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Part I

Introduction and background





1 Machine Learning and the
probabilistic framework

Both, machine learning and robotics have been important topics in the area of artificial
intelligence. The introductory chapters in this first section outline some history and the
direction of the course and review some material which are important as background
in the first tutorials. This includes probability theory, programming with Matlab, and
how to use the Lego MIndstorm.

1.1 Some history

Artificial Intelligence (AI) has many sub-discipline such as search, knowledge rep-
resentation, expert systems, etc. This course will focus on Machine Learning (ML)
where some aspects of an algorithm rely on learning from examples or feedback from
the environment to find solutions to problems.

AI has long been tightly interwoven with ML. For example, Samuel’s checkers
program from the 1950s was able to learn from experience and thereby outperforming
its creator. Basic Neural Networks, such as Bernhard Widrow’s ADALINE (1959),
Karl Steinbuch’s Lernmatrix (around 1960), Rosenblatt’s Perceptron (late 1960s), and
Richard Bellman’s Dynamic Programming (1953), have created a lot of excitement
during the 1950s and 60s. This has been paralleled in the progress of understand-
ing biological systems such s Donald Hebb’s influential book The Organization of
Behavior (1943) and Eduardo Caianiello’s influential paper Outline of a theory of
thought-processes and thinking machines (1961). However, after Marvin Minsky and
Seymore Papert published their book Perceptrons in 1969 with a proof that simple
perceptrons can not learn all problems, the field quickly subsided and shifted towards
expert systems. Neural Networks became again popular in the mid 1980 after the
backpropagation algorithms was popularized by David Rumelhart, Geoffrey Hinton
and Ronald Williams (1986).

Since then, important progress has been made, in particular through the more rig-
orous mathematical formulations and the embedding of such methods with stochastic
methods. In particular, important learning theories become widely known and de-
veloped further after Vladimir Vapnik published his book The Nature of Statistical
Learning Theory in 1995. Bayesian methods have also transformed the field (Judea
Pearl, 1985).
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Fig. 1.1 Some AI pioneers AI.From top left to bottom right: Alan Turing, Arthur Lee Samuel, Marvin
Minsky, Richard Bellman, Frank Rosenblatt, Geoffrey Hinton.

1.2 Stochastic modeling

In this course we discuss in some detail three different types of learning systems
which are commonly categorized as supervised learning, unsupervised learning, and
reinforcement learning. Supervised learning is characterized by given explicit ex-
amples that the system should learn (memorize) and from which the system should
generalize to previously unseen examples. The supervision is usually given in the
form of labels, y(i) for training patterns with features x(i). This is usually contrasted
with unsupervised learning, which aims to discover structure in data without explicit
labels. Reinforcement learning is somewhat in between as the learning is guided only
by some feedback on the quality of actions produced by the earning system rather than
specifying what is right or wrong as can be done in supervised systems. We will also
discuss hybrid systems.

Traditional AI has provides many useful approaches for solving specific problems.
For example, search algorithms can be used to navigate mazes or to find scheduling
solutions, and such strategies should first be considered, However, learning systems are
usually more general and can be applied to situations for which closed solutions are not
be known. Also, experience has shown that applications often fail at some point since
systems change over time or when an agent encounters situations for which the system
has not been designed. Learning systems are generally thought to be more robust.
Indeed, a main objective of learning systems is to build systems that generalize well
to new situation, that is, learning systems should be able to generate sensible solutions
to previously unseen situations. We will discuss this point in detail in Chapter 5.
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Another well known problem in building practical applications is that systems
are generally unreliable and that environments are uncertain. For example, we a
program might read data files in a specific format, but some users supplies a corrupted
file. Productions software is often lengthy only to consider all kind of situations that
could occur, and we now realize that considering all possibilities is often inpossible.
This problem will become very apparent in robotics where sensors are often unreliable
and estimation techniques are limited either because of limited resources or limited
data. Even actions can be noisy.

While the area of machine learning has a long history as outlined above, there has
been major advances made over the last two decades. Much of the progress was made
possible by the realization of researchers in many related areas that the language of
(Bayesian) probability theory is very useful in this area. This language is appropriate
since is acknowledges the fundamental limitations we have in real world applications
(such as limited computational researches or inaccurate sensors). The language of
probability theory has certainly helped to unify much of related areas and improved
communication between researchers.

Our aim of learning machines is to learn from the environment, either through in-
structions, by reward or punishment, or just by exploring the environment and learning
about typical objects or temporal sequences. Our ultimate goal is to model the world
and to use such models to make ‘smart’ decisions in order to maximize reward.

The next two chapters are outlining some of the tools we will use to explore and
describe this area. Chapter 2 is a brief introduction to the Matlab programming envi-
ronment that we will mainly use in the following, Chapter 3 shows you how to use
the Lego NXT and how to control them with Matlab. This chapter also includes a dis-
cussion of the important concept of a configuration space and how to plan movements
with a robot arm. Chapter 4is a refresher on basic probability theory. The rest of the
course is then divided into supervised, unsupervised, and reinforcement learning.



2 Programming with Matlab

This chapter is a brief introduction to programming with the Matlab programming en-
vironment. We assumes thereby little programming experience, although programmers
experienced in other programming languages might want to scan through this chapter.
MATLAB is an interactive programming environment for scientific computing. This
environment is very convenient for us for several reasons, including its interpreted exe-
cution mode, which allows fast and interactive program development, advanced graphic
routines, which allow easy and versatile visualization of results, a large collection of
predefined routines and algorithms, which makes it unnecessary to implement known
algorithms from scratch, and the use of matrix notations, which allows a compact and
efficient implementation of mathematical equations and machine learning algorithms.
MATLAB stands for matrix laboratory, which emphasizes the fact that most opera-
tions are array or matrix oriented. Similar programming environments are provided
by the open source systems called Scilab and Octave. The Octave system seems to
emphasize syntactic compatibility with MATLAB, while Scilab is a fully fledged al-
ternative to MATLAB with similar interactive tools. While the syntax and names of
some routines in Scilab are sometimes slightly different, the distribution includes a
converter for MATLAB programs. Also, the Matlab web page provides great videos
to learn how to use Matlab at http://www.mathworks.com/demos/matlab/...
...getting-started-with-matlab-video-tutorial.html.

2.1 The MATLAB programming environment
MATLAB1 is a programming environment and collection of tools to write programs,
execute them, and visualize results. MATLAB has to be installed on your computer to
run the programs mentioned in the manuscript. It is commercially available for many
computer systems, including Windows, Mac, and UNIX systems. The MATLAB web
page includes a set of brief tutorial videos, also accessible from the demos link from
the MATLAB desktop, which are highly recommended for learning MATLAB.

As already mentioned, there are several reasons why MATLAB is easy to use and
appropriate for our programming need. MATLAB is an interpreted language, which
means that commands can be executed directly by an interpreter program. This makes
the time-consuming compilation steps of other programming languages redundant and
allows a more interactive working mode. A disadvantage of this operational mode is
that the programs could be less efficient compared to compiled programs. However,
there are two possible solution to this problem in case efficiency become a concern.
The first is that the implementations of many MATLAB functions is very efficient

1MATLAB and Simulink are registered trademarks, and MATLAB Compiler is a trademark of The
MathWorks, Inc.
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and are themselves pre-compiled. MATLAB functions, specifically when used on
whole matrices, can therefore outperform less well-designed compiled code. It is thus
recommended to use matrix notations instead of explicit component-wise operations
whenever possible. A second possible solutions to increase the performance is to use
the MATLAB compiler to either produce compiled MATLAB code in .mex files or to
translate MATLAB programs into compilable language such as C.

A further advantage of MATLAB is that the programming syntax supports matrix
notations. This makes the code very compact and comparable to the mathematical
notations used in the manuscript. MATLAB code is even useful as compact nota-
tion to describe algorithms, and it is hence useful to go through the MATLAB code
in the manuscript even when not running the programs in the MATLAB environ-
ment. Furthermore, MATLAB has very powerful visualization routines, and the new
versions of MATLAB include tools for documentation and publishing of codes and
results. Finally, MATLAB includes implementations of many mathematical and sci-
entific methods on which we can base our programs. For example, MATLAB includes
many functions and algorithms for linear algebra and to solve systems of differential
equations. Specialized collections of functions and algorithms, called a ‘toolbox’ in
MATLAB, can be purchased in addition to the basic MATLAB package or imported
from third parties, including many freely available programs and tools published by
researchers. For example, the MATLAB Neural Network Toolbox incorporates func-
tions for building and analysing standard neural networks. This toolbox covers many
algorithms particularly suitable for connectionist modelling and neural network ap-
plications. A similar toolbox, called NETLAB, is freely available and contains many
advanced machine learning methods. We will use some toolboxes later in this course,
including the LIBSVM toolbox and the MATLAB NXT toolbox to program the Lego
robots.

2.1.1 Starting a MATLAB session

Starting MATLAB opens the MATLAB desktop as shown in Fig. 2.1 for MATLAB
version 7. The MATLAB desktop is comprised of several windows which can be
customized or undocked (moving them into an own window). A list of these tools are
available under the desktop menu, and includes tools such as the command window,
editor, workspace, etc. We will use some of these tools later, but for now we only
need the MATLAB command window. We can thus close the other windows if they
are open (such as the launch pad or the current directory window); we can always
get them back from the desktop menu. Alternatively, we can undock the command
window by clicking the arrow button on the command window bar. An undocked
command window is illustrated on the left in Fig. 2.2. Older versions of MATLAB
start directly with a command window or simply with a MATLAB command prompt
>> in a standard system window. The command window is our control centre for
accessing the essential MATLAB functionalities.

2.1.2 Basic variables in MATLAB

The MATLAB programming environment is interactive in that all commands can
be typed into the command window after the command prompt (see Fig. 2.2). The
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Fig. 2.1 The MATLAB desktop window of MATLAB Version 7.

Fig. 2.2 A MATLAB command window (left) and a MATLAB figure window (right) displaying the
results of the function plot sin developed in the text.

commands are interpreted directly, and the result is returned to (and displayed in) the
command window. For example, a variable is created and assigned a value with the =
operator, such as

>> a=3
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a =

3

Ending a command with semicolon (;) suppresses the printing of the result on screen.
It is therefore generally included in our programs unless we want to view some
intermediate results. All text after a percentage sign (%) is not interpreted and thus
treated as comment,

>> b=’Hello World!’; % delete the semicolon to echo Hello World!

This example also demonstrates that the type of a variable, such as being an integer,
a real number, or a string, is determined by the values assigned to the elements. This
is called dynamic typing. Thus, variables do not have to be declared as in some other
programming languages. While dynamic typing is convenient, a disadvantage is that
a mistyped variable name can not be detected by the compiler. Inspecting the list of
created variables is thus a useful step for debugging.

All the variables that are created by a program are kept in a buffer called workspace.
These variable can be viewed with the command whos or displayed in the workspace
window of the MATLAB desktop. For example, after declaring the variables above,
the whos command results in the responds

>> whos

Name Size Bytes Class Attributes

a 1x1 8 double

b 1x12 24 char

It displays the name, the size, and the type (class) of the variable. The size is often
useful to check the orientation of matrices as we will see below. The variables in the
workspace can be used as long as MATLAB is running and as long as it is not cleared
with the command clear. The workspace can be saved with the command save

filename, which creates a file filename.mat with internal MATLAB format. The
saved workspace can be reloaded into MATLAB with the command load filename.
The load command can also be used to import data in ASCII format. The workspace
is very convenient as we can run a program within a MATLAB session and can then
work interactively with the results, for example, to plot some of the generated data.

Variables in MATLAB are generally matrices (or data arrays), which is very con-
venient for most of our purposes. Matrices include scalars (1× 1 matrix) and vectors
(1×N matrix) as special cases. Values can be assigned to matrix elements in several
ways. The most basic one is using square brackets and separating rows by a semicolon
within the square brackets, for example (see Fig. 2.2),

>> a=[1 2 3; 4 5 6; 7 8 9]

a =

1 2 3

4 5 6

7 8 9
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A vector of elements with consecutive values can be assigned by column operators
like

>> v=0:2:4

v =

0 2 4

Furthermore, the MATLAB desktop includes an array editor, and data in ASCII files
can be assigned to matrices when loaded into MATLAB. Also, MATLAB functions
often return matrices which can be used to assign values to matrix elements. For
example, a uniformly distributed random 3 × 3 matrix can be generated with the
command

>> b=rand(3)

b =

0.9501 0.4860 0.4565

0.2311 0.8913 0.0185

0.6068 0.7621 0.8214

The multiplication of two matrices, following the matrix multiplication rules, can be
done in MATLAB by typing

>> c=a*b

c =

3.2329 4.5549 2.9577

8.5973 10.9730 6.8468

13.9616 17.3911 10.7360

This is equivalent to

c=zeros(3);

for i=1:3

for j=1:3

for k=1:3

c(i,j)=c(i,j)+a(i,k)*b(k,j);

end

end

end

which is the common way of writing matrix multiplications in other programming
languages. Formulating operations on whole matrices, rather than on the individual
components separately, is not only more convenient and clear, but can enhance the
programs performance considerably. Whenever possible, operations on whole matrices
should be used. This is likely to be the major change in your programming style
when converting from another programming language to MATLAB. The performance
disadvantage of an interpreted language is often negligible when using operations on
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whole matrices.
The transpose operation of a matrix changes columns to rows. Thus, a row vector

such as v can be changed to a column vector with the MATLAB transpose operator
(’),
>> v’

ans =

0

2

4

which can then be used in a matrix-vector multiplication like
>> a*v’

ans =

16

34

52

The inconsistent operation a*v does produce an error,
>> a*v

??? Error using ==> mtimes

Inner matrix dimensions must agree.

Component-wise operations in matrix multiplications (*), divisions (/) and potentia-
tion ∧ are indicated with a dot modifier such as
>> v.^2

ans =

0 4 16

The most common operators and basic programming constructs in MATLAB are
similar to those in other programming languages and are listed in Table 2.1.

2.1.3 Control flow and conditional operations

Besides the assignments of values to variables, and the availability of basic data
structures such as arrays, a programming language needs a few basic operations for
building loops and for controlling the flow of a program with conditional statements
(see Table 2.1). For example, the for loop can be used to create the elements of the
vector v above, such as
>> for i=1:3; v(i)=2*(i-1); end

>> v

v =
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Table 2.1 Basic programming contracts in MATLAB.

Programming Command Syntax
construct
Assignment = a=b

Arithmetic add a+b

operations multiplication a*b (matrix), a.*b (element-wise)
division a/b (matrix), a./b (element-wise)
power a∧b (matrix), a.∧b (element-wise)

Relational equal a==b

operators not equal a∼=b
less than a<b

Logical AND a & b

operators OR a‖b
Loop for for index=start:increment:end

statement
end

while while expression
statement

end

Conditional if statement if logical expressions
command statement

elseif logical expressions
statement

else

statement
end

Function function [x,y,...]=name(a,b,...)

0 2 4

Table 2.1 lists, in addition, the syntax of a while loop. An example of a conditional
statement within a loop is

>> for i=1:10; if i>4 & i<=7; v2(i)=1; end; end

>> v2

v2 =

0 0 0 0 1 1 1

In this loop, the statement v2(i)=1 is only executed when the loop index is larger
than 4 and less or equal to 7. Thus, when i=5, the array v2 with 5 elements is created,
and since only the elements v2(5) is set to 1, the previous elements are set to 0 by
default. The loop adds then the two element v2(6) and v2(7). Such a vector can also
be created by assigning the values 1 to a specified range of indices,

>> v3(4:7)=1

v3 =
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0 0 0 1 1 1 1

A 1×7 array is thereby created with elements set to 0, and only the specified elements
are overwritten with the new value 1. Another method to write compact loops in
MATLAB is to use vectors as index specifiers. For example, another way to create a
vector with values such as v2 or v3 is

>> i=1:10

i =

1 2 3 4 5 6 7 8 9 10

>> v4(i>4 & i<=7)=1

v4 =

0 0 0 0 1 1 1

2.1.4 Creating MATLAB programs

If we want to repeat a series of commands, it is convenient to write this list of
commands into an ASCII file with extension ‘.m’. Any ASCII editor (for example;
WordPad, Emacs, etc.) can be used. The MATLAB package contains an editor that has
the advantage of colouring the content of MATLAB programs for better readability and
also provides direct links to other MATLAB tools. The list of commands in the ASCII
file (e.g. prog1.m) is called a script in MATLAB and makes up a MATLAB program.
This program can be executed with a run button in the MATLAB editor or by calling
the name of the file within the command window (for example, by typing prog1). We
assumed here that the program file is in the current directory of the MATLAB session
or in one of the search paths that can be specified in MATLAB. The MATLAB desktop
includes a ‘current directory’ window (see desktop menu). Some older MATLAB
versions have instead a ‘path browser’. Alternatively, one can specify absolute path
when calling a program, or change the current directories with UNIX-style commands
such as cd in the command window (see Fig. 2.3).

Functions are another way to encapsulate code. They have the additional advan-
tage that they can be pre-compiled with the MATLAB CompilerTM available from
MathWorks, Inc. Functions are kept in files with extension ‘.m’ which start with the
command line like

function y=f(a,b)

where the variables a and b are passed to the function and y contains the values returned
by the function. The return values can be assigned to a variable in the calling MATLAB
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Run program

Fig. 2.3 Two editor windows and a command window.

script and added to the workspace. All other internal variables of the functions are local
to the function and will not appear in the workspace of the calling script.

MATLAB has a rich collection of predefined functions implementing many algo-
rithms, mathematical constructs, and advanced graphic handling, as well as general
information and help functions. You can always search for some keywords using the
useful command lookfor followed by the keyword (search term). This command
lists all the names of the functions that include the keywords in a short description
in the function file within the first comment lines after the function declaration in
the function file. The command help, followed by the function name, displays the
first block of comment lines in a function file. This description of functions is usually
sufficient to know how to use a function. A list of some frequently used functions is
listed in Table 2.1.4.

2.1.5 Graphics

MATLAB is a great tool for producing scientific graphics. We want to illustrate this
by writing our first program in MATLAB: calculating and plotting the sine function.
The program is

x=0:0.1:2*pi;

y=sin(x);

plot(x,y)

The first line assigns elements to a vector x starting with x(1) = 0 and incrementing
the value of each further component by 0.1 until the value 2π is reached (the variable
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Name Brief description
abs absolute functions
axis sets axis limits
bar produces bar plot
ceil round to larger interger
colormap colour matrix for surface plots
cos cosine function
diag diagonal elements of a matrix
disp display in command window
errorbar plot with error bars
exp exponential function
fft fast Fourier transform
find index of non-zero elements
floor round to smaller integer
hist produces histogram
int2str converts integer to string
isempty true if array is empty
length length of a vector
log logarithmic function
lsqcurevfit least mean square curve

fitting (statistics toolbox)
max maximum value and index
mix minimum value and index
mean calculates mean
meshgrid creates matrix to plot grid

Name Brief description
mod modulus function
num2str converts number to string
ode45 ordinary differential equation solver
ones produces matrix with unit elements
plot plot lines graphs
plot3 plot 3-dimensional graphs
prod product of elements
rand uniformly distributed random variable
randn normally distributed random variable
randperm random permutations
reshape reshaping a matrix
set sets values of parameters in structure
sign sign function
sin sine function
sqrt square root function
std calculates standard deviation
subplot figure with multiple subfigures
sum sum of elements
surf surface plot
title writes title on plot
view set viewing angle of 3D plot
xlabel label on x-axis of a plot
ylabel label on y-axis of a plot
zeros creates matrix of zero elements

Table 2.2 MATLAB functions used in this course. The MATLAB command help cmd, where
cmd is any of the functions listed here, provides more detailed explanations.

pi has the appropriate value in MATLAB). The last element is x(63) = 6.2. The
second line calls the MATLAB function sin with the vector x and assigns the results
to a vector y. The third line calls a MATLAB plotting routine. You can type these
lines into an ASCII file that you can name plot sin.m. The code can be executed by
typing plot sin as illustrated in the command window in Fig. 2.2, provided that the
MATLAB session points to the folder in which you placed the code. The execution of
this program starts a figure window with the plot of the sine function as illustrated on
the right in Fig. 2.2.

The appearance of a plot can easily be changed by changing the attributes of the
plot. There are several functions that help in performing this task, for example, the
function axis that can be used to set the limits of the axis. New versions of MATLAB
provide window-based interfaces to the attributes of the plot. However, there are also
two basic commands, get and set, that we find useful. The command get(gca)

returns a list with the axis properties currently in effect. This command is useful for
finding out what properties exist. The variable gca (get current axis) is the axis handle,
which is a variable that points to a memory location where all the attribute variables are
kept. The attributes of the axis can be changed with the set command. For example,
if we want to change the size of the labels we can type set(gca,’fontsize’,18).
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There is also a handle for the current figure gcf that can be used to get and set other
attributes of the figure. MATLAB provides many routines to produce various special
forms of plots including plots with error-bars, histograms, three-dimensional graphics,
and multi-plot figures.

2.2 A first project: modelling the world

Suppose there is a simple world with a creature that can be in three distinct states,
sleep (state value 1), eat (state value 2), and study (state value 3). An agent, which
is a device that can sense environmental states and can generate actions, is observing
this creature with poor sensors, which add white (Gaussian) noise to the true state.
Our aim is to build a model of the behaviour of the creature which can be used by
the agent to observe the states of the creature with some accuracy despite the limited
sensors. For this exercise, the function creature state() is available on the course
page on the web. This function returns the current state of the creature. Try to create
an agent program that predicts the current state of the creature. In the following we
discuss some simple approches.

A simulation program that implements a specific agent a with simple world model
(a model of the creature), which also evaluates the accuracy of the model, is given in
Table 2.3. This program, also available on the web, is provided in file main.m. This
program can be downloaded into the working directory of MATLAB and executed by
typing main into the command window, or by opening the file in the MATLAB editor
and starting it from there by pressing the icon with the green triangle. The program
reports the percentage of correct perceptions of the creature’s state.

