resolution of the
discretization will increase the number of states exponentially. We are now discussing
model-based methods to overcome these problems and to make reinforcement learning
applicable to a wider application area.

The idea behind this section is similar to the distinction between the histogram-
based and model-based methods for approximating a pdf. The histogram method makes
discrete bins and estimates the probability of each bin by averaging over examples.
In contrast, a model-based approach makes a hypothesis in form of a parameterized
function and estimates the parameters from examples. Thus, the later approach can
be applied by making an hypothesis of the functional form of the predicted value at a
specific time, Vt(xt), from input xt at time t,

Temporal Difference learning and POMDP152 |

Vt(xt) = ft(xt; θ). (11.9)

This is equivalent to supervised learning, and we can use the same methods for learning
the parameters from data such as maximum likelihood estimation. Also, similar to the
different approaches in supervised learning, we could build very specific hypothesis
for a specific problem or use hypothesis that are very general. While the later approach
might suffer from a large number of parameters compared to the first method, we will
follow this line here as it is more universally applicable.

A basic method of adjusting the weights is using a gradient-descent methods on an
objective function. We will here consider the popular MSE10, for which the gradient-
descent rule is given by

∆θ =
�

t

α(r − Vt)
∂f

∂xt
. (11.10)

We considered here the total change of the weights for a whole episode by summing
the errors for each time step. However, one specific difference of the situation here
compared to the supervised-learning examples before is that the reward is typically
only received after several time steps in the future at the end of an episode. One
approach is to keep a history of our predictions and make the changes for the whole
episode only after the reward is received at the end of the episode. However, we can
make incremental (online) updates by following the approach of temporal difference
learning and replacing the supervision signal for a particular time step by the prediction
of the value of the next time step,

∆tθ = α(Vt+1 − Vt)
t�

k=1

∂fk
∂x

. (11.11)

The summed change for the parameters over the whole episode is the same as from
equation 11.10. We still have to keep a memory of all the gradients from the previous
time steps, or at least a running sum of these gradients.

While the rules 11.10 and 11.11 are equivalent, we also introduce here some mod-
ified rules suggested by Richard Sutton. In particular, we can weight recent gradients
more than gradients in the more remote past by introducing a decay factor 0 ≤ λ ≤ 1.
The rule above correspond toλ = 1 and is thus called the TD(1) rule. Correspondingly,
the general TD(λ) rule is given by

∆tθ = α(Vt+1 − Vt)
t�

k=1

λt−k ∂fk
∂x

. (11.12)

If we take the extreme of λ = 0, then the TD(0) rule is given by

∆tθ = α(Vt+1 − Vt)
∂ft
∂x

. (11.13)

Note that this rule gives different results to the supervised learning rule TD(1), but this
rule is local in time and does not require any memory.

10As discussed in section ??, this is appropriate for Gaussian data

| 153Free-energy-based reinforcement learning

11.6 Free-energy-based reinforcement learning

Temporal Difference learning and POMDP154 |

E ∝
�
y − θTx

�2
(11.14)

E ∝ (y − h(x; θ))2 (11.15)

E ∝
�
y − θTφ(x)

�2
(11.16)

E ∝ αiαjyiyjx
Tx+ constraints (11.17)

E ∝ αiαjyiyjφ(x)
Tφ(x) + constraints (11.18)

K(x, x) (11.19)

P (B,E,A, J,M) = P (B)P (E)P (A|B,E)P (J |A)P (M |A) (11.20)

= P (B)P (E|B)P (A|B,E)P (J |B,E,A)P (M |B,E,A, J) (11.21)