Line 1 of the program uses a comment indicator (%) to outline the purpose of the
program. Line 2 clears the workspace to erase all eventual existing variables, and sets
a counter for the number of correct perceptions to zero. Line 4 starts a loop over 1000
trials. In each trial, a creature state is pulled by calling the function creature state()

and recording this state value in variable x. The sensory state s is then calculated by
adding a random number to this value. The value of the random number is generated
from a normal distribution, a Gaussian distribution with mean zero and unit variance,
with the MATLAB function randn().

We are now ready to build a model for the agent to interpret the sensory state. In the
example shown, this model is given in Lines 8–12. This model assumes that a sensory
value below 1.5 corresponds to the state of a sleeping creature (Line 9), a sensory value
between 1.5 and 2.5 corresponds to the creature eating (Line 10), and a higher value
corresponds to the creature studying (Line 11). Note that we made several assumptions
by defining this model, which might be unreasonable in real-world applications. For
example, we used our knowledge that there are three states with ideal values of 1,
2, and 3 to build the model for the agent. Furthermore, we used the knowledge that
the sensors are adding independent noise to these states in order to come up with the
decision boundaries. The major challenge for real agents is to build models without
this explicit knowledge. When running the program we find that a little bit over 50%
of the cases are correctly perceived by the agent. While this is a good start, one could
do better. Try some of your own ideas . . .
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Table 2.3 Program main.m

1 % Project 1: simulation of agent which models simple creature

2 clear; correct=0;

3

4 for trial=1:1000

5 x=creature_state();

6 s=x+randn();

7

8 %% perception model

9 if (s<1.5) x_predict=1;

10 elseif (s<2.5) x_predict=2;

11 else x_predict=3;

12 end

13

14 %% calculate accuracy

15 if (x==x_predict) correct=correct+1; end

16 end

17

18 disp([’percentage correct: ’,num2str(correct/1000)]);

. . . Did you succeed in getting better results? It is certainly not easy to guess some
better model, and it is time to inspect the data more carefully. For example, we can
plot the number of times each state occurs. For this we can write a loop to record the
states in a vector,

>> for i=1:1000; a(i)=creature_state(); end

and then plot a histogram with the MATLAB function hist(),

>> hist(a)

The result is shown in Fig. 2.4. This histogram shows that not all states are equally
likely as we implicitly assumed in the above agent model. The third state is indeed
much less likely. We could use this knowledge in a modified model in which we predict
that the agent is sleeping for sensory states less than 1.5 and is eating otherwise. This
modified model, which completely ignores study states, predicts around 65% of the
states correctly. Many machine learning methods suffer from such ‘explaining away’
solutions for imbalanced data, as further discussed in Chapter ??.

It is important to recognize that 100% accuracy is not achievable with the inherent
limitations of the sensors. However, higher recognition rates could be achieved with
better world (creature + sensor) models. The main question is how to find such a
model. We certainly should use observed data in a better way. For example, we
could use several observations to estimate how many states are produced by function
creature state() and their relative frequency. Such parameter estimation is a basic
form of learning from data. Many models in science take such an approach by proposing
a parametric model and estimating parameters from the data by model fitting. The main
challenge with this approach is how complex we should make the model. It is much
easier to fit a more complex model with many parameters to example data, but the
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Fig. 2.4 The MATLAB desktop window histogram of states produced by function
creature state() from 1000 trials.

increased flexibility decreases the prediction ability of such models. Much progress has
been made in machine learning by considering such questions, but those approaches
only work well in limited worlds, certainly much more restricted than the world we
live in. More powerful methods can be expected by learning how the brain solves such
problems.

2.3 Alternative programming environments: Octave and
Scilab

We briefly mention here two programming environments that are very similar to
Matlab and that can, with certain restrictions, execute Matlab scripts. Both of these
programming systems are open source environments and have general public licenses
for non-commercial use.

The programming environment called Octave is freely available under the GNU
general public license. Octave is available through links at http://www.gnu.org/software/octave/.
The installation requires the additional installation of a graphics package, such as gnu-
plot or Java graphics. Some distributions contain the SciTE editor which can be used
in this environment. An example of the environment is shown in Fig. 2.5

Scilab is another scientific programming environment similar to MATLAB. This
software package is freely available under the CeCILL software license, a license
compatible to the GNU general public license. It is developed by the Scilab consortium,
initiated by the French research centre INRIA. The Scilab package includes a MATLAB
import facility that can be used to translate MATLAB programs to Scilab. A screen
shot of the Scilab environment is shown in Fig. 2.6. A Scilab script can be run from
the execute menu in the editor, or by calling exec("filename.sce").

2.4 Exercises

1. Write a Matlab function that takes a character string and prints out the character
string in reverse order. reverses program

2. Write a Matlab program that plots a two dimensional gaussian function.
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Fig. 2.5 The Octave programming environment with the main console, and editor called SciTE,
and a graphics window.

Fig. 2.6 The Scilab programming environment with console, and editor called SciPad, and a
graphics window.



3 Basic robotics with Lego NXT

3.1 Introduction

"Robotics is the science of perceiving and manipulating the physical world through
computer-controlled devices"2. We use the word robot or agent to describe a system
which interacts actively with the environment through sensors and actuators. An agent
can be implemented in software or hardware, and we often use the term robot more
specifically for a hardware implementation of an agent, though this does generally
include software components. Active interactions means that the robot’s position in
the environment or the environment itself changes though the action of the robot.
Mobile robots are a good example of this and are mainly used in the examples of this
course. In contrast, a vision system that uses a digital camera to recognize objects is
not a robot in our definition.

The word ‘robot’ was first used in print in a novel by Isaac Asimov (1941), and
the first industrial robots were installed in 1961 (Unimate). Robots are now invaluable
in manufacturing, and research is ongoing to make robots more autonomous and to
make those machines more robust and able to work in hostile environments. Robotics
has many components, including mechanical and electrical engineering, computer or
machine vision, and even behavioral studies have become prominent in this field.

In this course, we will demonstrate many of the discussions, algorithms and associ-
ated problems with the help of computer simulations and robots. Computer simulations
are a great way to experiment with many of the ideas, but physical implementations
have often the advantage to show more clearly the challenges in real applications.

We will use the LEGO mindstorm system in this course. Besides having common
LEGO building blocks to construct different designs, this system consist of a micro-
processor, called the brick, which is programmable and which controls the sensors
and actuators. The actuators are stepping motors that can be told to run for a specific
duration, a specific number of rotations, or with a specific speed. Our tool kit also
includes several sensors, a light sensor that can be used to measure the wavelength
of reflecting light and also small distances, an ultrasonic sensor to measure larger
distances, a touch sensor, and a microphone. The motors can also be used to sense
some externally applied movements.

We will use a basic tribot design as shown in Fig.3.1 for most of the explorations in
this course. We will build the basic tribot in the following tutorial and will outline an
example of a program to avoids walls and then work on a program so that the tribot can
follow a line. After this we will use a robot arm configuration to discuss the important
concept of a configuration space and demonstrate path-planing.

2Probabilistic Robotics, Sebastian Thrun, Wolfram Burgard, and Dieter Fox, MIT press 2006
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Fig. 3.1 Basic Lego Robot with microprocessor, two motors, and a light sensor.

3.2 Building a basic robot with Lego NXT

3.2.1 Building the tribot

1. Charge the battery
Before constructing the robot, plug the battery pack into the NXT brick controller
and plug it into an outlet to recharge the battery.

2. Construct the NXT
Follow the instruction booklet included with the Lego kit to construct the robot.
There are mini programs illustrated in the manual that can be implemented
directly on the NXT brick. Although this is not the method that will be used to
control the NXT, you may implement them if you have time in order to get an
idea of how the sensors and motors function. The instruction manual is organized
as follows:
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Section Pages

NXT brick base construction 8-23
Sound sensor mounting 24-27
Ultrasonic sensor mounting 28-31
Light sensor mounting 32-39
Touch sensor mounting 40-45

3.2.2 Mindstorm NXT toolbox instalation

We will use some software to control the Lego actuator and gather information from
their sensors within the Matlab programming environment. To enable this we need to
install software developed at the German university called ‘RWTH Aachen’, which in
turn uses some other drivers that we need to install. Most of the software should be
installed in our Lab, but we will outline briefly some of the installation issues in case
you want to install them under your own system or if some problems exists with the
current installation. The following software installation instructions are adapted from
RWTH Aachen University’s NXT Toolbox website:
http://www.mindstorms.rwth-aachen.de/trac/wiki/Download4.03

1. Check NXT Firmware version
Check what version of NXT Firmware is running on the NXT brick by going
to "Settings" > "NXT Version". Firmware version ("FW") should be 1.28. If it
does not, it needs to be updated (Note: The NXT toolbox website claims version
1.26 will work, however it will not)
To update the firmware:
The Lego Mindstorms Education NXT Programming software is required to
update the firmware. In the NXT Programming software, look under "tools"
> "Update NXT Firmware" > "browse", select the firmware’s directory, click
"download".
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2. Install USB (Fantom) Driver (Windows only)
If the Lego Mindstorms Education NXT Programming software is already on
your computer, this should already be installed. Otherwise, download it from:
http://mindstorms.lego.com/support/updates/
If you run into problems with the Fantom Library on windows go to this site for
help. http://bricxcc.sourceforge.net/NXTFantomDriverHelp.pdf
If you have Windows 7 Starter edition the standard setup file will not run properly.
To install the Fantom Driver go into Products and then LEGO NXT Driver 32
and run LegoMindstormsNXTdriver32.
The fantom USB driver seem not to work on the Mac, but we will anyhow use
the bluetooth connections.

3. Download the Mindstorms NXT Toolbox 4.03:
Download: http://www.mindstorms.rwth-aachen.de/trac/wiki/Download

• Save and extract the files anywhere, but do not change the directory struc-
ture.

• The folder will appear as "RWTHMindstormsNXT"

4. Install NXT Toolbox into MATLAB
In MATLAB: "File" > "SetPath" > "Add Folder", and browse and select
"RWTHMindstormsNXT" - the file you saved in the previous step.

• Also add the "tools" folder, which is a subdirectory of the RWTHMind-
stormsNXT folder.

• Click "save" when finished.

5. Download MotorControl to NXT brick
Go to http://bricxcc.sourceforge.net/utilities.html for the download. Use the USB
cable for this step

Windows: Download NeXTTool.exe to RWTHMindstormsNXT/tools/MotorControl.
Under RWTHMindstormsNXT/tools/MotorControl, double click Trans-
ferMotorControlBinaryToNXT, click "Run", and follow the onscreen in-
structions. If this fails, try using the NBC compiler (download from
http://bricxcc.sourceforge.net/nbc/) instead of the NeXTTool; again save
it under the MotorControl folder.

Mac: Download the NeXTTools for Mac OS X. Run the toolbar and open the
XNT Explorer (the globe in the toolbar). With the arrow key at the top,
transfer the file MotorControl21.rxe to the brick.

6. Setting up a Bluetooth connection

To connect to the NXT via bluetooth you must first turn on the bluetooth in the
NXT and make sure that the visibility is set to on. Then use the bluetooth device
on your computer to search for your specific NXT. By default the name is NXT,
but as a first step we will rename each brick.
Create a connection between the computer and the NXT. When you create the
connection between the NXT and the bluetooth device the NXT will ask for a
passkey (usually either 0000 or 1234 on the NXT screen and press the orange
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button. The computer will then ask for the same passkey. To test the connec-
tion, type the command COM OpenNXT(’bluetooth.ini’); in the Matlab
command window. The command should run without any red error messages.
If there is an error check to see if the COMPort the Matlab code is looking
for is the same as the one used in the connection made between the blue-
tooth device and the NXT. Also turning the NXT off and back on again can
help. After every failed COM OpenNXT(’bluetooth.ini’); command type
COM CloseNXT(’all’); to close the failed connection for a clean new at-
tempt. To switch on a debug mode enter the command DebugMode on before
entering the command COM OpenNXT(’bluetooth.ini’); . Also, make sure
that the bluetooth.ini file is present. There are sample files for Windows ad Linux
(Mac) in the main RWTH toolbox folder. Also, check if the port name is correct
by typing ls -ltr /dev in a terminal window.

7. Does it work?
In MATLAB, enter the commands below into the command window. The com-
mand should execute without error and the NXT should play a sound.
h=COM OpenNXT(’bluetooth.ini’);

COM SetDefaultNXT(h);

NXT PlayTone(400,300);

A list of Matlab commands from the NXT toolbox can be found in Appendix A.
Also, there are some examples included with the RWTH Mindstorm’s NXT Toolbox,
under RWTHMindstormsNXT/demos.
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3.3 First examples

The following exercises are intended to explore how to use RWTH’s Mindstorms NXT
Toolbox.

3.3.1 Example 1: Wall avoidance

The following is a simple example of how to drive a robot and use the ultrasonic sensor.
The robot will drive forward until it is around 20 cm away from a barrier (i.e. a wall),
stop, beep, turn right, and continue moving forward. The robot will repeat this 5 times.
Attach the Ultrasonic sensor and connect it to port 1. The study and run the following
program.

COM CloseNXT(’all’); %cleans up workspace
close all;
clear all;
hNXT=COM OpenNXT(’bluetooth.ini’); % initiates NXT, hNXT is an arbitrary name
COM SetDefaultNXT(hNXT); %sets default handle

OpenUltrasonic(SENSOR 1);

forward=NXTMotor(’BC’;); &% setting motors B C to drive forward
forward.Power=50;
forward.TachoLimit=0;
turnRight=NXTMotor(’B’); &% setting motor B to turn right
turnRight.Power=50;
turnRight.TachoLimit=360;
for i= 1:5

while GetUltrasonic(SENSOR 1)>20
forward.SendToNXT(); %sends command for robot to move forward

%TachoLimit=0; no need for a WaitFor() statement
end %while
forward.Stop(’brake’); %robot brakes from going forward
NXT PlayTone(400,300); %plays a note
turnRight.SendToNXT; %sends the command to turn right
turnRight.WaitFor; %TachoLimit is not 0; WaitFor() statement required

end %for
turnRight.Stop(’off’); %properly closes motors
forward.Stop(’off’);
CloseSensor(SENSOR 1); %properly closes the sensor
COM CloseNXT(hNXT); % properly closes the NXT
close all;
clear all;

3.3.2 Example 2: Line following

The next exercise is writing your own program that uses readings from its light sensor
to drive the NXT and follow a line.
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Setup:
1. Mount light sensor, facing downwards on front of NXT and plugged into Port 3.
2. Mount a switch sensor on the NXT, plugged into Port 2.
3. Use a piece of dark tape (i.e. electrical tape) to mark a track on a flat, light

coloured surface. Make sure the tape and the surface are coloured differently
enough that the light sensor returns reasonably different values between the two
surfaces.

4. Write a program so that the tibot follows the line.

3.4 Configuration space

3.4.1 Abstracting the states of a system

Very important for most algorithms to control a robot is the description of its state or the
possible states of the system. The physical state of an agent can be quite complicated.
For example, the Lego components of the tribot can have different positions and can
shift in operation; the battery will have different levels of charge during the day,
lightening conditions change, etc. Thus, description of the physical state would need a
lot of variables, and such a description space would be very high dimensional, which is
one important source of the computational challenges we face. To manage this problem
we need to consider abstractions.

Abstraction is an important concept in computer science and science in general.
To abstract means to simplify the system in a way that it can be described in as
simple terms as possible to answer the specific questions under consoderation. This
philosophy is sometimes called the principle of parsimony, also known as Occam’s
razor. Basically, we want a model as simple as possible, while still capturing the main
aspects of the system that the model should capture.

For example, let us consider a robot that should navigate around some obstacles
from point A to point B as shown in Fig.3.2A. The simplifications we make in the
following is that we take consider the movement in only in a two-dimensional (2D)
plane. The robot will have a position described by an x and y coordinate, and a heading
direction described by an angle α. Note that we ignore for now the physical extension
of the robot, that is, we consider it here only as a point object. If this is a problem,
we can add an extension parameter later. We also ignore many of the other physical
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parameters mention above. The current state of robot is hence described by three real
numbers, [x, y, α], and the space of all possible values is called the configuration
space or state space. An obstacle, as shown in Fig.3.2A with the grey area, can be
represented as state values that are not allowed by the system.

A

B

A

B

A. Navigation with obstracle B. Discrete con�guration space

Fig. 3.2 (A) A physical space with obstacles in which an agent should navigate from point A to
point B. (B) Descretized configuration space.

We have reduced the description of an robot navigation system from a nearly
infinite physical space to a three-dimensional (3D) configuration space by the process
of abstraction. However, there are still an infinite number of possible states in the state
space if the state variables are real numbers. We will shortly see that we have often
to search the state space, and an infinite space then often becomes problematic. A
common solution to this problem is to make further abstractions and to allow the state
variables to have only a finite number of states. Thus, we commonly discretize the
state space. An example is shown in Fig.3.2B, where we used a grid to represent the
possible values of the robot positions. Such a discretization is very useful in practice,
and we can also make the discretization error increasingly small by decreasing the grid
parameter, ∆x, which describes the minimal distance between two states. We will use
this grid discretization for planing a path through the configuration space later in this
chapter.

3.4.2 Robot Arm State Space Visualizer

The goal of the following exercise is to graph the state space in which a double jointed
robot arm is able to move. To do this, use two motors of the NXT Lego kit as joins of
this arm, similarly to the one pictured in Fig.3.3. Also attach a touch sensor that we
will use as a button in the following. Secure it on the table so that you can move its
pointing finger around by turning the externally moving the motors. We will use the
ability of measuring this movement in the motors by the Lego system. Also, use a box,
a coffee mug or some other items to create some obstacles for the arm to move around.

Use the Matlab program in Table 3.1 to visualize the state space. Start the Matlab
program with the robot arm touching one of the obstacles. Then move the arm all
around one of the obstacles. This will allow the NXT to create set of data that will
display which combinations of angles cannot be travelled through by the robot arm. To
map more than one obstacle without mapping the angles in between the two obstacles,
push the button. The button pauses the program for 4 seconds so that you can move
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Fig. 3.3 (A) Robot arm with two joints. (B)

the arm from one obstacle to the next without mapping the angles in between the two.

3.4.3 Exercise

1. Write a program that produces a map of the state space in form of a matrix which
has zeros of entries that can be reached and ones as entries for states that have
obstacles in it.

3.5 Planning

Planing a movement is basic requirement in robotics. In particular, we want to find
the shortest path from a starting position to a goal position. The previous exercise
provides us with a map that we can use to plan the movement. One of the elements
of the array is dedicated as the starting position, and one as the goal position. We now
need to write a search algorithm that finds the shortest path.

There are many search algorithms that we could utilize for this task. For example,
a basic search algorithm is depth-first-search that choses a neighboring node, than
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Table 3.1 State space visualization program

for counter = 1:10000

%The angles for both wheels are read

bottomDeg=bottom.ReadFromNXT.Position;

topDeg=top.ReadFromNXT.Position;

%the angles are then stored in angleWheel

angleWheel(1,counter)=bottomDeg;

angleWheel(2,counter)=topDeg;

%This plot will show all the angles read from the

%wheels, because hold is on

plot(topDeg,bottomDeg,’o’);

%If the switch is pushed then pause the angle reader

if GetSwitch(SENSOR_1)==1

disp(’paused’);

pause(4);

disp(’unpaused’);

end

end

moves to the next, etc, until it reaches a goal. If the algorithm ends up in a dead-end,
than the algorithm tracks back to the last node with another options and goes down
this node. The breadth-first-search algorithms searches instead first if each of the
neighboring nodes of a current node is the goal state before advancing to the next
level. Of course, both need to keep track of which routs have been tried already to
ensure that we do not continuously try failed paths. These algorithms would sooner
or later find a path between the starting position and the goal if it exists since these
algorithms would try out all possible paths. However, these algorithms do not grantee
to find the shortest path, and these algorithms are also usually not so efficient.

To find better solutions we could take more information into account. For example,
in the grid world, we can use some distance measure between the current state and the
goal, such as the Euclidean distance

g(current) =
√

(xgoal − xcurrent)2 + (ygoal − ycurrent)2, (3.1)

to guide the search3. That is, if we chose the next node to expand, we would chose
the node that has the smallest distance to the goal node. Such a heuristic search
algorithm is sometimes called a gready best-first search. Valid heuristics, which are
estimations of the expected cost that must not underestimate the real cost, can greatly
accelerate search performance. We can take such strategy a step further by also taken
into account in the cost of reaching the current state from the starting state,

h(current) =
√

(xstart − xcurrent)2 + (ystart − ycurrent)2, (3.2)

3This distance measure is also called the L2 norm. Other measures such as the Manhattan distance, the
Minkowski distance, or the L1 norm also frequently used.
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so that the total heuristic cost of node ‘current’ is

f(current) = h(current) + g(current). (3.3)

The algorithm that uses this heuristics while taking track of paths that are still ‘open’
or that are ‘closed’ since they lead to dead-ends, is called an A∗ star search algorithm.
An Matlab example and visualization of the A∗ search algorithm is provided on the
course web page.

3.5.1 Exercise: Robot Arm State Space Traversal

The goal of this exercise is to make the double jointed NXT arm progress through
the state space. You need the double-joined robot arm and the obstacles from the state
space visualization exercise above.

• Make a program which can move the arm from the starting coordinate to the
ending coordinate while avoiding the obstacles in the state space.



4 Basic probability theory

As outlined in Chapter 1, a major milestone for the modern approach to machine
learning is to acknowledge our limited knowledge about the world and the unreliability
of sensors and actuators. It is then only natural to consider quantities in our approaches
as random variables. While a regular variable, once set, has only one specific value, a
random variable will have different values every time we ‘look’ at it (draw an example
from the distributions). Just think about a light sensor. We might think that an ideal light
sensor will give us only one reading while holding it to a specific surface, but since the
peripheral light conditions change, the characteristics of the internal electronic might
change due to changing temperatures, or since we move the sensor unintentionally
away from the surface, it is more than likely that we get different readings over time.
Therefore, even internal variables that have to be estimated from sensors, such as the
state of the system, is fundamentally a random variable.

Having a random variable does not mean that we can not say anything about the
variable. Some numbers might be more likely than others when applying the sensor.
This knowledge, how likely each value is for a random variable x, is captured by the
probability density function pdf(x).

Most of the systems discussed in this course are stochastic models to capture
the uncertainties in the world. Stochastic models are models with random variables,
and it is therefore useful to remind ourselves about the properties of such variables.
This chapter is a refresher on concepts in probability theory. Note that we are mainly
interested in the language of probability theory rather than statistics, which is more
concerned with hypothesis testing and related procedures.

4.1 Random numbers and their probability (density)
function

Probability theory is the theory of random numbers. We denoted such numbers
by capital letters to distinguish them from regular numbers written in lower case.
A random variable, X , is a quantity that can have different values each time the
variable is inspected, such as in measurements in experiments. This is fundamentally
different to a regular variable, x, which does not change its value once it is assigned.
A random number is thus a new mathematical concept, not included in the regular
mathematics of numbers. A specific value of a random number is still meaningful as
it might influence specific processes in a deterministic way. However, since a random
number can change every time it is inspected, it is also useful to describe more general
properties when drawing examples many times. The frequency with which numbers
can occur is then the most useful quantity to take into account. This frequency is
captured by the mathematical construct of a probability.
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We can formalize this with some compact notations. We speak of a discrete
random variable in the case of discrete numbers for the possible values of a random
number. A continuous random variable is a random variable that has possible values
in a continuous set of numbers. There is, in principle, not much difference between
these two kinds of random variables, except that the mathematical formulation has
to be slightly different to be mathematically correct. For example, the probability
function,

PX(x) = P (X = x) (4.1)

describes the frequency with which each possible value x of a discrete variable X
occurs. Note that x is a regular variable, not a random variable. The value of PX(x)
gives the fraction of the times we get a value x for the random variable X if we
draw many examples of the random variable.4 From this definition it follows that
the frequency of having any of the possible values is equal to one, which is the
normalization condition ∑

x

PX(x) = 1. (4.2)

In the case of continuous random numbers we have an infinite number of possible
values x so that the fraction for each number becomes infinitesimally small. It is then
appropriate to write the probability distribution function as PX(x) = pX(x)dx, where
pX(x) is the probability density function (pdf). The sum in eqn 4.2 then becomes an
integral, and normalization condition for a continuous random variable is∫

x

pX(x)dx = 1. (4.3)

We will formulate the rest of this section in terms of continuous random variables.
The corresponding formulas for discrete random variables can easily be deduced by
replacing the integrals over the pdf with sums over the probability function. It is also
possible to use the δ-function, outlined in Appendix ??, to write discrete random
processes in a continuous form.

4.2 Moments: mean, variance, etc.

In the following we only consider independent random values that are drawn from
identical pdfs, often labeled as iid (independent and identically distributed) data. That
is, we do not consider cases where there is a different probabilities of getting certain
numbers when having a specific number in a previous trial. The static probability
density function describes, then, all we can know about the corresponding random
variable.

Let us consider the arbitrary pdf, pX(x), with the following graph:

4Probabilities are sometimes written as a percentage, but we will stick to the fractional notation.
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µ x

p(x)

Such a distribution is called multimodal because it has several peaks. Since this is a
pdf, the area under this curve must be equal to one, as stated in eqn 4.3. It would be
useful to have this function parameterized in an analytical format. Most pdfs have to be
approximated from experiments, and a common method is then to fit a function to the
data. However, sometimes it is sufficient to know at least some basic characteristics of
the functions. For example, we might ask what the most frequent value is when drawing
many examples. This number is given by the largest peak value of the distribution. A
more common quantity to know is the expected arithmetic average of those numbers,
which is called the mean, expected value, or expectation value of the distribution,
defined by

µ =

∫ ∞
−∞

xf(x)dx. (4.4)

In the discrete case, this formula corresponds to the formula of calculating an arithmetic
average, where we add up all the different numbers together with their frequency.
Formally, we need to distinguish between a quantity calculated from random numbers
and quantities calculated from the pdfs. If we treat the pdf as fundamental, then
the arithmetic average is like an estimation of the mean. This is usually how it is
viewed. However, we could also be pragmatic and say that we only have a collection
of measurements so that the numbers are the ‘real’ thing, and that pdfs are only a
mathematical construct. While this is mainly a philosophical debate, we try to be
consistent in calling the quantities derived from data ‘estimates’ of the quantities
defined through pdfs.

The mean of a distribution is not the only interesting quantity that characterizes a
distribution. For example, we might want to ask what the median value is for which it
is equally likely to find a value lower or larger than this value. Furthermore, the spread
of the pdf around the mean is also very revealing as it gives us a sense of how spread
the values are. This spread is often characterized by the standard deviation (std), or its
square, which is called variance, σ2, and is defined as

σ2 =

∫ ∞
−∞

(x− µ)2f(x)dx. (4.5)

This quantity is generally not enough to characterize the probability function uniquely;
this is only possible if we know all moments of a distribution, where the nth moment
about the mean is defined as

mn =

∫ ∞
−∞

(x− µ)nf(x)dx. (4.6)
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The variance is the second moment about the mean,

σ2 =

∫ ∞
−∞

(x− µ)2f(x)dx. (4.7)

Higher moments specify further characteristics such as the kurtosis and skewness of the
distribution. Moments higher than this have not been given explicit names. Knowing
all moments of a distribution is equivalent in knowing the distribution precisely, and
knowing a pdf is equivalent in knowing everything we could know about a random
variable.

In case the distribution function is not given, moments have to be estimated from
data. For example, the mean can be estimated from a sample of measurements by the
sample mean,

x̄ =
1

n

n∑
i=1

xi, (4.8)

and the variance either from the biased sample variance,

s2
1 =

1

n

n∑
i=1

(x̄− xi)2, (4.9)

or the unbiased sample variance

s2
2 =

1

n− 1

n∑
i=1

(x̄− xi)2. (4.10)

A statistic is said to be biased if the mean of the sampling distribution is not equal to the
parameter that is intended to be estimated. Knowing all moments uniquely specifies a
pdf.

4.3 Examples of probability (density) functions

There is an infinite number of possible pdfs. However, some specific forms have been
very useful for describing some specific processes and have thus been given names. The
following is a list of examples with some discrete and several continuous distributions.
Most examples are discussed as one-dimensional distributions except the last example,
which is a higher dimensional distribution.

4.3.1 Bernoulli distribution

A Bernoulli random variable is a variable from an experiment that has two possible
outcomes: success with probability p; or failure, with probability (1− p).

Probability function:
P (success) = p;P (failure) = 1− p

mean: p
variance: p(1− p)
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4.3.2 Multinomial distribution

This is the distribution of outcomes in n trials that have k possible outcomes. The
probability of each outcome is thereby pi.

Probability function:
P (xi) = n!

∏k
i=1(pxii /xi!)

mean: npi
variance: npi(1− pi)

An important example is the Binomial distribution (k = 2), which describes the the
number of successes in n Bernoulli trials with probability of success p. Note that the
binomial coefficient is defined as(

n
x

)
=

n!

x!(n− x)!
(4.11)

and is given by the MATLAB function nchoosek.

x

P(x)

np

Probability function:

P (x) =

(
n
x

)
px(1− p)n−x

mean: np
variance: np(1− p)

4.3.3 Uniform distribution

Equally distributed random numbers in the interval a ≤ x ≤ b. Pseudo-random
variables with this distribution are often generated by routines in many programming
languages.

x

p(x)

Probability density function:
p(x) = 1

b−a
mean: (a+ b)/2
variance: (b− a)2/12

4.3.4 Normal (Gaussian) distribution

Limit of the binomial distribution for a large number of trials. Depends on two pa-
rameters, the mean µ and the standard deviation σ. The importance of the normal
distribution stems from the central limit theorem outlined below.

µ

σ

x

p(x)

Probability density function:

p(x) = 1
σ
√

2π
e
−(x−µ)2

2σ2

mean: µ
variance: σ2
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4.3.5 Chi-square distribution

The sum of the squares of normally distributed random numbers is chi-square dis-
tributed and depends on a parameter ν that is equal to the mean. Γ is the gamma
function included in MATLAB as gamma.

ν x

p(x)

Probability density function:
p(x) = x(ν−2)/2e−x/2

2ν/2Γ(ν/2)
mean: ν
variance: 2ν

4.3.6 Multivariate Gaussian distribution

We will later consider density functions of a several random variables, x1, ..., xn. Such
density functions are functions in higher dimensions. An important example is the
multivariate Gaussian (or Normal) distribution given by

p(x1, ..., xn) = p(x) =
1

(
√

(2π))n
√

( det(Σ)
exp(−1

2
(x− µ)TΣ−1(x− µ)).

(4.12)
This is a straight forward generalization of the one-dimensional Gaussian distribution
mentioned before where the mean is now a vector, µ and the variance generalizes to
a covariance matrix, Σ = [Cov[Xi, Xj ]]i=1,2,...,k;j=1,2,...,k which must be symmetric
and positive semi-definit. An example with mean µ = (1 2)T and covariance Σ =
(1 0.5; 0.5 1 is shown in Fig,4.1.

4.4 Cumulative probability (density) function and the
Gaussian error function

The probability of having a value x for the random variable X in the range of x1 ≤
x ≤ x2 is given by

P (x1 ≤ X ≤ x2) =

∫ x2

x1

p(x)dx. (4.13)

Note that we have shortened the notation by replacing the notation PX(x1 ≤ X ≤ x2)
by P (x1 ≤ X ≤ x2) to simplify the following expressions. In the main text we often
need to calculate the probability that a normally (or Gaussian) distributed variable
has values between x1 = 0 and x2 = y. The probability of eqn 4.13 then becomes a
function of y. This defines the Gaussian error function

1√
2πσ

∫ y

0

e−
(x−µ)2

2σ2 dx =
1

2
erf(

y − µ√
2σ

). (4.14)

This Gaussian error function (erf) for normally distributed variables (Gaussian dis-
tribution with mean µ = 0 and variance σ = 1) is commonly tabulated in books on
statistics. Programming libraries also frequently include routines that return the values
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Fig. 4.1 Multivariate Gaussian with mean µ = (1 2)T and covariance Σ = (1 0.5; 0.5 1).

for specific arguments. In MATLAB this is implemented by the routine erf, and values
for the inverse of the error function are returned by the routine erfinv.

Another special case of eqn 4.13 is when x1 in the equation is equal to the lowest
possible value of the random variable (usually −∞). The integral in eqn 4.13 then
corresponds to the probability that a random variable has a value smaller than a certain
value, say y. This function of y is called the cumulative density function (cdf),5

P cum(x < y) =

∫ y

−∞
p(x)dx, (4.15)

5Note that this is a probability function, not a density function.
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which we will utilize further below.

4.5 Functions of random variables and the central limit
theorem

A function of a random variable X ,

Y = f(X), (4.16)

is also a random variable, Y , and we often need to know what the pdf of this new
random variable is. Calculating with functions of random variables is a bit different to
regular functions and some care has be given in such situations. Let us illustrate how
to do this with an example. Say we have an equally distributed random variable X as
commonly approximated with pseudo-random number generators on a computer. The
probability density function of this variable is given by

pX(x) =

{
1 for 0 ≤ x ≤ 1,
0 otherwise. (4.17)

We are seeking the probability density function pY (y) of the random variable

Y = e−X
2

. (4.18)

The random number Y is not Gaussian distributed as we might think naively. To cal-
culate the probability density function we can employ the cumulative density function
eqn 4.15 by noting that

P (Y ≤ y) = P (e−X
2

≤ y) = P (X ≥
√
− ln y). (4.19)

Thus, the cumulative probability function of Y can be calculated from the cumulative
probability function of X ,

P (X ≥
√
− ln y) =

{∫ 1√
− ln y

pX(x)dy = 1−
√
− ln y for e−1 ≤ y ≤ 1,

0 otherwise.
(4.20)

The probability density function of Y is the the derivative of this function,

pY (y) =

{
1−
√
− ln y for e−1 ≤ y ≤ 1,

0 otherwise. (4.21)

The probability density functions of X and Y are shown below.
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A special function of random variables, which is of particular interest it can approx-
imate many processes in nature, is the sum of many random variables. For example,
such a sum occurs if we calculate averages from measured quantities, that is,

X̄ =
1

n

n∑
i=1

Xi, (4.22)

and we are interested in the probability density function of such random variables. This
function depends, of course, on the specific density function of the random variablesXi.
However, there is an important observation summarized in the central limit theorem.
This theorem states that the average (normalized sum) of n random variables that are
drawn from any distribution with mean µ and variance σ is approximately normally
distributed with mean µ and variance σ/n for a sufficiently large sample size n. The
approximation is, in practice, often very good also for small sample sizes. For example,
the normalized sum of only seven uniformly distributed pseudo-random numbers is
often used as a pseudo-random number for a normal distribution.

4.6 Measuring the difference between distributions

An important practical consideration is how to measure the similarity of difference
between two density functions, say the density function p and the density function
q. Note that such a measure is a matter of definition, similar to distance measures
of real numbers or functions. However, a proper distance measure, d, should be zero
if the items to be compared, a and b, are the same, itÕs value should be positive
otherwise, and a distance measure should be symmetrical, meaning that d(a, b) =
d(b, a). The following popular measure of similarity between two density functions
is not symmetric and is hence not called a distance. It is called Kulbach–Leibler
divergence and is given by

dKL(p, q) =

∫
p(x) log(

p(x)

q(x)
)dx (4.23)

=

∫
p(x) log(p(x))dx−

∫
p(x) log(q(x))dx (4.24)

This measure is zero if p = q since log(1) = 0. This measure is related to the
information gain or relative entropy in information theory.

4.7 Density functions of multiple random variables

So far, we have discussed mainly probability (density) functions of single random
variables. In many applications, we consider multiple random variables and their
interactions, and some basic rules will be very useful. We start by illustrating these
with two random variables and mention some generalizations at the end.
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We have seen that probability theory is quite handy to model data, and probability
theory also considers multiple random variables. The total knowledge about the co-
occurance of specific values for two random variables X and Y is captured by the

joined distribution: p(x, y) = p(X = x, Y = y). (4.25)

This is a two dimensional functions. The two dimensions refers here to the number
of variables, although a plot of this function would be a three dimensional plot. An
example is shown in Fig.4.2. All the information we can have about a stochastic system
is encapsulated in the joined pdf. The slice of this function, given the value of one
variable, say y, is the

conditional distribution: p(x|y) = p(X = x|Y = y). (4.26)

A conditional pdf is also illustrated in Fig.4.2 If we sum over all realizations of y we
get the

marginal distribution: p(x) =

∫
p(x, y)dy. (4.27)
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Fig. 4.2 Example of a two-dimensional probability density function (pdf) and some examples of
conditional pdfs.

If we know some functional form of the density function or have a parameterized
hypothesis of this function, than we can use common statistical methods, such as
maximum likelihood estimation, to estimate the parameters as in the one dimensional
cases. If we do not have a parameterized hypothesis we need to use other methods, such
as treating the problem as discrete and building histograms, to describe the density
function of the system. Note that parameter-free estimation is more challenging with
increasing dimensions. Considering a simple histogram method to estimate the joined
density function where we discretize the space along every dimension into n bins.
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This leads to n2 bins for a two-dimensional histogram, and nd for a d-dimensional
problem. This exponential scaling is a major challenge in practice since we need also
considerable data in each bin to sufficiently estimate the probability of each bin.

As mentioned before, if we know the joined distribution of some random variables
we can make the most predictions of these variables. However, in practice we have
often to estimate these functions, and we can often only estimate conditional density
functions. A very useful rule to know is therefore how a joined distribution can be
decompose into the product of a conditional and a marginal distribution,

p(x, y) = p(x|y)p(y) = p(y|x)p(x), (4.28)

which is sometimes called the chain rule. Note the two different ways in which we can
decompose the joined distribution. This is easily generalized to n random variables by

p(x1, x2, ..., xn) = p(xn|x1, ...xn−1)p(x1, ..., xn−1) (4.29)
= p(xn|x1, ..., xn−1) ∗ ... ∗ p(x2|x1) ∗ p(x1) (4.30)
= Πn

i=1p(xi|xi−1, ...x1) (4.31)

but note that there are also different decompositions possible. We will learn more about
this and useful graphical representations in Chapter ??.

If we divide this chain rule eq. 4.28 by p(x), which is possible as long as p(x) > 0,
we get the identity

p(x|y) =
p(y|x)p(x)

p(y)
, (4.32)

which is called Bayes theorem. This theorem is important because it tells us how to
combine a prior knowledge, such as the expected distribution over a random variable
such as the state of a system, p(x), with some evidence called the likelihood function
p(y|x), for example by measuring some sensors reading y when controlling the state,
to get the posterior distribution, p(y|x) from which the new estimation of state can be
derived. The marginal distribution p(y), which does not depend on the state X , is the
proper normalization so that the left-hand side is again a probability.

Estimations of processes are greatly simplified when random variables are inde-
pendent. A random variable X is independent of Y if

p(x|y) = p(x). (4.33)

Using the chain rule eq.4.28, we can write this also as

p(x, y) = p(x)p(y), (4.34)

that is, the joined distribution of two independent random variables is the product of
their marginal distributions. Similar, we can also define conditional independence. For
example, two random variables X and Y are conditionally independent of random
variable Z if

p(x, y|z) = p(x|z)p(y|z). (4.35)

Note that total independence does not imply conditionally independence and visa
versa, although this might hold true for some specific examples.
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Exercises

1. Measure the response function of the light sensor and the ultrasonic sensor with
regards to distance. How do the measurements vary in repeated measurments.
Discuss briefly your experimental setup and results.

2. Write a Matlab program that produces and bimodal distributed (pseudo-)random
variable. Plot a normalized histogram together with an indication of the mean,
the median, and the variance. Plot the cumulative distribution for this random
variable.

3. (From Thrun, Burgard and Fox, Probabilistic Robotics) A robot uses a sensor
that can measure ranges from 0m to 3m. For simplicity, assume that the actual
ranges are distributed uniformly in this interval. Unfortunately, the sensors can
be faulty. When the sensor is faulty it constantly outputs a range below 1m,
regardless of the actual range in the sensor’s measurement cone. We know that
the prior probability for a sensor to be faulty is p = 0.01.
Suppose the robot queries its sensors N times, and every single time the mea-
surement value is below 1m. What is the posterior probability of a sensor fault,
for N = 1, 2, ..., 10. Formulate the corresponding probabilistic model.



Part II

Supervised learning





5 Regression, classification and
maximum likelihood

This chapter start the discussion of an important subset of learning problems, that of
supervised learning with labeled data. We start by considering regression with noisy
data and formalize our learning objectives. This chapter includes some discussion of
fundamental and important algorithms to solve the learning problem as minimization
procedure.

5.1 Regression of noisy data

An important type of learning is supervised learning. In supervised learning, examples
of input-output relations are given, and the goal is to learn the underlying mapping so
that accurate predictions can be made for previously unseen data. For example, let us
consider health records of 30 employees who were regular members of a company’s
health club6. We want to know the relation between the weight of the persons and their
time in a one-mile run. These data are partially shown in a table in Fig.5.1 on plotted
on the right of this figure with the Matlab commands
load healthData; plot(x,y,’*’). The full data set is provided in file
healthData.mat.
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Fig. 5.1 Health data.

6Source: Chatterjee, S. and Hadi, A.S. (1988). Sensitivity Analysis in Linear Regression. John Wiley &
Sons: New York.
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Looking at the plot reveals that there seems to be a systematic relation between
the weights and running times, with a trend that heavier persons tend to be slower in
the runs, although this is not true for all individuals. Moreover, the trend seems linear.
This hypothesis can be quantified as a parameterized function,

h(x; θ) = θ0 + θ1x. (5.1)

This notation means that the hypothesis h is a function of the quantity x, and the
hypothesis includes all possible straight lines, where each line can have a different
offset θ0 (intercept with the y-axis), and slope θ1. We typically collect parameters in a
parameter vector θ. We only considered on input variable x above, but we can easily
generalize this to higher dimensional problems where more input attributes are given.
For example, there might be the amount of exercise each week that might impact the
results of running times. If we make the hypothesis that this additional variable has
also a linear influence on the running time, independently of the other attribute, we
can write the hypothesis as

h(x; θ) = θ0 + θ1x1 + θ2x2. (5.2)

A useful trick to enable a compact notation in higher dimensions with n attributes is
to introduce x0 = 1. We can then write the linear equations as

h(x; θ) = θ0x0 + ....+ θnxn =
∑
i

θixi = θTx. (5.3)

The vector θT is the transpose of the vector θ.
In the following we consider m training examples, the pairs of values

{(x(i), y(i)); i = 1...m}, (5.4)

which is also called a training set. We use here again an index counter i, though this
is different than the index over the attributes used before. To distinguish this better,
we write the index of training examples as superscript and use brackets around it to
distinguish it from a potentiation operation.

We can use the training examples to come-up with some reasonable values for the
parameters. For example, a common technique is called least-mean-square (LMS)
linear regression to determine those parameters. In this technique we chose values
for θ that will minimize the sum of the mean square error (MSE) from the line to
each data point. In general we consider a cost function to be minimized, which is in
this case the square function

E(θ) =
1

2
(y − h(x; θ))2 (5.5)

≈ 1

2m

∑
i

(y(i) − h(x(i); θ))2. (5.6)

Note that the objective function is a function of the parameters. Also, there is a small
subtlety in the above equation since we wrote the general form of the objective function
in line 5.5 and considered its approximation with the data, considered to be independent,
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in line 5.6. With this objective function, we reduced the learning problem to a search
problem of finding the parameter values that minimize this objective function,

θ = arg min
θ
E(θ) (5.7)

We will demonstrate practical solutions to this search problem with three important
methods. The first method is an analytical one. You might remember from basic
mathematics classes that finding a minimum of a function f(x) is characterized by
df
dx = 0, and d2f

dx2 > 0. Here we have a vector function since the cost function depends
an several parameters. The derivative then becomes a gradient

∇θE(θ) =


∂E
∂θ0
.
.
.
∂E
∂θn

 . (5.8)

It is useful to collect the training data in a large matrix for the x values, and a vector
for the y values,

X =


x(1)T

.

.

.
x(m)T

 Y =


y(1)T

.

.

.
y(m)T

 . (5.9)

We can then write the cost function in as

E(θ) =
1

2m
(Y −Xθ)T (Y −Xθ), (5.10)

The parameters for which the gradient is zero is then given by the normal equation

θ = (XTX)−1XTY. (5.11)

We have still to make sure these parameters are the minimum and and a maximum
value, but this can easily be done and is also obvious when plotting the result.

A second method we want to consider is random search. This is a very simple
algorithm, but worthwhile considering to compare them to the other solutions. In this
algorithm, a new random values for the parameters are tried, and these new parameters
replace the old ones if the new values result in a smaller error value (see Matlab code
in Tab.5.2).

5.2 Gradient Descent

The last method discussed here for finding a minimum for LMS regression is Gradient
Descent. This method will often be used in the following and it will thus be reviewed
here in more detail.
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Table 5.1 Program randomSearch.m

%% Linear regression with random search

clear; clf; hold on;

load healthData;

E=1000000;

for trial=1:100

thetaNew=[100*rand()+50, 3*rand()];

Enew=0.5*sum((y-(thetaNew(1)+thetaNew(2)*x)).^2);

if Enew<E; E=Enew; theta=thetaNew; end

end

plot(x,y,’*’)

plot(120:260,theta(1)+theta(2)*(120:260))

xlabel(’weight (pounds)’)

ylabel(’time of one-mile run (seconds)’)
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Fig. 5.2 Health data with linear least-mean-square (LMS) regression from random search.

Gradient Descent starts at some initial value for the parameters and improves our
objective (lowers the cost) iteratively by making changes to the parameters along the
negative gradient of the cost function,

θ ← θ − α∇θE(θ). (5.12)

The constant α is called a learning rate. The principle idea behind this method is
illustrated for a general cost function with one parameter in Fig.5.3.

The gradient is simple the slope (local derivative) for a function with one variable,
but with functions in higher dimensions (more variables), the gradient is the local
slope along the direction of the steepest descent. For large gradients, this method takes
large steps, whereas the effective step-width becomes smaller near a minimum. The
Gradient Descent works often well for local optimization, but it can get stuck in local
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E(θ)

θ

Fig. 5.3 Illustration of error minimization with a gradient descent method on a one-dimensional
error surface E(θ).

minima. In case of the MSE with a linear regression function, the update rule for the
two parameters θ0 and θ1 can easily be calculated:

h(x(i); θ) = θ0 + θ1x
(i) (5.13)

θ0 ← θ0 + α
∂E(θ)

∂θ0
(5.14)

θ1 ← θ1 + α
∂E(θ)

∂θ1
(5.15)

E(θ) =
1

2m

m∑
i=1

(y(i) − h(x(i); θ))2 (5.16)

∂E(θ)

∂θ0
=

1

m

m∑
i=1

(y(i) − θ0 − θ1x
(i))(−1) (5.17)

∂E(θ)

∂θ1
=

1

m

m∑
i=1

(y(i) − θ0 − θ1x
(i))(−x(i)), (5.18)

which lead to the final rule:

θ0 ← θ0 +
α

m

m∑
i=1

(yi − θ0 − θ1xi) (5.19)

θ1 ← θ1 +
α

m

m∑
i=1

(yi − θ0 − θ1xi)xi. (5.20)

Note that the learning rate α has to be chosen small enough for the algorithm to
converge. An example is show in Fig.5.4, where the dashed line shows the initial
hypothesis, and the solid line the solution after 100 updates.

In the algorithm above we calculate the average gradient over all examples before
updating the parameters. This is called a batch algorithm or synchronous update
since the whole batch of training data is used for each updating step and the update
is only made after seeing all training data. This might be problematic in some appli-
cations as the training examples have to be stored somewhere and have to be recalled
continuously. A much more applicable methods, also thought to be more biological
realistic, is to use each training example when it comes in and disregards it right after.
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Fig. 5.4 Health data with linear least-mean-square (LMS) regression with gradient descent. The
dashed line shows the initial hypothesis, and the solid line the solution after 100 updates.

In this way we do not have to store all the data. Such algorithms are called online algo-
rithms or asynchronous update. Specifically, in the example above, we calculate the
change for each training examples and update the parameters for this training example
before moving to the next example. While we might have to run through the short list
of training examples in this specific example, it can still be considered online since we
need only one training example at each training step and a list could be supplied to us
externally. There are also variations of this algorithms depending on the order we use
the training examples (e.g. random or sequential), although this should not be crucial
in for the examples discussed here.

5.2.1 LinearRegressionExampleCode

%% Linear regression with gradient descent

clear all; clc; hold on;

load SampleRegressionData; m=50; alpha=0.001;

theta1=rand*100*((rand<0.5)*2-1);

theta2=rand*100*((rand<0.5)*2-1);

for trial=1:50000

sum1 = sum(y - theta1 - theta2 *x);

sum2 = sum((y - theta1 - theta2 *x).* x);

theta1 = theta1 + (2*alpha/m) * sum1;

theta2 = theta2 + (2*alpha/m) * sum2;

sum1 = 0; sum2 = 0;

end

plot(x, y, ’*’);

plot(x, x*theta2+theta1);

hold off;
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A final remark: We have used in this section the popular cost function MSE to
calculate the regression in the above example, but it is interesting to think about this
choice a bit more. If we change this function, then we would value outliers in a
different way. The MSE is a quadratic function and does therefore weight heavily
large deviations from the regression curve. An alternative approach would be to say
that these might be outliers to which we should not give so much weight. In this case
we might want that the increase of the error value decrease with large distances, for
example by using the logarithm function log(|y − h|) as cost (error) function. So, the
MSE is certainly not the only choice. We will see below that there is a natural choice
for cost functions if we take the stochastic nature of the data into account.

5.3 Calibrating state estimator with linear regression

One of the basic requirements for a robot or agent is to estimate the state it is in
such as its position in space. In this tutorial we will use the color sensor and a floor
with different shades of gray to help the robot to determine its position on a surface.
Specifically, we use a sheet of gray bars of various gradients that is given in file
StateSheet.pdf. The NXT can read this model as each gray bar will give a different
light reading when the its light sensor is held over it. However, we need to pair each
light reading with a number which represents the state value. Of course, the reading of
the light sensors will fluctuate somewhat, we would like to repeat the measurements
and find a function that translates each light reading to a state value.

To set up the tribot for this experiment, do the following:

1. Mount a switch sensors on the NXT.

2. Mount light sensor on front of the NXT, facing downward.

3. Because the state space used in this tutorial only involves driving forward and
backward, it is a good idea to use additional lego pieces to lock the back wheel



Regression, classification and maximum likelihood52 |

so it stays straight. If it is left to freely rotate, the NXT will start to turn and
travel off the state sheet which will interfere with results.

4. Tape the state sheet to a table or other flat surface.
5. Setup an NXT motor object that will drive the robot foward in a straight line.

Power should be between 20-30, TachoLimit around 20; motors should brake
once it reaches the TachoLimit.

6. Create two matricies, one for light readings (from the NXT’s light sensor), and
the other for states. They must be the same size.

7. Have the NXT move forward, take a light reading from its sensor, and store it in
the light reading matrix. The user should then be prompted to input which state
the NXT is in. Store this value in the state matrix. Repeat this until you have a
few readings from every state on the state sheet.

8. Using one of the methods discussed above, use linear regression to find a linear
relationship between the light reading matrix and its associated state.
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9. Test the data. Have the NXT take in a light sensor reading, and using the regressed
line, interpolate the state and a round function to round the value to the nearest
whole number). Does the regressed value give the correct state?

The state sheet will be used in chapter ?? when experimenting with reinforcement
learning.

5.4 Probabilistic models and maximum likelihood
So far, we have only modelled the mean trend of the data, and we should investigate
more the fluctuations around this mean trend. Fig.5.5 is a plot of the histogram of
the differences between the actual data and the hypothesis regression line. This look
a bit Gaussian, which is likely to be a common finding though not necessarily the
only possible. With this additional conjecture, we should revise our hypothesis. More
precisely, we acknowledge that the data are noisy and that we can only give a probability
of finding certain values. Specifically, we assume here that the data follow a certain
trend h(x; θ with additive noise, η,

p(y|x; θ) = h(x; θ) + η, (5.21)
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Fig. 5.5 Histogram of the difference between the data points and the fitted hypothesis,
(yi − θ1 − θ2xi).

where the random variable η is Gaussian distributed in the example above,

p(η) = ℵ(µ, σ) (5.22)

We can then also write the probabilistic hypothesis in the example as a Gaussian model
of the data distributed with a mean that depends on the variable x,

p(y|x; θ) = ℵ(µ = h(x), σ) (5.23)

=
1√
2πσ

exp

(
−−(y − θTx)2

2σ2

)
(5.24)

This functions specifies the probability of values for y, given an input x and the
parameters θ.

Specifying a model with a density function is an important step in modern mod-
elling and machine learning. In this type of thinking, we treat data from the outset
as fundamentally stochastic, that is, data can be different even in situations that we
deem identical. This randomness may come irreducible indeterminacy, but might
also represent epistemological limitations such as the lack of knowledge of hidden
processes or limitations in observing states directly. The language of probability theory
has helped to make large progress the machine learning area.

While we have made a parameterized hypothesis underlying the nature of data,
we need to estimate values for the parameters to make real predictions. We therefore
consider again the examples for the input-output pairs, our training set {(x(i), y(i)); i =
1...m}. The important principle that we will now follow is to choose the parameters
so that the examples we have are most likely. This is called maximum likelihood
estimation. To formalize this principle, we need to think about how to combine
probabilities for several observations. If the observations are independent, then the
joined probability of several observations is the product of the individual probabilities,

p(y1, y2, ...., ym|x1, x2, ..., xm; θ) = Πm
i p(yi|xi; θ). (5.25)

Note that yi are still random variables in the above formula. We now use our training
examples as specific observations for each of these random variables, and introduce
the Likelihood function
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L(θ) = Πm
i p(θ; y

(i), x(i)). (5.26)

The p on the right hand side is now not a density function, but it is a regular function
(with the same form as our parameterized hypothesis) of the parameters θ for the given
values y(i) and x(i). Instead of evaluating this large product, it is common to use the
logarithm of the likelihood function, so that we can use the sum over the training
examples,

l(θ) = logL(θ) =

m∑
i

log(p(θ; y(i), x(i))). (5.27)

Since the log function strictly monotonly rising, the maximum ofL is also the maximum
of l. The maximum (log-)likelihood can thus be calculated from the examples as

θMLE = argmax
θ
l(θ). (5.28)

We might be able to calculate this analytically or use one of the search algorithms to
find a minimum from this function.

Let us apply this to the linear regression discussed above. The log-likelihood
function for this example is

l(θ) = log Πm
i=1

1√
2πσ

exp

(
−−(y(i) − θTx(i))2

2σ2

)
(5.29)

=

m∑
i=1

(
log

1√
2πσ

− −(y(i) − θTx(i))2

2σ2

)
(5.30)

= −m
2

log 2πσ −
m∑
i=1

−(y(i) − θTx(i))2

2σ2
. (5.31)

Thus, the log was chosen so that we can use the sum in the estimate instead of dealing
with big numbers based on the product of the examples.

Since the first term in the expression 5.31, −m2 log 2πσ, is independent of θ, and
since we considered here a model with a constant, σ2, for the variance of the data,
maximizing the log-likelihood function is equivalent to minimizing a quadratic error
term

E =
1

2
(y − h((x; (θ))2 ⇐⇒ p(y|x; θ) =

1√
2π

exp(− ((y − h((x; θ)2

2
) (5.32)

This was the cost function chosen in the first section. We have now a deeper under-
standing of the choice of a cost function. With a probabilistic model our principle
should be maximum likelihood estimation, which determines the cost function in the
previous schemes. While this was equivalent in the case studied here, it would be
different if we consider also the variance as a free parameter, which leads to χ2 fitting
procedures in the literature.

We have discussed Gaussian distributed data in most of this section, but one can
similarly find correspondences error functions for other distributions. For example, a
polynomial error function correspond more generally to a density model of the form
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E =
1

p
||y − h((x; (θ)||p ⇐⇒ p(y|x; θ) =

1

2Γ(1/p)
exp(−||y − h((x; θ||p). (5.33)

Later we will specifically discuss and use the ε-insensitive error function, where
errors less than a constant ε do not contribute to the error measure, only errors above
this value,

E = ||y − h((x; (θ)||ε ⇐⇒ p(y|x; θ) =
p

2(1− ε)
exp(−||y − h((x; θ||ε). (5.34)

Since we already acknowledged that we do expect that data are noisy, it is somewhat
logical to not count some deviations form the expectation as errors. It also turns out
that this error function is much more robust than other erro functions.

5.5 Maximum a posteriori estimates

In the maximum likelihood estimation we assumed that we have no prior knowledge of
the parameters θ. However, we sometimes might know which values of the parameters
are impossible or less likely. This prior knowledge can be summarized in the prior
distribution p(θ), and the next question is how to combine this prior knowledge in
the maximum likelihood scheme. Combining prior knowledge with some evidence is
described by Bayes’ theorem. Thus, let us consider again that we have some observa-
tions (x, y) from specific realizations of the parameters, which is given by (p(x, y|θ),
and the prior about the possible values of the parameters, given by p(θ). The prior
is in this situation sometimes called the regularizer, restricting possible values in a
specific domain. We want to know the distribution of parameters given the observation,
p(θ|x, y), which can be calculated from Bayes’s theorem,

p(θ|x, y) =
p(x, y|θ)p(θ)∫

θ∈Θ
p(x, y|θ)p(θ)dθ

, (5.35)

where Θ is the domain of the possible parameter values. We can now use this expression
to estimate the most likely values for the parameters. For this we should notice that the
denominator, which is called the partition function, does not depend on the parameters
θ. The most likely values for the parameters can thus be calculated without this term
and is given by the maximum a posteriori (MAP) estimate,

θMAP = argmax
θ
p(x, y|θ)p(θ). (5.36)

This is, in a Bayesian sense, the most likely value for the parameters, where, of course,
we now treat the probability function as a function of the parameters (e.g., a likelihood
function).

A final caution: ML and MAP estimates give us a point estimate, a single answer
of the most likely values of the parameters. This is often useful as a first guess and is
commonly used to make decisions about which actions to take. However, it is possible
that other sets of parameters values might have only a little smaller likelihood value,
and should therefore also be considered. Thus, one limit of the estimation methods
discussed here is that they do not take distribution of answers into account, which is
more common in more advanced Bayesian methods.
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5.6 Non-linear regression and the bias-variance tradeoff

So far, we have always discussed linear regression which assume that there is a linear
relation between the variables. This is of course not the only possible relations between
data. In Fig.5.6A we plotted the number of transistors of microprocessors against the
year the processors were introduced. The plot also includes a linear fit, suggesting that
we should assume some other functions.
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Fig. 5.6 Data from showing the number of transistors in microprocessors plotted the year that the
processor was introduced. (A) Data and some linear and polynomial fits of the data. (B) Logarithm
of the data and linear fit of these data.

Finding the right function is one of the most difficult tasks, and there is not a
simple algorithm that can give us the answer. This task is therefore an important
area where experience, a good understanding of the problem domain, and a good
understanding of scientific methods are required. This section does therefore try to
give some recommendations when generalizing regression to the non-linear domain.
These comments are important to understand for applying machine learning techniques
in general.

It is often a good idea to visualize data an various ways since the human mind is
often quite advanced in ‘seeing’ trends and patterns. Domain-knowledge thereby very
valuable as specialists in the area from which the data are collected can give important
advice of or they might have specific hypothesis that can be investigated. It is also
good to know common mechanisms that might influence processes. For example, the
rate of change in basic growth processes is often proportional to the size of the system
itself. Such an situation lead to exponential growth. (Think about why this is the case).
Such situations can be revealed by plotting the functions on a logarithmic scale or
the logarithm of the function as shown in Fig.5.6B. A linear fit of the logarithmic
values is also shown, confirming that the average growth of the number of transistors
in microprocessors is exponential.

But how about more general functions. For example, we can consider a polynomial
of order n, that can be written as

y = θ0x
0 + θ1x

1 + θ2x
2 + ...+ θnx

n (5.37)
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We can again use LMS regression to determine the parameters from the data by miniz-
ing the LMS error function between the hypothesis and the data. This is implemented
in Matlab as function polyfit(x,y,n0). The LMS regression of the transistor data
to a polynomials for orders n = 2, 4, 10 are shown in Fig.??A as dashed lines.

A major question when fitting data with fairly general non-linear functions is the
order that we should consider. The polynomial of order n = 4 seem to somewhat fit
the data. However, notice there are systematic deviations between the curve and the
data points. For example, all the data between years 1980 and 1995 are below the
fitted curve, while earlier data are all above the fitted curve. Such a systematic bias is
typical when the order of the model is too low. However when we increase the order,
then we usually get large fluctuations, or variance, in the curves. This fact is also
called overfitting the data since we have typically too many parameters compared to
the number of data points so that our model starts describing individual data points
with their fluctuations that we earlier assumed to be due to some noise in the system.
This difficulty to find the right balance between these two effects is also called the
bias-variance tradeoff.

The bias-variance tradeoff is quite important in practical applications of machine
learning because the complexity of the underlying problem is often not know. It then
becomes quite important to study the performance of the learned solutions in some
detail. For this it is useful to split the data set into training set, which is used to
estimate the parameters of the model, and a validation set that can be used to study
the performance on data that have not been used in the training procedure, that is, how
the machine performs in generalizes. A schematic figure showing the bias-variance
tradeoff is shown in Fig.5.7. The plot shows the error rate as evaluated by the training
data (dashed line) and validation curve (solid line) when considering models with
different complexities. When the model complexity is lower than the true complexity
of the problem, then it is common to have a large error both in the training set and
in the evaluation due to some systematic bias. In the case when the complexity of the
model is larger than the generative model of the data, then it is common to have a
small error on the training data but a large error on the generalization data since the
predictions are becoming too much focused on the individual examples. Thus varying
the complexity of the data, and performing experiments such as training the system
on different number of data sets or for different training parameters or iterations can
reveal some of the problems of the models.

Using some of the data to validate the learning model is essential for many machine
learning methods. A important question is then how many data we should keep to
validate versus train the model. If we use too many data for validation, than we might
have too less data for accurate learning in the first place. On the other end, if we have
to few data for validation than this might not be very representative. In practice we are
often using some cross-validation techniques to minimize the trade-off. That is, we
use the majority of the data for training, but we repeat the selection of the validation
data several times to make sure that the validation was not just a result of outliers.
The repeated division of the data into a training set and validation set can be done in
different ways. For example, in random subsampling we just use random subsample
for each set and repeat the procedure with other random samples. More common is
k-fold cross-validation. In this technique we divide the data set into k-subsamples
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Fig. 5.7 Illustration of bias-variance tradeoff.

samples and use k−1 subsamples for training and one subsample for validation. In the
next round we use another subsample for validating the training. A common choice
for the number of subsamples is k = 10. By combining the results for the different
runs we can often reduce the variance of our prediction while utilizing most data for
learning.

We can sometimes even help the learning process further. In many learning exam-
ples it turns out that some data are easy to learn while others are much harder. In some
techniques called boosting, data which are hard to learn are over-sampled in the learn-
ing set so that the learning machine has more opportunities to learn these examples. A
popular implementation of such an algorithm is AdaBoost (adaptive Boosting).

5.7 Classification and logistic regression
An important special case of learning problems is classification in which features are
mapped to a finite number of possible categories. We discuss in this section binary
classification, which is the case of two target classes, and we view the problem here
as a special case of non-linear regression in which the target function (y-values) has
only two possible values such as 0 and 1.

Let us first consider a random number which takes the value of 1 with probability
φ and the value 0 with probability 1 − φ (the probability of being either of the two
choices has to be 1.) Such a random variable is called Bernoulli distributed. Tossing a
coin is a good example of a process that generates a Bernolli random variable and we
can use maximum likelihood estimation to estimate the parameter φ from such trials.
That is, let us considerm tosses in which h heads have been found. The log-likelihood
of having h heads (y = 1) and 1− h tails (y = 0) is

l(φ) = log(φh(1− φ)m−h) (5.38)
= h log(φ) + (m− h) log(1− φ). (5.39)

To find the maximum with respect to φ we set the derivative of l to zero,

dl

dφ
=
h

φ
− m− h

1− φ
(5.40)
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=
h

φ
− m− h

1− φ
(5.41)

= 0 (5.42)

→ φ =
h

m
(5.43)

As you might have expected, the maximum likelihood estimate of the parameter φ is
the fraction of heads in m trials.

Now let us discuss the case when the probability of observing a head or tail, the
parameterφ, depends on an attributex, as usual in a stochastic (noisy) way. An example
is illustrated in Fig.5.8 with 100 examples plotted with star symbols. The data suggest
that it is far more likely that the class is y = 0 for small values of x and that the class is
y = 1 for large values of x, and the probabilities are more similar inbetween. We put
forward the hypothesis that the transition between the low and high probability region
is smooth and qualify this hypothesis as parameterized density function known as a
logistic (sigmoidal) function

p(y = 1) =
1

1 + exp(−θTx)
. (5.44)

As before, we can then treat this density function as function of the parameters θ for
the given data values (likelihood function), and use maximum likelihood estimation to
estimate values for the parameters so that the data are most likely. The density function
with sigmoidal offset θ0 = 2 and slope θ1 = 4 is plotted as solid line in Fig.5.8.
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Fig. 5.8 Binary random numbers (stars) drawn from the density p(y = 1) = 1
1+exp(−θ1x−θ0)

(solid line).

How can we use the knowledge (estimate) of the density function to do classifica-
tion? The obvious choice is to predict the class with the higher probability, given the
input attribute. This bayesian decision point, xt, or dividing hyperplane in higher
dimensions, is give by

p(y = 1|xt) = p(y = 0|xt) = 0.5→ xtθTxt = 0. (5.45)

We have here considered binary classification with linear decision boundaries as lo-
gistic regression, and we can also generalize this method to problems with non-linear
decision boundaries by considering hypothesis with different functional forms of the



Regression, classification and maximum likelihood60 |

decision boundary. However, coming up with specific functions for boundaries is of-
ten difficult in practice, and we will discuss much more practical methods for binary
classification later in this course.

5.8 Exercise

1. Compare the analytic solution to the numerical solutions of random search and
gradient descent search in the linear regression of the health data in section 5.1.

2. Is a linear fit of the logarithm of a function equal to an exponential fit of the
original function? Discuss.

3. Explain briefly how a binary classification method can be used to support mul-
ticlass classification of more than two classes.



6 Generative models

In the previous chapter we have introduced the idea that understanding the world should
be based on a model of the world in a probabilistic sense. That is, building knowledge
about the world really means estimating a large density function about the world. So far
we have used such stochastic model mainly for a recognition model that take feature
values x and make a prediction of an output y. Given the stochastic nature of the
systems we want to model, the models where formulated as parameterized functions
that represent the conditional probability p(y|x; θ). Of course, learning such models
is a big task. Indeed, we had to assume that we know already the principle form of
the distribution, and we used only simple model with low-dimensional feature vectors.
The learning tasks of humans to be able to function in the real world seems much
more daunting, and even training a robot in more restricted environment seems still
beyond our current ability. While the previous models illustrate the principle problem in
supervised learning, much of the rest of this course discusses more practical methods.

At the end of the last chapter we discussed a classification task where the aim
of the model was to discriminate between classes based on the feature values. Such
models are called discriminative models because they try to discriminate between
possible outcomes based on the input values. Building a discriminative model directly
from example data can be a daunting task as we have to learn how each item is
distinguished from every other possible item. A different strategy, which seems much
more resembling human learning, is to learn first about the nature of specific classes
and then use this knowledge when faced with a classification task. For example, we
might first learn about chairs, and independently about tables, and when we are shown
pictures with different furnitures we can draw on our knowledge to classify them. Thus,
in this chapter we start discussing generative models of individual classes, given by
p(x|y; θ).

Generative models can be useful in its own right, and are also important to guide
learning as discussed later, but for now we are mainly interested in using these models
for classification. Thus, we need to ask how we can combine the knowledge about
the different classes to do classification. Of course, the answer is provided by Bayes’
theorem. In order to make a discriminative model from the generative models, we need
to the class priors know, e.g. what the relative frequencies of the classes is, and can
then calculate the probability that an item with features x belong to a class y as

p(y|x; θ) =
p(x|y; θ)p(y)

p(x)
. (6.1)

We can use this directly in the case of classification. The Bayesian decision criterion
of predicting the class with the largest posterior probability is then:

arg max
y

p(y|x; θ) = arg max
y

p(x|y; θ)p(y)

p(x)
(6.2)
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= arg max
y

p(x|y; θ)p(y), (6.3)

where we have used the fact that the denominator does not depend on y and can hence
be ignores. In the case of binary classification, this reads:

arg max
y

p(y|x; θ) = arg max
y

(p(x|y = 0; θ)p(y = 0) + p(x|y = 1; θ)p(y = 1).

(6.4)
While using generative models for classification seem to be much more elaborate, we
will see later that there are several arguments which make generative models attractive
for machine learning, and we will arue that generative models are do more closely
resemble human brain processing principles.

6.1 Discriminant analysis

We will now discuss some common examples of using generative models in classifi-
cation. The methods in this section go back to a paper by R. Fisher in 1936. In the
following examples we consider that there are k classes, and we first assume that
each class has members which are Gaussian distribution over the n feature value. An
example for n = 2 is shown in Fig.??A.
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Fig. 6.1 Linear Discriminant analysis on a two class problem with different class distributions.

Each of the classes have a certain class prior

p(y = k) = φk (6.5)

, and each class itself is multivariate Gaussian distributed, generally with different
means, µk and variances, Σk,

p(x|y = k) =
1

√
2π

n√|Σ0|
e−

1
2 (x−µk)TΣ−1

k (x−µk) (6.6)
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(6.7)

Since we have supervised data with examples for each class, we can use maxi-
mum likelihood estimation to estimate the most likely values for the parameters
θ = (φk, µk,Σk). For the class priors, this is simply the relative frequency of the
training data,

φk =
1

m

m∑
i=1

11(y(i) = k) (6.8)

where the function 11(y(i) = k) = 1 if the ith example belongs to class k, and
11(y(i) = k) = 0 otherwise. The estimates of the means and variances within each
class are given by

µk =

∑m
i=1 11(y(i) = k)x(i)∑m
i=1 11(y(i) = k)

(6.9)

Σk =

∑m
i=1 11(y(i) = k)(x(i) − µy(i))(x(i) − µy(i))T∑m

i=1 11(y(i) = k)
. (6.10)

With these estimates, we can calculate the optimal (in a Bayesian sense) decision
rule, G(x; θ), as a function of x with parameters θ, namely

G(x) = argmax
k

p(y = k|x) (6.11)

= argmax
k

[p(x|y = k; θ)p(y = k)] (6.12)

= argmax
k

[log(p(x|y = k; θ)p(y = k))] (6.13)

= argmax
k

[−log(
√

2π
n√
|Σ0|)−

1

2
(x− µk)TΣ−1

k (x− µk) + log(φk)](6.14)

= argmax
k

[−1

2
xTΣ−1

k x− 1

2
µTk Σ−1

k µk + xTΣ−1
k µk + log(φk)], (6.15)

since the first term in equation 6.14 does not depend on k and we can multiply out the
other terms. With the maximum likelihood estimates of the parameters, we have all
we need to make this decision.

In order to calculate the decision boundary between classes l and k, we make
the common additional assumption that the covariance matrices of the classes are the
same,

Σk =: Σ. (6.16)

The decision boundary is then

log(
φk
φl

)− 1

2
(µk − µl)TΣ−1(µk − µl)− xΣ−1(µk − µl) = 0. (6.17)

The first two terms do not depend on x and can be summarized as constant a. We can
also introduce the vector

w = −Σ−1(µk − µl). (6.18)

With these simplifying notations is it easy to see that this decition boundary is a linear,



Generative models64 |

a + wx = 0, (6.19)

and this method with the Gaussian class distributions with equal variances is called
Linear Discriminant Analysis (LDA). The vector w is perpendicular to the decision
surface. Examples are shown in Figure ??. If we do not make the assumption of equal
variances of the classes, than we have a quadratic equation for the decision boundary,
and the method is then called Quadratic Discriminant Analysis (GDA). With the
assumptions of LDA, we can calculate the contrastive model directly using Bayes rule.

p(y = k|x; θ) =
φk

1√
2π
n
√
|Σ|
e−

1
2 (x−µk)TΣ−1

k (x−µk)

φk
1√

2π
n
√
|Σ|
e−

1
2 (x−µk)TΣ−1

k (x−µk) + φl
1√

2π
n
√
|Σ|
e−

1
2 (x−µl)TΣ−1

l (x−µl)
(6.20)

=
1

1 + φl
φk
exp−θT x

, (6.21)

where θ is an appropriate function of the parametersµk,µl, and Σ. Thus, the contrastive
model is equivalent to logistic regression discussed in the previous chapter, although we
use parametrisations and the two methods will therefore usual give different results on
specific data sets. So which method should be used? In LDA we made the assumption
that each class is Gaussian distributed. If this is the case, then LDA is the best method
we can use. Discriminant analysis is also popular since it often works well even
when the classes are not strictly gaussian. However, as can be seen in Figure ??B,
it can also produce quite bad results if the data are multimodal distributed. Logistic
regression is somewhat more general since it does not make the assumption that the
class distributions are Gaussian. However, so far we have mainly looked at linear
models and logistic regression would have also problems with the data shown in
Figure ??B.

Finally, we should nte that Fisher’s original method was slightly more general than
the examples discussed here since he did not assume Gaussian distributions. Instead
considered within-class variances compared to between-class variances, something
which resembles a signal-to-noise ratio. In Fisher discriminant analysis (FDA), the
separating hyperplane is defined as

w = −(Σk + Σl)
−1(µk − µl). (6.22)

which is the same as in LDA in the case of equal covariance matrices.

6.2 Naive Bayes



7 Graphical models

7.1 Causal models

In the regression example that looked at health data relating the weight of subjects
to running times, we considered the weight to be a random variable to capture the
uncertainties in the data. There we treated the running time as the dependent variable.
Since this is also a measured quantity, it should also be treated as random variable.
In general we should anyhow consider more complex models with many more factors
described as random variables, and we are most interested in describe the relations of
these variables in a model.

We have seen that probability theory is quite handy to model data, and probability
theory also considers multiple random variables. The total knowledge about the co-
occurance of specific values for two random variables X and Y is captured by the
joined probability function p(X,Y ). This is a symmetric function,

p(X,Y ) = p(Y,X), (7.1)

There is an interesting limitation of joined density functions of multiple variables
which only describe the co-occurance of specific values of the random variables.
However, we want to use our knowledge about the world, captured by a model, to
reason about possible events. For this we want to add knowledge or hypotheses about
causal relations. For example, a fire alarm should be triggered by a fire, although there
is some small chance that the alarm will not sound when the unit is defect. However,
it is (hopefully) unlikely that the sound of a fire alarm will trigger a fire. It is useful to
illustrate such casual relations with graphs such as

F A

In such graphical models, the nodes represent random variables, and the links between
them represent causal relations with conditional probabilities, p(A|F ). Since we use
arrows on the links we are discussing here directed graphs, and we are also restricting
our discussions here to graphs that have no loops, so called acyclic graphs. Directed
acyclic graphs are also called DAGs.

Graphical causal models have been advanced largely by Judea Pearl, and the
following example is taken from his book7. The model is shown in Figure 7.1. Each of
the five nodes stands for a random binary variable (Burglary B={yes,no}, Earthquake
E={yes,no}, Alarm A={yes,no}, JohnCalls J={yes,no}, MaryCalls M={yes,no}) The
figure also include conditional probability tables (CPTs) that specify the conditional
probabilities represented by the links between the nodes.

7Judea Pearl, ‘Causality: Models, Reasoning and Inference’, Cambridge University Press 2000, 2009’.
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Fig. 7.1 Example of causal model a two-dimensional probability density function (pdf) and some
examples of marginal pdfs.

The joined distribution of the five variables can be factories in various ways
following the chain rule mentioned before (equations 4.29), for example as

p(B,E,A, J,M) = P (B|E,A, J,M)P (E|A, J,M)P (A|J,M)P (J |M)P (M)
(7.2)

However, the the causal model represents a specific factorization of the joined proba-
bility functions, namely

p(B,E,A, J,M) = P (B)P (E)P (A|B,E)P (J |A)P (M |A), (7.3)

which is much easier to handle. For example, if we do not know the conditional
probability functions, we need to run many more experiments to estimate the various
conditions (24 + 23 + 22 + 21 + 20 = 31) instead of the reduced conditions in the
causal model (1 + 1 + 22 + 2 + 2 = 10). It is also easy to use the casual model to do
inference (drawing conclusions), for specific questions. For example, say we want to
know the probability that there was no earthquake or burglary when the alarm rings
and both John and Mary call. This is given by

P (B = f,E = f,A = t, J = t,M = t) =

= P (B = f)P (E = f, )P (A = t|B = f,E = f)P (J = t|A = t)P (M = t|A = t)

= 0.998 ∗ 0.999 ∗ 0.001 ∗ 0.7 ∗ 0.9

= 0.00062

Although we have a casual model where parents variables influence the outcome
of child variables, we can also use a child evidence to infer some possible values of
parent variables. For example, let us calculate the probability that the alarm rings given
that John calls, P (A = t|J = t). For this we should first calculate the probability that
the alarm rings as we need this later. This is given by

P (A = t) = P (A = t|B = t, E = t)P (B = t)P (E = t) + ...

P (A = t|B = t, E = f)P (B = t)P (E = f) + ...
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P (A = t|B = f,E = t)P (B = f)P (E = t) + ...

P (A = t|B = f,E = f)P (B = f)P (E = f)

= 0.95 ∗ 0.001 ∗ 0.002 + 0.94 ∗ 0.001 ∗ 0.998 + ...

0.29 ∗ 0.999 ∗ 0.002 + 0.001 ∗ 0.999 ∗ 0.998

= 0.0025

We can then use Bayes’ rule to calculate the required probability,

P (A = t|J = t) =
P (J = t|A = t)P (A = t)

P (J = t|A = t)P (A = t) + P (J = t|A = f)P (A = f)

=
0.90.0025

0.90.0025 + 0.050.9975
= 0.0434

We can similarly apply the rules of probability theory to calculate other quantities, but
these calculations can get cumbersome with larger graphs. It is therefore useful to use
numerical tools to perform such inference. A Matlab toolbox for Bayesian networks
is introduced in the next section.

While inference is an important application of causal models, inferring causality
from data is another area where causal models revolutionize scientific investigations.
Many traditional methods evaluate co-occurrences of events to determine dependen-
cies, such as a correlation analysis. However, such a correlation analysis is usually not
a good indication of causality. Consider the example above. When the alarm rings it
is likely that John and Mary call, but the event that John calls is mutually independent
of the event that Mary calls. Yet, when John calls it is also statistically more likely to
observe the event that Mary calls. Sometimes we might just be interested in knowing
about the likelihood of co-occurrence, for which a correlation analysis can be a good
start, but if we are interested in describing the causes of the observations, then we need
another approach. Some algorithms have been proposed for structural learning, such
as an algorithm called inferred causation (IC), which deduces the most likely causal
structure behind given data is.

7.2 Bayes Net toolbox

An Matlab implementation of various algorithms for inference, parameters estimation
and inferred causation is provided by Kevin Murphy in the Bayes Net toolbox8. We
will demonstrate some of its features on the burglary/earthquake example above.

The first step is to create a graph structure for the DAG We have five nodes. The
nodes are given numbers, but we also use variables with capital letter names to refer
to them. The DAG is then a matrix with entries 1 where directed links exist.

N=5;% number of nodes

B=1; E=2; A=3; J=4; M=5;

dag = zeros(N,N);

8The toolbox can be downloaded at http://code.google.com/p/bnt.
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dag(B,A)=1;

dag(E,A)=1;

dag(A,[J M])=1;

The nodes represent discrete random variables with two possible state. We only discuss
here discrete random variables, although the toolbox contains methods for continuous
random variables. For the discrete case we have to specify the number of possible
states of each variable, and we can then create the corresponding Bayesian network,

% Make bayesian network

node_sizes=[2 2 2 2 2]; %binary nodes

bnet=mk_bnet(dag,node_sizes); %make bayesian net

The next step is to provide the numbers for the conditional probability distributions,
which are the conditional probability tables for discrete variables. For this we provide
the numbers in a vector according to the following convention. Say we specify the
probabilities for node 3, which is conditionally dependent on nodes 1 and 2. We then
provide the probabilities in the following order:

Node 1 Node 2 P(Node 3=X)

F F F
T F F
F T F
T T F
F F T
T F T
F T T
T T T

For our specific examples, the CPT are thus specified as

bnet.CPD{B} = tabular_CPD(bnet,B,[0.999 0.001]);

bnet.CPD{E} = tabular_CPD(bnet,E,[0.998 0.002]);

bnet.CPD{A} = tabular_CPD(bnet,A,[0.999 0.06 0.71 0.05 0.001 0.94 0.29 0.95]);

bnet.CPD{J} = tabular_CPD(bnet,J,[0.95 0.10 0.05 0.90]);

bnet.CPD{M} = tabular_CPD(bnet,M,[0.99 0.30 0.01 0.70]);

We are now ready to calculate some inference. For this we need to specify a specific in-
ference engine. There are several algorithms implemented, a variety of exact algorithm
as well as approximate procedures in case the complexity of the problem is too large.
Here we use the basic exact inference engine, the junction tree algorithm, which is
based on a message passing system.

engine=jtree_inf_engine(bnet);

While this is an exact inference engine, there are other engines, such as approximate
engines, that might be employed for large graphs when other methods fail.

As an example of an inference we recalculate the example above, that of calculate
the probability that the alarm rings given that John calls, P (A = t|J = t). For this we
have to enter some evidence, namely that J = t, into a cell array and add this to the
inference engine,

evidence=cell(1,N);

evidence{J}=2;
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[engine,loglik]=enter_evidence(engine,evidence)

We can then calculate the marginal distribution for a variable, given the evidence as,

marg=marginal_nodes(engine,A)

p=marg.T(2)

It is now very easy to calculate other probabilities.
The Bayesnet toolbox also includes routines to handle some continuous models

such as models with Gaussian nodes. In addition, there are routines to do parameter
estimation, including point estimates, such maximum likelihood estimation, and also
full bayesian priors. Finally, he toolbox includes routines to inferred causation through
structural learning.

Exercise:

In the above example, shown in Figure 7.1, calculate the probability that there was a
burglary, given that John and Marry called.

7.3 Temporal Bayesian networks: Markov Chains and
Bayes filters

In many situations we are interested in how things change over time. For this we
need to build time-dependent causal models, also called dynamic bayesian models
(DBNs). We will discuss here a specific family of such models in which the states at
one time, t, only depend on the random variables at the previous time, t − 1. This
condition is called a Markov condition, and the corresponding models are called
markov chains. A very common situation is captured in the example shown in Figure
7.2. In this example we have three time-dependent random variables called u(t), x(t),
and z(t). We used different grey shades for the nodes to indicate if they are observed
or not. Only u(t) and z(t) are observed, whereas x(t) is an un-observed, hidden or
latent variable. Such Markov chains are called Hidden Markov Models (HMMs).

ut-1

zt-1

xt-1

ut

z t

xt

ut+1

zt+1

xt+1

ut-2

z t-2

xt-2

Fig. 7.2 A hidden markov model (HMM) with time dependent state variable x, motor control u
and sensor readings z.

The HMM shown in figure 7.2 capture the basic operation of a mobile robot in
which the variable u(t) represents the motor command at time t and the variable z(t)
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represents sensor readings at time t. The motor command is the cause that the robot
goes into a new state x(t). The problem illustrated in the figure is that the new state of
the robot, such as its location or posture, can not be observed directly. In the following
we will specifically discuss robot localization, where we must infer the possible
state from the motor command and sensor reading. We have previously used a state
sheet to ‘measure’ the state (location) of the tribot with the light sensor (see section
5.3). The model above allows us a much more sophisticated guess of the location by
taking not only the current reading into account, but by combining this information
with our previous guess of the location and the knowledge of the motor command.
More specifically, we want to calculate the believe of the state, which is a probability
(density) function over the state space

bel(xt) = p(xt|bel(x0), u1:t, z1:t), (7.4)

give an initial believe and the history of motor command and sensor reading. This
believe can be calculated recursively from the previous believes and the new infor-
mation, which is a form of believe propagation. It is often convenient to break this
process down into calculating a new prediction from the previous believe and the
motor command, and then to add the knowledge provided by the new sensor reading.
To predict of probability of a new state from the previous believes and the current
motor command, we need to marginalize over the previous states, that is, we need to
multiply the previous believe with the probability of the new state, given the previous
state and motor command, and to sum (integrate) over it,

pred(xt) =
1

Nx

∑
xt−1

p(xt|ut, xt−1)bel(xt−1), (7.5)

where Nx is the number of states. This prediction can be combined with the sensor
reading to give a new believe,

bel(xt) =
p(zt|xt)pred(xt)∑
xt
p(zt|xt)pred(xt)

, (7.6)

where we included the normalization over all possible states to get a number represent-
ing probabilities. This is called Bayes filtering. With a Bayes filter we can calculate
the new believe from the previous believe, the current motor command, and the latest
sensor reading. This is the best we can do with the available knowledge to estimate
the positions of a system. The application of Bayes filtering to a robot localization
is also called Markov localization and is illustrated in Figure 7.3. The limitation in
practice is often the that we have to sum (integrate) over all the possible states, which
might be a very large sum if it has to be done explicitly. In some cases we can do this
analytically, as shown in the next sections.

7.3.1 The Kalman filter

We have, so far, only assumed that our process complies with the Markov condition
in that the new state only depends on the previous state and current motor command.
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Fig. 7.3 A illustration of markov localization [from Probabilistic model, Thrun, Burgard, Fox,
MIT press 2006].

In many cases we might have a good estimate of the state at some point with some
variance. We now assume that our believes are Gaussian distributed,

p(xt−1) =
1

(
√

(2π))n
√

( det(Σt−1)
exp(−1

2
(xt−1 − µt−1)TΣ−1

t−1(xt−1 − µt−1)).

(7.7)
We also consider first the case where the transition probability p(xt|ut,xt−1) is linear
in the previous state and the motor command, up to Gaussian noise εt,

x̄t = Atxt−1 + Btut + εt; εt ∼ N(0,Qt), (7.8)

where At and Bt are time dependent matrices. The gaussian noise εt has thereby
mean zero and covariance Qt. This setting is very convenient since the posterior
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after moving a Gaussian uncertainty in such a linear fashion is again a Gaussian. The
believe after incorporating the movement is hence a Gaussian probability over states
with parameters

µ̄t = Atµt−1 + Btut (7.9)
Σ̄t = AtΣt−1A

T
t + Qt. (7.10)

We now need to take the measurement probability into account, P (zt|x̄t), which we
also assume to be linear in its argument up to a Gaussian noise δt,

zt = Ctx̄t + δt; δt ∼ N(0,Rt). (7.11)

With this measurement update, we can calculate our new state estimate, parameterized
by µt and Sigmat, as

K̄t = Σ̄tC
T
t (CtΣ̄tC

T
t + Rt)

−1 (7.12)
µt = µ̄t + Kt(zt −Ctµ̄t) (7.13)
Σt = (I−KtCt)Σ̄t, (7.14)

where I is the identity matrix.
The basic Kalman filter makes several simplifying assumptions such as Gaussian

believes, Gaussian noise, and linear relations. There are many generalizations of this
method. For example, it is possible to extend the method to non-linear transformations
while still demanding that the posteriors are Gaussian. While this introduces some
errors and is this only an approximate method, this extended Kalman filter (EKF)
is often very useful in practical applications. Also, there are several non-parametric
methods such as particle filters.

Exercises:

1. A mobile robot is instructed to travel 3 meters along a line in each time step.
The true distance traveled is gaussian distributed around the intended position
with standard deviation of 2 meters; the positions sensors are also unreliable
with Gaussian that has a standard deviation of 4 meters; What is the average
absolute difference between the true position and the estimated position when
using only the sensor information, only the information inherent in the motor
command, and both sources of information?

2. The lego robot is traveling along a line that has dark stripes at various positions.
These distance between the stripes stripes are doubling for each consecutive stipe
(d(i) = 2 ∗ d(i − 1)). Estimate the position of the Lego tribot when traveling
straight ahead if the robot is positioned at a random initial position.



8 General learning machines

The previous models, through the formulation of specific hypothesis functions, have
been designed specifically for each applications. However, much more practical would
be to have more general machines that can learn without making very specific functional
assumptions. But how can we do this? The general idea is to provide a very general
functions with many parameters that will be adjusted through learning. Of course, the
real problem is then to not over-fit the model by using appropriate restrictions and
also to make the learning efficient so that it can be used to large problem size. This
chapter starts with a brief historical introduction to general learning machines and
neural networks. We then discuss support vector machines and more rigorous learning
theories.

8.1 The Perceptron

There was always a strong interest of AI researchers in real intelligence, that is, to
understand the human mind. For example, both Alan Turing and John von Neumann
worked more directly on biological systems in their last years before their early passing,
and human behaviour and the brain have always been of interest to AI researchers. Of
course, we want to understand how the brain is working in its own right, but it is also
a great example of a quite general and successful learning machine.
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Fig. 8.1 Representation of the boolean OR function with a McCulloch-Pitts neuron (TLU).

A seminal paper, which has greatly influenced the development of early learning
machines, is the 1943 paper by Warren McCulloch and Walter Pitts. In this paper, they
proposed a simple model of a neuron, called the threshold logical unit, often called
now the McCulloch–Pitts neuron. Such a unit is shown in Fig. 8.1A with three input
channels, although it could have an arbitrary number of input channels. Input values
are labeled by x with a subscript for each channel. Each channel has also a weight
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parameter, θi. The McCulloch–Pitts neuron operates in the following way. Each input
value is multiplied with the corresponding weight value, and these weighted values are
then summed. If the weighted summed input is larger than a certain threshold value,
−θ0, then the output is set to one, and zero otherwise, that is,

h(x; θ) =

{
1 if

∑n
i=0 θixi = θTx > 0

0 otherwise . (8.1)

Such an operation resembles, to some extend, a neuron in that a neuron is also summing
synaptic inputs and fires (has a spike in its membrane potential) when the membrane
potential reaches a certain level that opens special voltage-gated ion channels. Mc-
Culloch and Pitts introduced this unit as a simple neuron model, and they argued that
such a unit can perform computational tasks resembling boolean logic. This is demon-
strated in Fig. 8.1. The symbol h is used in these lecture notes since the output of the
perceptron is the hypothesis of the perceptron, given the parameters θ.

The next major developments in this area were done by Frank Rosenblatt and his
engineering colleague Charles Wightman (Fig. 8.2), using such elements to build a
machine that Rosenblatt called the perceptron. As can be seen in the figures, they
worked on a machine that can perform letter recognition, and that the machine consisted
of a lot of cables, forming a network of simple, neuron-like elements.

Frank Rosenblatt

Charles Wightman

Fig. 8.2 Neural Network computers in the late 1950s.

The most important challenge for the team was to find a way how to adjust the
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parameters of the model, the connection weights θi, so that the perceptron would
perform a task correctly. The procedure was to provide to the system a number of
examples, let’s say m input data, x(i) and the corresponding desired outputs, y(i). The
procedure to update the parameters of the systems based on these training examples
is called a learning rule, and this form of learning with explicit examples is called
supervised learning. The perceptron learning rule is given by

θj := θj + α
(
y(i) − hθ(xi)

)
x

(i)
j . (8.2)

This learning rule is also known, or related to, the Widrow-Hoff learning rule, the
Adaline rule, and the delta rule.9 It is often called the delta rule because the difference
between the desired and actual output (difference between actual (training) data and
hypothesis) to guide the learning. When multiplying out the difference with the inputs
we have end up with the product of the activity between the inputs and output values
for each synaptic channel. Such a learning rule is also called Hebbian after the famous
NovaScotian Donald Hebb.

There was a lot of excitement during the 1960s in the AI and psychology community
about such learning system that resemble some brain functions. However, Minsky and
Peppert showed in 1968 that such perceptrons can not represent all possible boolean
functions (sometimes called the XOR problem). While it was known at this time that
this problem could be overcome by a layered structure of such perceptrons (called
multilayer perceptrons), a learning algorithms was not widely known at this time.
This killed the field, and the AI community concentrated on rule-based systems in the
following years. The generalization of a delta rule, known as error-backpropagation,
was finally introduced by Rumelhart, Hinton and Williams in 1992 (although Paul
Werbos, and also Sunichi Amari, used it before), and resulted in the explosion of
the field of Neural Networks. This area has now become known as machine learning,
which has clarified a lot of the abilities and challenges of neural networks. We therefore
follow in the next sections a more contemporary path.

The area of Neural Networks has been active since the 1950s. A large potion of
this area is concerned with supervised learning, which we will discuss further in the
next sections. This area is now mainly absorbed into the field of machine learning.
There is also an active area of modelling brain functions known as computational
neuroscience. This area is subject of CSCI6508/NESC4177 taught in the winter term.
While these fields have developed into some different directions and have some distinct
goals, there is now some exciting convergence when it comes to unsupervised learning
and complex modelling. This will be subject of later discussions in this course.

8.2 Support Vector Machines (SVM)

8.2.1 Linear classifiers with large margins

In this section we briefly outline the basic idea behind Support Vector Machines (SVM)
that are currently thought to be the best general purpose supervised classifier algorithm.

9These learning rules are nearly identical, but are sometimes used in slightly different contexts
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SVMs, and the underlying statistical learning theory, has been worked out by Vladimir
Vapnik since the early 1960, but some breakthroughs were also made in the late 1990
with some collaborators like Corinna Cortes, Chris Burges, Alex Smola, and Bernhard
Schölkopf to name but a few, and SVM have since become very popular and hard to
beat. While we outline some of the underlying formulas, we do not derive all the steps
but will try to give some intuition. A more thorough treatment can be found in the
references on the web page. The here we just want to provide the big picture, but need
to show some formulas to highlight some of the discussion.

The basic SVMs are concerned with binary classification. Figure 8.3 shows an
example of two classes, depicted by different symbols, in a two dimensional attribute
space. We distinguish here attributes from features as follows. Attributes are the raw
measurements, where as features can be made up by combining attributes. For example,
the attributes x1 and x2 could be combines in a feature vector (x1, x1x2, x2, x

2
1, x

2
2)T .

This will become important later, but it is important to introduce the notation here.
Our training set consists again of m data with attribute values x(i) and labels y(i). We
chose here the labels of the two classes as y ∈ {−1, 1}, as this will nicely simplify
some equations.
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T

Fig. 8.3 Illustration of linear support vector classification.

The two classes in the figure 8.3 can be separated by a line, which can be parame-
terized by

w1x1 + w2x2 − b = wTx− b = 0. (8.3)

While the first equation shows the lines equation with its components in two dimen-
sions, the next expression is the same in any dimension. Of course, in three dimension
we would talk about a plane. In general, we will talk about a hyperplane in any dimen-
sions. The particular hyperplane is the dividing or separating hyperplane between the
two classes. We also introduce what the margin γ, which is the perpendicular distance
between the dividing hyperplane and the closest point.

The main point to realize now is that the dividing hyperplane that maximizes the
the margin, the so called maximum margin classifier, is the best solution we can find.
Why is that? We should assume that the training data, shown in the figure, are some
unbiased examples of the true underlying density function describing the distribution
of points within each class. It is then likely that new data points, which we want to
classify, are close to the already existing data points. Thus, if we make the separating
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hyperplane as far as possible from each point, than it is most likely to not make wrong
classification. Or, with other words, a separating hyperplane like the one shown as
dashed line in the figure, is likely to generalize much worse than the maximum margin
hyperplane. So the maximum margin hyperplane is the best generalizer for binary
classification for the training data.

What is if we can not divide the data with a hyperplane and we have to consider
non-linear separators. Don’t we then run into the same problems as outlined before,
specifically the bias-variance tradeoff? Yes, indeed, this will still be the challenge,
and our aim is really to work on this problem. But before going there it is useful
to formalize the linear separable case in some detail as the representation of the
optimization problem will be a key in applying some tricks later.

Learning a linear maximum margin classifier on labeled data means finding the
parameters (w) and b that maximizes the margin. For this we could computer the
distances of each point from the hyperplane, which is simply a geometric exercise,

γ(i) = y(i)

(
(

w

||w||
)Tx(i) +

b

||w||

)
. (8.4)

The vector w/||w|| is the normal vector of the hyperplane, a vector of unit length
perpendicular to the hyperplane. We overall margin we want to maximize is the
distance to the closest point,

γ = min
i
γ(i). (8.5)

By looking at equation 8.4 we see that maximizing γ is equivalent to minimizing ||w||,
or, equivalently, of minimizing

min
w,b

1

2
||w||2. (8.6)

More precisely, we want to maximize this margin under the constraint that no training
data lies within the margin,

wTx + b ≥ 1 for y(i) = 1 (8.7)
wTx + b ≤ −1 for y(i) = −1, (8.8)

which can nicely be combines with our choice of class representation as

y(i)(wTx + b) ≤ 1. (8.9)

Thus we have a quadratic minimization problem with linear inequalities as constraint.
Taking a constrain into account can be done with a Lagrange formalism. For this we
simply add the constraints to the main objective function with parameters αi called
Lagrange multipliers,

ŁP (w, b, αi) =
1

2
||w||2 −

m∑
i=1

αi[y
(i)(wTx + b)− 1]. (8.10)

The Lagrange multipliers determine how well the constrain are observed. In the case
of αi = 0, the constrains do not matter. In order conserve the constrains, we should
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thus make these values as big as we can. Finding the maximum margin classifier is
given by

p∗ = min
w,b

max
αi

ŁP (w, b, αi) ≤ p∗ = max
αi

min
w,b

ŁD(w, b, αi) = d∗. (8.11)

In this formula we also added the formula when interchanging the min and max
operations, and the reason for this is the following. It is straight forward to solve the
optimization problem on the left hand side, but we can also solve the related problem
on the right hand side which turns out to be essential when generalizing the method
to nonlinear cases below. Moreover, the equality hold when the optimization function
and the constraints are convex10. So, if we minimize Ł by looking for solutions of the
derivatives ∂Ł

∂w and ∂Ł
∂b , we get

w =

m∑
i=1

αiy
(i)x(i) (8.12)

0 =

m∑
i=1

αiy
(i) (8.13)

Substituting this into the optimization problem we get

max
αi

∑
i

αi −
1

2

∑
i,j

y(i)y(y)αiαjx
(i)Tx(j), (8.14)

subject to the constrains

αi ≥ 0 (8.15)
m∑
i=1

αiy
(i) = 0. (8.16)

From this optimization problem it turns out that the αi’s of only a few examples,
those ones that are lying on the margin, are the only ones with have αi 6= 0. The
corresponding training examples are called support vectors. The actual optimization
can be done with several algorithms. In particular, John Platt developed the sequential
minimal optimization (SMO) algorithm that is very efficient for this optimization
problem. Please note that the optimization problem is convex and can thus be solved
very efficiently without the danger of getting stuck in local minima.

Once we found the support vectors with corresponding αi’s, we can calculate (w)
from equation 8.12 and b from a similar equation. Then, if we are given a new input
vector to be classified, this can then be calculated with the hyperplane equation 8.3 as

y =

{
1 if

∑m
i=1 αiy

(i)x(i)Tx > 0
−1 otherwise

(8.17)

Since this is only a sum over the support vectors, classification becomes very efficient
after training.

10Under these assumptions there are other conditions that hold, called the Karush-Kuhn-Tucker condi-
tions, that are useful in providing proof in the convergence of these the methods outlined here.
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8.2.2 Soft margin classifier

So far we only discussed the linear separable case. But how about the case when there
are overlapping classes? It is possible to extend the optimization problem by allowing
some data points to be in the margin while penalizing these points somewhat. We
include therefore some slag variables ξi that reduce the effective margin for each data
point, but we add to the optimization a penalty term that penalizes if the sum of these
slag variables are large,

min
w,b

1

2
||w||2 + C

∑
i

ξi, (8.18)

subject to the constrains

y(i)(wTx + b) ≥ 1− ξi (8.19)
ξi ≥ 0 (8.20)

The constant C is a free parameter in this algorithm. Making this constant large means
allowing less points to be in the margin. This parameter must be tuned and it is advisable
to at least try to vary this parameter to verify that the results do not dramatically depend
on a initial choice.

8.2.3 Nonlinear Support Vector Machines

We have treated the case of overlapping classes while assuming that the best we can
do is still a linear separation. But what if the underlying problem is separable, f only
with a more complex function. We will now look into the non-linear generalization of
the SVM.

When discussing regression we started with the linear case and then discussed
non-linear extensions such as regressing with polynomial functions. For example, a
linear function in two dimensions (two attribute values) is given by

y = w0 + w1x1 + w2x2, (8.21)

and an example of a non-linear function, that of an polynomial of 3rd order, is given
by

y = w0 + w1x1 + w2x2 + w3x1x2 + w4x
2
1 + w5x

2
2. (8.22)

The first case is a linear regression of a feature vector

x =

(
x1

x2

)
. (8.23)

We can also view the second equation as that of linear regression on a feature vector

x→ φ(x) =


x1

x2

x1x2

x2
1

x2
2

 , (8.24)

which can be seen as a mapping φ(x) of the original attribute vector. We call this
mapping a feature map. Thus, we can use the above maximum margin classification
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method in non-linear cases if we replace all occurrences of the attribute vector x with
the mapped feature vector φ(x). There are only two problems remaining. One is that
we have again the problem of overfitting as we might use too many feature dimensions
and corresponding free parameters wi. The second is also that with an increased
number of dimensions, the evaluation of the equations becomes more computational
intensive. However, there is a great trick to alleviate the later problem in the case when
the methods only rely on dot products, like in the case of the formulation in the dual
problem. In this, the function to be minimized, equation 8.14 with the feature maps,
only depends on the dot products φ(x(i))Tφ(x(j)). Also, when predicting the class
for a new input vector x from equation 8.12 when adding the feature maps, we only
need the resulting values for the dot products φ(x(i))Tφ(x) which can sometimes be
represented as function called Kernel function,

K(x, z) = φ(x)Tφ(z). (8.25)

Instead of actually specifying a feature map, which is often a guess to start, we could
actually specify a Kernel function. For example, let us consider a quadratic feature
map

K(x, z) = (xT z + c)2. (8.26)

We can then try to write this in the form of equation 8.25 to find the corresponding
feature map. That is

K(x, z) = (xT z)2 + 2cxT z + c2 (8.27)

= (
∑
i

xizi)
2 + 2c

∑
i

xizi + c2 (8.28)

=
∑
j

∑
i

(xixj)(zizj) +
∑
i

(
√

(2c)xi)(
√

(2c)zi) + cc (8.29)

= φ(x)Tφ(z), (8.30)

with

φ(x) =



x1x1

x1x2

...
xnx1

xnx2

...√
2cx1√
2cx2

...
c


, (8.31)

The dimension of this feature vector isO(n2) for n original attributes. Thus, evaluating
the dot product in the mapped feature space is much more time consuming then
calculating the Kernel function which is just the square of the dot product of the original
attribute vector. The dimensionality Kernels with higher polynomials is quickly rising,
making the benefit of the Kernel method even more impressive.
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While we have derived the corresponding feature map for a specific Kernel function,
this task is not always easy and not all functions are valid Kernel functions. We have
also to be careful that the Kernel functions still lead to convex optimization problems.
In practice, only a small number of Kernel functions is used. Besides the polynomial
Kernel mention before, one of the most popular is the Gaussian Kernel,

K(x, z) = exp−||x− z||2

2γ2
, (8.32)

which corresponds to an infinitely large feature map.
As mentioned above, a large feature space corresponds to a complex model that

is likely to be prone to overfitting. We must therefore finally look into this problem.
The key insight here is that we are already minimizing the sum of the components
of the parameters, or more precisely the square of the norm ||w||2. This term can
be viewed as regularization which favours a smooth decision hyperplane. Moreover,
we have discussed two extremes in classifying complicated data, one was to use
Kernel functions to create high-dimensional non-linear mappings and hence have a
high-dimensional separating hyperplane, the other method was to consider a low-
dimensional separating hyperplane and interpret the data as overlapping. The last
method includes a parameter C that can be used to tune the number of data points
that we allow to be within the margin. Thus, we can combine these two approaches to
classify non-linear data with overlaps where the soft margins will in addition allow us
to favour more smooth dividing hyperplanes.

8.2.4 Regularization and parameter tuning

In practice we have to consider several free parameters when applying support vector
machines. First, we have to decide which Kernel function to use. Most packages
have a number of choices implemented. We will use for the following discussion the
Gaussian Kernel function with width parameter γ. Setting a small value for γ and
allowing for a large number of support vectors (small C), corresponds to a complex
model. In contrast, larger width values and regularization constant C will increase the
stiffness of the model and lower the complexity. In practice we have to tune these
parameters to get good results. To do this we need to use some form of validation
set, as discussed in section 5.6, and k-times cross validation is often implemented
in the software packages. An example of the SVM performance (accuracy) on some
examples (Iris Data set from the UCI repository; From Broadman and Trappenberg,
2006) is shown in figure 8.4 for several values of γ and C. It is often typical that there
is a large area where the SVM works well and has only little variations in terms of
performance. This robustness has helped to make SVMs practical methods that often
outperform other methods. However, there is often also an abrupt onset of the region
where the SVM fails, and some parameter tuning is hence required. While just trying
a few settings might be sufficient, some more systematic methods such as grid search
or simulated annealing also work well.
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Fig. 8.4 Illustration of SVM accuracy for different values of paraneters C abd γ.

8.2.5 Statistical learning theory and VC dimension

SVMs are good and practical classification algorithms for several reasons, including
the advantage of being convex optimization problem that than can be solved with
quadratic programming, have the advantage of being able to utilize the Kernel trick,
have a compact representation of the decision hyperplane with support vectors, and
turn out to be fairly robust with respect to the hyper parameters. However, in order to
be good learners, they need to moderate the variance-bias tradeoff dicussed in section
5.6. A great theoretical contributions of Vapnik and colleagues was the embedding
of supervised learning into statistical learning theory and to derive some bounds that
make statements on the average ability to learn form data. We outline here briefly the
ideas and state some of the results. We discuss this issue here in the context of binary
classification, although similar observations can be made in the case of multiclass
classification and regression.

We start again by stating our objective, which is to find a hypothesis which min-
imized the generalization error. To state this a bit more differentiated and to use the
nomenclature common in these discussions, we call the error function here the risk
function R. In particular, the expected risk for a binary classification problem is the
probability of misclassification,

R(h) = P (h(x) 6= y) (8.33)

Of course, we generally do not know this density function, though we need to approx-
imate this with our validation data. We assume thereby again that the samples are iid
(independent and identical distributed) data, and can then estimate what is called the
empirical risk,

R̂(h) =
1

m

m∑
i=1

11(h(x(i); θ) = y(i)). (8.34)

We use here again m as the number of examples, but note that this is here the number
of examples in the validations set, which is the number of all training data minus the
ones used for training. Also, we will discuss this empirical risk further, but note that it
is better to use the regularized version that incorporates a smoothness constrain such
as
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R̂rmreg(h) =
1

m

∑
i

11(h(x(i); θ) = y(i))− λ||w||2 (8.35)

in the case of SVM, where λ is a regularization constant. Thus, wherever R̂(h) is used
in the following, we can replace this with R̂rmreg(h). Empirical risk minimization
is the process of finding the hypothesis ĥ that minimizes the empirical risk,

ĥ = argmin
h
R̂(h). (8.36)

The empirical risk is the MLE of the mean of a Bernoulli-distributed random variable
with true mean R(h). Thus, the empirical risk is itself a random variable for each
possible hypothesis h. Let us first assume that we have k possible hypothesis hi. We
now draw on a theorem by Hoeffding called the Hoeffding inequality that provides
and upper bound for the sum of random numbers to its mean,

P (|R(hi)− R̂(hi)| > γ) ≤ 2 exp(−2γ2m). (8.37)

This formula states that there is a certain probability that we make an error larger than
γ for each hypothesis of the empirical risk compared to the expected risk, although
the good news is that this probability is bounded and that the bound itself becomes
exponentially smaller with the number of validation examples. This is already an
interesting results, but we now want to know the probability that some, out of all
possible hypothesis, are less than γ. Using the fact that the probability of the union of
several events is always less or equal to the sum of the probabilities, one can show that
with probability 1− δ the error of a hypothesis is bounded by

|R(h)− R̂(h)| ≤
√

1

2m
log

2k

δ
. (8.38)

This is a great results since it shows how the error of using an estimate the risk, the
empirical risk that we can evaluate from the validation data, is getting smaller with
training examples and with the number of possible hypothesis.

x

x

x

Fig. 8.5 Illustration of VC dimensions for the class of linear functions in two dimensions.

While the error scales only with the log of the number of possible hypothesis, the
values goes still to infinite when the number of possible hypothesis goes to infinite,
which much more resembles the situation when we have parameterized hypothesis.
However, Vapnik was able to show the following generalization in the infinite case,
which is that given a hypothesis space with Vapnic-Chervonencis dimension VC({h}),
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then, with probability 1 − δ, the error of the empirical risk compared to the expected
risk (true generalization error) is

|R(h)− R̂(h)| ≤ O

(√
V C

m
log

m

V C
+

1

m
log

1

δ

)
. (8.39)

The VC dimensions is thereby a measure of how many points can be divided by a
member of the hypothesis set for all possible label combinations of the point. For
example, consider three arbitrary points in two dimensions as shown in figure 8.5, and
let us consider the hypothesis class of all possible lines in two dimensions. I can always
divide the three points under any class membership condition, of which two examples
are also shown in the figure. In contrast, it is possible to easily find examples with four
points that can not be divided by a line in two dimensions. The VC dimension of lines
in two dimensions is hence V C = 3.11

8.3 SV-Regression and implementation

8.3.1 Support Vector Regression

While we have mainly discussed classification in the last few sections, it is time to
consider the more general case of regression and to connect these methods to the
general principle of maximum likelihood estimation outlined in the previous chapter.
It is again easy to illustrate the method for the linear case before generalizing it to the
non-linear case similar to the strategy followed for SVMs.

x

x

x

x

x

x
x

x

x

x

x

ξ
−ε

ε
{

X1

X2

−ε ε ε+ξ

|x|ε

 x

Fig. 8.6 Illustration of support vector regression and the ε-insensitive cost function.

We have already mentioned in section 5.4 the ε-insensitive error function which
does not count deviations of data from the hypothesis that are less than ε form the
hypothesis, This is illustrated in figure 8.6. The corresponding optimization problem
is

min
w,b

1

2
||w||2 + C

∑
i

(ξi + ξ∗), (8.40)

11Three points of different classes can not be separated by a single line, but these are singular points that
are not effective in the definition of VC dimension.
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subject to the constrains

y(i) −wTx− b ≤ ξi (8.41)
y(i) −wTx− b ≥ ξ∗i (8.42)

ξi, ξ
∗
i ≥ 0 (8.43)

The dual formulations does again only depend on scalar products between the training
examples, and the regression line can be also be expressed by a scalar product between
the support vectors and the prediction vector,

h(x;αi, α
∗
i ) =

m∑
i=1

(αi − α∗i )xTi x. (8.44)

This, we can again use Kernels to generalize the method to non-linear cases.

8.3.2 Implementation

There are several SVM implementations available, and SVMs are finally becom-
ing a standard component of data mining tools. We will use the implementation
called LIBSVM which was written by Chih-Chung Chang and Chih-Jen Lin and
has interfaces to many computer languages including Matlab. There are basically
two functions that you need to use, namely model=svmtrain(y,x,options) and
svmpredict(y,x,model,options). The vectors x and y are the training data or the
data to be tested. svmtrain uses k-fold cross validation to train and evaluate the SVM
and returns the trained machine in the structure model. The function svmpredict

uses this model to evaluate the new data points. Below is a list of options that shows
the implemented SVM variants. We have mainly discussed C-SVC for the basic soft
support vector classification, and epsilonSVR for support vector regression.

-s svm_type : set type of SVM (default 0)

0 -- C-SVC

1 -- nu-SVC

2 -- one-class SVM

3 -- epsilon-SVR

4 -- nu-SVR

-t kernel_type : set type of kernel function (default 2)

0 -- linear: u’*v

1 -- polynomial: (gamma*u’*v + coef0)^degree

2 -- radial basis function: exp(-gamma*|u-v|^2)

3 -- sigmoid: tanh(gamma*u’*v + coef0)

-d degree : set degree in kernel function (default 3)

-g gamma : set gamma in kernel function (default 1/num_features)

-r coef0 : set coef0 in kernel function (default 0)

-c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)

-n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)

-p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1)

-m cachesize : set cache memory size in MB (default 100)
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-e epsilon : set tolerance of termination criterion (default 0.001)

-h shrinking: whether to use the shrinking heuristics, 0 or 1 (default 1)

-b probability_estimates: whether to train a SVC or SVR model for probability estimates, 0 or 1 (default 0)

-wi weight: set the parameter C of class i to weight*C, for C-SVC (default 1)

The k in the -g option means the number of attributes in the input data.

8.4 Supervised Line-following

8.4.1 Objective

The objective of this experiment is to investigate Supervised Learning through teaching
a robot how to follow a line using a Support Vector Machine (SVM).

8.4.2 Setup

• Mount light sensor on front of NXT, plugged into Port 1
• Use a piece of dark tape (i.e. electrical tape) to mark a track on a flat surface.

Make sure the tape and the surface are coloured differently enough that the light
sensor returns reasonably different values between the two surfaces.

• This program requires a MATLAB extension that can use Support Vector Ma-
chines. Download:

8.4.3 Program

Data collection requires the user to manually move the wheels of the NXT. When the
training begins, start the NXT so the light sensor’s beam is either on the tape or the
surface. Zig zag the NXT so the beam travels on and off the tape by moving either
the right or the left wheel, one at a time. Record the positions of the left and right
wheels, as well as the light sensor’s reading during frequent intervals. It is important to
make sure the wheel not in motion stays as stationary as possible to obtain the optimal
training set of data.
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After data collection, find the difference between the right and the left wheel posi-
tions for each time sample taken, and use the SVM to create a model between these
differences and the light sensor readings. For instance:
model = svmtrain(delta,lightReading,’-s 8 -g 0 -b 1 -e 0.1 -q’);

To implement the model, place the NXT on the line and use SVMPredict to input a
light sensor reading and drive the robot left or right depending on the returned value
of the SVMPredict.

lightVal=GetLight(SENSOR_1);

if svmpredict(0,lightVal,model,’0’)>0

left.Stop();

right.SendToNXT();

else

right.Stop();

left.SendToNXT();

end





Part III

Unsupervised learning





9 Unsupervised learning

In the previous learning problems we had training examples with feature vectors x and
labels y. In this chapter we discuss unsupervised learning problems in which no labels
are given. The luck of training labeled examples restricts the type of learning that can
be done, but unsupervised has important applications and even can be an important
part in aiding supervised learning. Unsupervised does not mean that the learning is
not guided at all; the learning follows specific principles that are used to organize
the system based on the characteristics provided by the data. We will discuss several
examples in this chapter.

9.1 K-means clustering
The first example is data clustering. In this problem domain we are given unlabelled
data described by feature and asked to put them into k categories. In the first example
of such clustering we categories the data by proximity to a mean value. That is, we
assume a model that specifies a mean feature value of the data and classifies the data
based on the proximity to the mean value. Of course, we do not know this mean value
for each class. The idea of the following algorithm is that we start with a guess for
this mean value and label the data accordingly. We then use the labeled data from this
hypothesis to improve the model by calculating a new mean value, and repeat these
steps until convergence is reached. Such an algorithm usually converges quickly to a
stable solution. More formally, given a training set of data points {x(1), x(2), ..., x(m)}
and a hypothesis of the number of clusters, k, the k-means clustering algorithm is
shown in Figure 9.1.

1. Initialize the means µ1, ...µk randomly.
2. Repeat until convergence: {

Model prediction:
For each data point i, classify data to class with closest mean

c(i) = argminj ||x(i) − µj ||
Model refinement:

Calculate new means for each class

µj = 1 1(c(i)=j)x(i)

1 1(c(i)=j)

} convergence

Fig. 9.1 k-means clustering algorithm

An example is shown in Figure ??. The corresponding program is shown is
%% Demo of k-mean clustering on Gaussian data



Unsupervised learning92 |

−2 0 2 4 6 8 10
−2

−1

0

1

2

3

4

5

6

7

8

−2 0 2 4 6 8 10
−2

−1

0

1

2

3

4

5

6

7

8

−2 0 2 4 6 8 10
−2

−1

0

1

2

3

4

5

6

7

8

−2 0 2 4 6 8 10
−2

−1

0

1

2

3

4

5

6

7

8

−2 0 2 4 6 8 10
−2

−1

0

1

2

3

4

5

6

7

8

−2 0 2 4 6 8 10
−2

−1

0

1

2

3

4

5

6

7

8

A Unlabeled data B Data with initial centroids C 1st classi�cation

D 2nd classi�cation E 3rd classi�cation F 1st classi�cation

Fig. 9.2 Example of k-means clustering with two clusters.

% Thomas Trappenberg, March 09

clear; clf; hold on;

%% training data generation; 2 classes, each gaussian with mean (1,1) and (2,2) and diagonal unit variance

n0=100; %number of points in class 0

n1=100; %number of points in class 1

x=[1+randn(n0,1), 1+randn(n0,1); ...

5+randn(n1,1), 5+randn(n1,1)];

% plotting points

plot(x(:,1),x(:,2),’ko’);

%two centers

mu1=[5 1]; mu2=[1 5];

while(true)

waitforbuttonpress;

plot(mu1(1),mu1(2),’rx’,’MarkerSize’,12)

plot(mu2(1),mu2(2),’bx’,’MarkerSize’,12)

for i=1:n0+n1;

d1=(x(i,1)-mu1(1))^2+(x(i,2)-mu1(2))^2;
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d2=(x(i,1)-mu2(1))^2+(x(i,2)-mu2(2))^2;

y(i)=(d1<d2)*1;

end

waitforbuttonpress;

x1=x(y>0.5,:);

x2=x(y<0.5,:);

clf; hold on;

plot(x1(:,1),x1(:,2),’rs’);

plot(x2(:,1),x2(:,2),’b*’);

mu1=mean(x1);

mu2=mean(x2);

end

9.2 Mixture of Gaussian and the EM algorithm

We have previously discussed generative models where we assumed specific models for
the in-cass distributions. In particular, we have discussed linear discriminant analysis
where we had labelled data and assumed that each class is Gaussian distributed. Here
we assume that we have k Gaussian classes, where each class is chosen randomly from
a multinominal distribution,

z(i) ∝ multinomial(Φj) (9.1)

x(i)|z(i) ∝ N(µj ,Σj) (9.2)

This is called a Gaussian Mixture Model. The corresponding log-likelihood function
is

l(Φ, µ, σ) =

m∑
i=1

log

k∑
z(i)=1

p(x(i)|z(i);µ,Σ)p(z(i); Φ). (9.3)

Since we consider here unsupervised learning in which we are given data without
labels, the random variables z(i) are latent variables. This makes the problem hard. If
we would be give the class membership, than the log-likelihood would be

l(Φ, µ, σ) =

m∑
i=1

log p(x(i); z(i), µ,Σ), (9.4)

which we could use to calculate the maximum likelihood estimates of the parameter
(see equations 6.8-6.10),
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φk =
1

m

m∑
i=1

11(z(i) = j) (9.5)

µk =

∑m
i=1 11(z(i) = j)x(i)∑m
i=1 11(z(i) = j)

(9.6)

Σk =

∑m
i=1 11(z(i) = j)(x(i) − µj)(x(i) − µj)T∑m

i=1 11(y(i) = k)
. (9.7)

While we do not know the class labels, we can follow a similar strategy to the k-
means clustering algorithm and just propose some labels and use them to estimate
the parameters. We can then use the new estimate of the distributions to find better
labels for the data, and repeat this procedure until a stable configuration is reached. In
general, this strategy is called the EM algorithm for expectation-maximization. The
algorithm is outlined in Fig.9.3. In this version we do not hard classify the data into
one or another class, but we take a more soft classification approach that considers the
probability estimate of a data point belonging to each class.

1. Initialize parameters φ, µ,Σ randomly.
2. Repeat until convergence: {

E step:
For each data point i and class j (soft-)classify data as

w
(i)
j = p(z(i) = j|x(i);φ, µ,Σ)

M step:
Update the parameters according to

φj = 1
m

∑m
i=1 w

(i)
j

µj =
∑m
i=1 w

(i)
j x(i)∑m

i=1 w
(i)
j

Σk =
∑m
i=1 w

(i)
j (x(i)−µj)(x(i)−µj)T∑m

i=1 11w
(i)
j

.

} convergence

Fig. 9.3 EM algorithm

An example is shown in Fig. 9.2. In this simple world, data are generated with
equal likelihood from two Gaussian distributions, one with meanµ1 = −1 and standard
deviation σ1 = 2, the other with mean µ2 = 4 and standard deviation σ2 = 0.5. These
two distributions are illustrated in Fig. 9.2A with dashed lines. Let us assume that we
know that the world consists only of data from two Gaussian distributions with equal
likelihood, but that we do not know the specific realizations (parameters) of these
distributions. The pre-knowledge of two Gaussian distributions encodes a specific
hypothesis which makes up this heuristic model. In this simple example, we have
chosen the heuristics to match the actual data-generating system (world), that is, we
have explicitly used some knowledge of the world.

Learning the parameters of the two Gaussians would be easy if we had access
to the information about which data point was produced by which Gaussian, that is,
which cause produced the specific examples. Unfortunately, we can only observe the
data without a teacher label that could supervise the learning. We choose therefore a
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Example of the expectation maximization (EM) algorithm for a world model with
two Gaussian distributions. The Gaussian distributions of the world data (input data)

are shown with dashed lines. (A) The generative model, shown with solid lines, is
initialized with arbitrary parameters. In the EM algorithm, the unlabelled input data
are labelled with a recognition model, which is, in this example, the inverse of the

generative model. These labelled data are then used for parameter estimation of the
generative model. The results of learning are shown in (B) after three iterations, and

in (C) after nine iterations .

self-supervised strategy, which repeats the following two steps until convergence:

E-step: We make assumptions of training labels (or the probability that the data were
produced by a specific cause) from the current model (expectation step); and

M-step: use this hypothesis to update the parameters of the model to maximize the
observations (maximization step).

Since we do not know appropriate parameters yet, we just chose some arbitrary values
as the starting point. In the example shown in Fig. 9.2A we used µ1 = 2, µ2 = −2,
σ1 = σ2 = 1. These distributions are shown with solid lines. Comparing the generated
data with the environmental data corresponds to hypothesis testing.

The results are not yet very satisfactory, but we can use the generative model to
express our expectation of the data. Specifically, we can assign each data point to the
class which produces the larger probability within the current world model. Thus, we
are using our specific hypothesis here as a recognition model. In the example we can
use Bayes’ rule to invert the generative model into a recognition model as detailed in
the simulation section below. If this inversion is not possible, then we can introduce
a separate recognition model, Q, to approximate the inverse of the generative model.
Such a recognition model can be learned with similar methods and interleaved with
the generative model.

Of course, the recognition with the recognition model early in learning is not
expected to be exact, but estimation of new parameters from the recognized data in the
M-step to maximize the expectation can be expected to be better than the model with
the initial arbitrary values. The new model can then be compared to the data again
and, when necessary, be used to generate new expectations from which the model is
refined. This procedure is known as the expectation maximization (EM) algorithm.
The distributions after three and nine such iterations, where we have chosen new data
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Table 9.1 Program ExpectationMaximization.m

1 %% 1d example EM algorithm

2 clear; hold on; x0=-10:0.1:10;

3 var1=1; var2=1; mu1=-2; mu2=2;

4 normal= @(x,mu,var) exp(-(x-mu).^2/(2*var))/sqrt(2*pi*var);

5 while 1

6 %%plot distribution

7 clf; hold on;

8 plot(x0, normal(x0,-1,4),’k:’);

9 plot(x0, normal(x0,4,.25),’k:’);

10 plot(x0, normal(x0,mu1,var1),’r’);

11 plot(x0, normal(x0,mu2,var2),’b’);

12 waitforbuttonpress;

13 %% data

14 x=[2*randn(50,1)-1;0.5*randn(50,1)+4;];

15 %% recogintion

16 c=normal(x,mu1,var1)>normal(x,mu2,var2);

17 %% maximization

18 mu1=sum(x(c>0.5))/sum(c);

19 var1=sum((x(c>0.5)-mu1).^2)/sum(c);

20 mu2=sum(x(c<0.5))/(100-sum(c));

21 var2=sum((x(c<0.5)-mu2).^2)/(100-sum(c));

22 end

points in each iteration, are shown in Figs 9.2B and C.

Simulation

The program used to produce Fig. 9.2 is shown in Table 9.1. The vector x0, defined
in Line 2, is used to plot the distributions later in the program. The arbitrary random
initial conditions of the distribution parameters are set in Line 3. Line 4 defines an
inline function of a properly normalized Gaussian since this function is used several
times in the program. An inline function is an alternative to writing a separate function
file. It defines the name of the functions, followed by a list of parameters and an
expression, as shown in Line 4. The rest of the program consist of an infinite loop
produced with the statement while 1, which is always true. The program has thus to
be interrupted by closing the figure window or with the interruption command Ctrl

C. In Lines 7–12, we produce plots of the real-world models (dotted lines) and the
model distributions (plotted with a red and a blue curve when running the program).
The command waitforbuttonpress is used in Line 12 so that we can see the results
after each iteration.

In Line 14 we produce new random data in each iteration. Recognition of this data
is done in Line 16 by inverting the generative model using Bayes’ formula,

P (c|x; G) =
P (x|c; G)P (c; G)

P (x; G)
. (9.8)
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In this specific example, we know that the data are equally distributed from each
Gaussian so that the prior distribution over causes, P (c; G) is 1/2 for each cause.
Also, the marginal distribution of data is equally distributed, so that we can ignore
this normalizing factor. The recognition model in Line 16 uses the Bayesian decision
criterion, in which the data point is assigned to the cause with a larger recognition
distribution, P (c|x; G). Using the labels of the data generated by the recognition
model, we can then use the data to obtain new estimates of the parameters for each
Gaussian in Lines 17–21.

Note that when testing the system for a long time, it can happen that one of the
distributions is dominating the recognition model so that only data from one distribution
are generated. The model of one Gaussian would then be explaining away data from
the other cause. More practical solutions must take such factors into account.

9.3 The Boltzmann machine

9.3.1 General one-layer module

Our last model that uses unsupervised learning is again a general learning machine in-
vented by Geoffrey Hinton and Terrance Sejnowski in the mid 1980 called Boltzmann
machine. This machine is a general form of a recurrent neural network with visible
nodes that receive input or provide output, and hidden notes that are not connected
to the outside world directly. Such a stochastic dynamic network, a recurrent system
with hidden nodes, together with the adjustable connections, provide the system with
enough degrees of freedom to approximate any dynamical system. While this has been
recognized for a long time, finding practical training rules for such systems have been
a major challenge for which there was only recently major progress. These machines
use unsupervised learning to learn hierarchical representations based on the statistics
of the world. Such representations are key to more advanced applications of machine
learning and to human abilities.

The basic building block is a one-layer network with one visible layer and one
hidden layer. An example of such a network is shown in Fig. 9.4. The nodes represent

Hidden
nodes

Visible
nodes

Fig. 9.4 A Boltzmann machine with one visible and one hidden layer.

random variable similar to the Bayesian networks discussed before. We will specifically
consider binary nodes that mimic neuronal states which are either firing or not. The
connections between the have weights wij which specify how much they influence the
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on-state of connected nodes. Such systems can be described by an energy function.
The energy between two nodes that are symmetrically connected with strength wij is

Hnm = −1

2

∑
ij

wijs
n
i s
m
j . (9.9)

The state variables, s, have superscripts n or m which can have values (v) or (h) to
indicate visible and hidden nodes. We consider again the probabilistic update rule,

p(sni = +1) =
1

1 + exp(−β
∑
j wijs

n
j )
, (9.10)

with inverse temperature, β, which is called the Glauber dynamics in physics and
describes the competitive interaction between minimizing the energy and the ran-
domizing thermal force. The probability distribution for such a stochastic system is
called the Boltzmann–Gibbs distribution. Following this distribution, the distribution
of visible states, in thermal equilibrium, is given by

p(sv; w) =
1

Z

∑
m∈h

exp(−βHvm), (9.11)

where we summed over all hidden states. In other words, this function describes
the distribution of visible states of a Boltzmann machine with specific parame-
ters, w, representing the weights of the recurrent network. The normalization term,
Z =

∑
n,m exp(−βHnm), is called the partition function, which provides the cor-

rect normalization so that the sum of the probabilities of all states sums to one. These
stochastic networks with symmetrical connections have been termed Boltzmann ma-
chines by Ackley, Hinton and Sejnowski.

Let us consider the case where we have chosen enough hidden nodes so that the
system can, given the right weight values, implement a generative model of a given
world. Thus, by choosing the right weight values, we want this dynamical system to
approximate the probability function, p(sv), of the sensory states (states of visible
nodes) caused by the environment. To derive a learning rule, we need to define an
objective function. In this case, we want to minimize the difference between two
density functions. A common measure for the difference between two probabilistic
distributions is the Kulbach–Leibler divergence (see Appendix 4.6),

KL(p(sv), p(sv; w))=

v∑
s

p(sv) log
p(sv)

p(sv; w)
(9.12)

=

v∑
s

p(sv) log p(sv)−
v∑
s

p(sv) log p(sv; w). (9.13)

To minimize this divergence with a gradient method, we need to calculate the derivative
of this ‘distance measure’ with respect to the weights. The first term in the difference in
eqn 9.13 is the entropy (see Appendix ??) of sensory states, which does not depend on
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the weights of the Boltzmann machine. Minimizing the Kulbach–Leibler divergence
is therefore equivalent to maximizing the average log-likelihood function,

l(w) =

v∑
s

p(sv) log p(sv; w) = 〈log p(sv; w)〉. (9.14)

In other words, we treat the probability distribution produced by the Boltzmann ma-
chine as a function of the parameters,wij, and choose the parameters which maximize
the likelihood of the training data (the actual world states). Therefore, the averages of
the model are evaluated over actual visible states generated by the environment. The
log-likelihood of the model increases the better the model approximates the world. A
standard method of maximizing this function is gradient ascent, for which we need
to calculate the derivative of l(w) with respect to the weights. We omit the detailed
derivation here, but we note that the resulting learning rule can be written in the form

∆wij = η
∂l

∂wij
= η

β

2
(〈sisj〉clamped − 〈sisj〉free) . (9.15)

The meaning of the terms on the right-hand side is as follows. The term labelled
‘clamped’ is the thermal average of the correlation between two nodes when the states
of the visible nodes are fixed. The termed labelled ‘free’ is the thermal average when
the recurrent system is running freely. The Boltzmann machine can thus be trained,
in principle, to represent any arbitrary density functions, given that the network has a
sufficient number of hidden nodes.

This result is encouraging as it gives as an exact algorithm to train general recurrent
networks to approximate arbitrary density functions. The learning rule looks interesting
since the clamped phase could be associated with a sensory driven agent during an
awake state, whereas the freely running state could be associated with a sleep phase.
Unfortunately, it turns out that this learning rule is too demanding in practice. The
reason for this is that the averages, indicated by the angular brackets in eqn 9.15, have
to be evaluated at thermal equilibrium. Thus, after applying each sensory state, the
system has to run for a long time to minimize the initial transient response of the
system. The same has to be done for the freely running phase. Even when the system
reaches equilibrium, it has to be sampled for a long time to allow sufficient accuracy
of the averages so that the difference of the two terms is meaningful. Further, the
applicability of the gradient method can be questioned since such methods are even
problematic in recurrent systems without hidden states since small changes of system
parameters (weights) can trigger large changes in the dynamics of the dynamical
systems. These problems prevented, until recently, more practical progress in this area.
Recently, Hinton and colleagues developed more practical, and biologically more
plausible, systems which are described next.

9.3.2 The restricted Boltzmann machine and contrastive Hebbian
learning

Training of the Boltzmann machine with the above rule is challenging because the
states of the nodes are always changing. Even with the visible states clamped, the
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Hidden
nodes

Visible
nodes

Fig. 9.5 Restricted Boltzmann machine in which recurrences within each later are removed.

states of the hidden nodes are continuously changing for two reasons. First, the update
rule is probabilistic, which means that even with constant activity of the visible nodes,
hidden nodes receive variable input. Second, the recurrent connections between hidden
nodes can change the states of the hidden nodes rapidly and generate rich dynamics
in the system. We certainly want to keep the probabilistic update rule since we need
to generate different responses of the system in response to sensory data. However,
we can simplify the system by eliminating recurrent connections within each layer,
although connections between the layers are still bidirectional. While the simplification
of omitting collateral connections is potentially severe, much of the abilities of general
recurrent networks with hidden nodes can be recovered through the use of many layers
which bring back indirect recurrencies. A restricted Boltzmann machine (RBM) is
shown in Fig. 9.5.

When applying the learning rule of eqn 9.15 to one layer of an RBM, we can
expect faster convergence of the rule due to the restricted dynamics in the hidden
layer. We can also write the learning rule in a slightly different form by using the
following procedure. A sensory input state is applied to the input layer, which triggers
some probabilistic recognition in the hidden layer. The states of the visible and hidden
nodes can then be used to update the expectation value of the correlation between these
nodes, 〈svi shj 〉0, at the initial time step. The pattern in the hidden layer can then be
used to approximately reconstruct the pattern of visible nodes. This alternating Gibbs
sampling is illustrated in Fig. 9.6 for a connection between one visible node and one
hidden node, although this learning can be done in parallel for all connections. The
learning rule can then be written in form,

∆wij ∝ 〈svi shj 〉0 − 〈svi shj 〉∞. (9.16)

t=1 t=2 t=3 t= 8

Fig. 9.6 Alternating Gibbs sampling.

Alternating Gibbs sampling becomes equivalent to the Boltzmann machine learning
rule (eqn 9.15) when repeating this procedure for an infinite number of time steps, at
which point it produces pure fantasies. However, this procedure still requires averaging
over long sequences of simulated network activities, and sufficient evaluations of
thermal averages can still take a long time. Also, the learning rule of eqn 9.16 does
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not seem to correspond to biological learning. While developmental learning also
takes some time, it does not seems reasonable that the brain produces and evaluates
long sequences of responses to individual sensory stimulations. Instead, it seems more
reasonable to allow some finite number of alternations between hidden responses and
the reconstruction of sensory states. While this does not formally correspond to the
mathematically derived gradient leaning rule, it is an important step in solving the
learning problem for practical problems, which is a form of contrastive divergence
introduced by Geoffrey Hinton. It is heuristically clear that such a restricted training
procedure can work. In each step we create only a rough approximation of ideal
average fantasies, but the system learns the environment from many examples, so that
it continuously improves its expectations. While it might be reasonable to use initially
longer sequences, as infants might do, Hinton and colleagues showed that learning with
only a few reconstructions is able to self-organize the system. The self-organization,
which is based on input from the environment, is able to form internal representations
that can be used to generate reasonable sensory expectations and which can also be
used to recognize learned and novel sensory patterns.

The basic Bolzmann machine with a visible and hidden layer can easily be com-
bined into hierarchical networks by using the activities of hidden nodes in one layer
as inputs to the next layer. Hinton and colleagues have demonstrated the power of
restricted Boltzmann machines for a number of examples. For example, they ap-
plied layered RBMs as auto-encoders where restricted alternating Gibbs sampling was
used as pre-training to find appropriate initial internal representations that could be
fine-tuned with backpropagation techniques to yield results surpassing support vector
machines. However, for our discussions of brain functions it is not even necessary to
yield perfect solutions in a machine learning sense, and machines can indeed outper-
form humans in some classification tasks solved by machine learning methods. For us,
it is more important to understand how the brain works.

Simulation 1: Hinton

To illustrate the function of an anticipating brain model, we briefly outline a demon-
stration by the Hinton group. The online demonstration can be run in a browser from
http://www.cs.toronto.edu/∼hinton/adi, and a stand alone version of this
demonstration is available at this book’s resource page. MATLAB source code for
restricted Boltzmann machines are available at Hinton’s home page. An image of the
demonstration program is shown in Fig. 9.7. The model consists of a combination of
restricted Boltzmann machines and a Helmholz machine. The input layer is called the
model retina in the figure, and the system also contains a recognition-readout-and-
stimulation layer. The model retina is used to apply images of handwritten characters
to the system. The recognition-readout-and-stimulation layer is a brain imaging and
stimulation device from and to the uppermost RBM layer. This device is trained by
providing labels as inputs to the RBM for the purpose of ‘reading the mind’ of the
system and to give it high-level instructions. This device learns to recognize patterns
in the uppermost layer and map them to their meaning, as supplied during supervised
learning of this device. This is somewhat analogous to brain–computer interfaces
developed with different brain-imaging devices such as EEG, fMRI, or implanted
electrodes. The advantage of the simulated device is that it can read the activity of



Unsupervised learning102 |

every neuron in the upper RBM layer. The device can also be used with the learned
connections in the opposite direction to stimulate the upper RBM layer with typical
patterns for certain image categories.

Model retina

RBM layers

Recognition readout and stimulation

Image input

Concept input

RBM/Helm-
holtz layers

Fig. 9.7 Simulation of restricted Boltzmann machine by Geoffrey Hinton and colleagues, available
at www.cs.toronto.edu/∼hinton/adi.

The model for this demonstration was trained on images of handwritten numbers
from a large database. Some example images can be seen on the left-hand side. All
layers of this model were first treated as RBMs with symmetrical weights. Specifically,
these were trained by applying images of handwritten characters to the model retina
and using three steps of alternating Gibbs sampling for training the different layers.
The evolving representations in each layer are thus purely unsupervised. After this
basic training, the model was allowed, for fine-tuning purposes, to develop different
weight values for the recognition and generative model as in Helmholtz machines with
a wake–sleep training algorithm as mentioned above.

The simulations provided by Hinton demonstrate the ability of the system after
training. The system can be tested in two ways, either by supplying a handwritten
image and asking for recognition, or by asking the system to produce images of a
certain letter. These two modes can be initiated by selecting either an image or by
selecting a letter category on the left-hand side. In the example shown in Fig. 9.7, we
selected an example of an image of the number 4. When running the simulation, this
image triggers response patterns in the layers. These patterns change in every time
step, due to the probabilistic nature of the updating rule. The recognition read-out of
the uppermost layer does, therefore, also fluctuate. In the shown example, the response
of the system is 4, but the letter 9 is also frequently reported. This makes sense, as
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this image does also look somewhat like the letter 9. A histogram of responses can be
constructed when counting the responses over time, which, when properly normalized,
corresponds to an estimate of the probability over high-level concepts generated by
this sensory state. Thus, this mode tests the recognition ability of the model.

The stimulation device connected to the upper RBM layer allows us to instruct
the system to ‘visualize’ specific letters, which corresponds to testing the generative
ability of the model. For example, if we ask the system to visualize a letter 4 by
evoking corresponding patterns in the upper layer, the system responds with varying
images on the model retina. There is not a single right answer, and the answers of
the system change with time. In this way, the system produces examples of possible
images of letter 4, proportional to some likelihood that these images are encountered
in the sensory world on which the system was trained. The probabilistic nature of the
system much better resembles human abilities to produce a variety of responses, in
contrast to the neural networks that have been popular in the 1980s, so called multilayer
perceptrons, which were only able to produce single answers for each input.

Simulation 2: Simplified one layer model

A simplified version of the RBM trained on some letters are included in folder RBM
example on the web resource page. The overage reconstruction error and some exam-
ples of reconstructions after training are shown in Fig.9.8.
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Fig. 9.8 (A) Reconstruction error during training of alphabet letters the letters, and (B) reconstruc-
tions after learning.





Part IV

Reinforcement learning





10 Reinforcement learning

This chapter is an introduction to reinforcement learning, specifically in terms of the
Markov decision process (MDP) and temporal difference (TD) learning.

10.1 Learning from reward and the credit assignment
problem

We discussed in previous chapters supervised learning and unsupervised learning.
These types of learning are based on detailed examples (feature vectors of training
instances), and, in case of supervised learning, also on a teacher signal that tells the
machine exactly how to respond to this input. Reinforcement learning is about learning
appropriate actions from reward feedback. The reward feedback does not tell the agent
directly which action to take. Rather, it indicates which states are desirable (rewarded)
or not (punished). The agent has to discover the right sequence of actions to take to
optimize the reward over time.

Reward learning introduces several challenges. For example, in typical circum-
stances reward is only received after a long sequence of actions. The problem is then
how to assign the credit for the reward to specific actions. This is the temporal credit
assignment problem. To illustrate this, let us think about a car that crashed into a wall.
It is likely that the driver used the breaks before the car crashed into the wall, though
the breaks could not prevent the accident. However, from this we should not conclude
that breaking is not good and lead to crashes.

Another challenge in reinforcement learning is the balance between exploitation
and exploration. That is, we might find a way to receive some small food reward
if we repeat certain actions, but if we only repeat these specific actions, we might
never discover a bigger reward following different actions. Some escape from self-
reinforcement is important.

The idea of reinforcement learning is to use the reward feedback to build up a value
function that reflect the expected future payoff. We can use such a value function to
make decisions of which action to take. This is called a policy. This will be formalized
in this chapter. We start thereby with simple processes where the transitions to new
states depend only on the current state. A process which such a characteristics is called
a Markov process. In addition to the Markov property, we also assume at first that
the agent has full knowledge its environment. Finally, it is again important that we
acknowledge and uncertainties and possible errors. For example, we can take error in
motor commands into account by considering state transition as probabilistic.
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10.2 The Markov Decision Process

A Markov Decision Process (MDP) is characterized with a set of 5 quantities (S,A, Psa(s′), R(s), ξ).
More specifically,

• S is a set of states
• A is a set of actions. We also use a function called policy that maps specific

states to specific actions, π(s).
• Psa(s′) = Pπ(s)(s

′) is a transition probability for ending up in state s′ when
taking action a from state s. This transition probability only depend on the
previous state, which is called the Markov condition; hence the name of the
process.

• R(s) is a reward function, which provides feedback from the environment. R
is a numeric value with positive values providing reward and negative values
relating to punishment.

• ξ are specific parameters for some of the different kinds of RL settings. This
will be the discount factor γ in our first examples.
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Fig. 10.1 A maze where each state is rewarded with a value R.

For example, let us consider an agent that should learn to navigate through a
maze. An example is shown in Figure 10.1. The states of the maze are the possible
discrete positions (x and y coordinates or simply given unique numbers) of location
in the maze. In the shown examples the state space has 18 states. The possible actions
of the agent is to move one step forward, either to the north, east, south and west,
e.g. A = {N,E, S,W}. However, even though the agents gives these commands to
its actuators, stochastic circumstances – such as faulty hardware or environmental
conditions (e.g. someone ‘kicking’ the agent) – make the agent end up in different
states with certain probabilities specified by Psa(s′). More precisely, if the agent is
in state s and is instructed to take action a, it will end up in state s′ with probability
Psa(s′). We assume for now that the transition probability is given explicitly, although
in many practical circumstances it might need to be estimated from examples (e.g.
supervised learning). Finally, the agent is given immediate reward R(s) when it is in
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state s. For example, to agent should be given a large reward when finding the exit to
the maze (R(18) = 1 in the example of Figure 10.1). In practice it is also common and
useful to give some small negative reward to the other states. This could, for example,
stand for the battery power the Lego robot uses when it is not in the final state, whereas
it gets recharged at the exit of the maze.

The goal of reinforcement learning is to learn which action to take in each state in
order to optimize the expected total payoff. The total payoff is the sum of all future
reward, such as

R(s1) +R(s2) +R(s3) +R(s4) + ... (10.1)

when going through states s1, s2, s3, .... One problem with this definition is that it is
an infinite quantity as it runs over infinitely many states into the future. One possible
solution of this problem is to restrict the sum by considering only a finite reward
horizon, for example by only consider reward given within a certain time period or a
finite number of steps such as

R(s1) +R(s2) +R(s3) +R(s4). (10.2)

Another way to solve the infinite payoff problem is to consider reward that is discounted
when it is given at later times. In particular, if we consider the discount factor 0 < γ < 1
for each step, we have a total payoff of

R(s1) + γR(s2) + γ2R(s3) + γ3R(s4) + .... (10.3)

Of course, we don’t know this quantity and our task is hence to estimate this quantity
from our knowledge of the environment. More specifically, we want to estimate the
expected value of the total payoff when starting at state s1 and taking actions according
to a policy π(s). The policy is a function which tells the agent at each state s which
action a to take from this particular state. Thus, the expected total payoff depends on
the starting state and the specific policy function. When writing the expected value as
a function E(...), the expected discounted total payoff from state s1 when following
policy π can be expressed more formally as

V π(s) = E(R(s1) + γR(s2) + γ2R(s3) + γ3R(s4) + ...|s1 = s, π). (10.4)

This is called the state-value-function. Our main goal in reinforcement learning is to
find or estimate this value function. Once we have a good estimate of this function, we
can use this function to initiate actions that will yield good payoff.

Note that we can use path planing, for example with the A∗ search algorithm,
to find a path to the goal, especially if we have complete knowledge of the system.
However, the task here is different in that the agent must discover itself the task of
completing the maze. Indeed, the agent might not even be aware of this as the main task
for the agent is simply to optimize future reward. What is the benefit of this approach?
The great thing about reinforcement learning is that it is very general and can readily
be applied to many task. Also, being a learning system, we can even change the task
at any point by changing the reward feedback, and there should be no need to change
anything in the program of the agent. Indeed, when training animals, this is usually
the main way that we can communicate with the animals in learning situations since
we can not verbally communicate the task goal.
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10.3 The Bellman equation

It is possible to estimate this value function from a self-consistent equation as intro-
duced by Richard Bellman in the mid 1950s. This method is also known as dynamic
programming. To derive the Bellman equation, we start with the state-value-function

V π(s) = E(R(s1) + γR(s2) + γ2R(s3) + γ3R(s4) + ...|s1 = s, π). (10.5)

Since the expected value of the immediate reward is equal to the immediate reward,
E(R(s1)) = R(s), the above equation is equivalent to

V π(s) = R(s) + γE(R(s2) + γR(s3) + γ2R(s4) + ...|s1 = s, π). (10.6)

The expected value in the last equation looks very similar to the state-value-function
itself, but it is starting at state s2 instated of state s1. The states s2 are the states that can
be reached from state s1 by one step. Thus we can incorporate this into the equation
by

V π(s) = R(s) + γ
∑
s′

Pπ(s)(s
′)E(R(s2) + γR(s3) + γ2R(s4) + ...|s2 = s′, π).

(10.7)
In the last expression, the expectation value is the state-value-function of state s′. Thus,
if we substitute the corresponding expression of equation 10.5 into the above formula,
we get the Bellman equation

V π(s) = R(s) + γ
∑
s′

Pπ(s)(s
′)V π(s′). (10.8)

In an environment with N states, the Bellman equation is a set of N linear equations,
one for each state on the left hand side, with N unknowns, the value for state. We
can thus use well known methods from linear algebra to solve for V π(s). We can
also use the Bellman equation directly and calculate state-value-function iteratively
for each policy, starting with a guess of V π(s) and calculating from this estimate a
better approximation until this process converges. This will be demonstrated in more
detail in the examples below. The equation above depends on a specific policy. We are
mainly interested in finding the policy that gives us the optimal payoff,

V ∗(s) = max
π

V π(s). (10.9)

The optimal policy is the policy that maximizes the expected reward. The main
problem of finding this is the shear number of possible policies that we need to
consider in the maximum operation above, which is equal to the number of actions to
the power of the number of states. This explosion of the problem size with the number
of states was termed curse of dimensionality by Richard Bellman and is possibly one
of the main challenges in reinforcement learning. Most of the problems discussed here
have small number of states and small number of possible actions, so that this is not a
major concern here. We will later discuss briefly methods to overcome this problem.
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Instead of using the above Bellman equation for the value function and then
calculating the optimal value functions, we can also derive a version of Bellman’s
equation for the optimal value function itself12. This is given by

V ∗(s) = R(s) + max
a

γ
∑
s′

Pas(s
′)V ∗(s′). (10.10)

Note that this version includes a max function over all possible actions. Finally, given
a good approximation of the optimal value functions, we can calculate the optimal
policy

π∗(s) = argmax
a

∑
s′

Pas(s
′)V ∗(s′), (10.11)

which should be used by an agent to achieve good performance.

10.4 Different schemes of solving MDPs

To demonstrate different schemes for solving MDPs, we will follow a simple example.
In this example we have a chain of N consecutive states s = 1, 2, ..., N . An agent
has two possible actions, go to lower state numbers (a = −1), or go to higher state
numbers (a = +1). The last state in the chain, state numberN , is rewarded,R(N) = 1,
whereas going to the first state in the chain is punished R(1) = −1. The reward of the
intermediate states is set to a small negative value, R(i) = −0.1, 1 < i < N .

10.4.1 Value iteration

In the following two schemes we assume full knowledge of the environment so that we
can easily iterate over all possible states. In the first method, called value iteration,
we use directly Bellman’s equation for the optimal value function, equation 10.10,
to calculate increasingly better estimations of the optimal state-value-function by
iterations from initially arbitrary values.

Choose initial estimate of optimal value function
Repeat until change in values is sufficiently small {

For each state {
Calculate the maximum expected value of neigh-

bouring states for each possible action.
Use maximal value of this list to update estimate

of optimal value function.

 V ∗

equation 10.10

} each state
} convergence
Calculate optimal value function from equation 10.11

Fig. 10.2 Value Iteration with asynchronous update.

12Convince yourself that this is also true
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The basic algorithm is outlines in Figure 10.2. This algorithm takes an initial
guess of the optimal value function, typically random or all zeros. The then initialize a
loop over several episodes until the change of the value function is sufficiently small.
For example, we could calculate the sum of value functions in each iteration t, and
then terminate the procedure if the absolute difference of consecutive iterations is
sufficiently small, that is if |

∑
s V
∗
t (s) −

∑
s V
∗
t−1(s)| <threshold. In each of those

iterations, we iterate over all states and update the estimated optimal value functions
according to equation 10.10. Thus, the exploration of the state is very simple in this
state; the agent just goes repeatedly to every possible state in the system. While this
works well in the examples with small state spaces, this will be a major problem when
the state space increases.

The state iteration can thereby be done in various ways. For example, in the sequen-
tial asynchronous updating schema we update each state in sequence and repeat this
procedure over several iterations. Small variations of this schema are concerned with
how the algorithm iterates over states. For example, instead of iterating sequentially
over the states, we could also use a random oder. We could also first calculate the
maximum value of neighbours for all states before updating the value function for all
states with an synchronous updating schema. Since it can be shown that theses pro-
cedure will converge to the optimal solution, all these schemas should work similarly
well though might differ slightly for particular examples.

Once we found the optimal value functions, we can then calculate the corresponding
optimal policy according to equations 10.11. That is, the optimal policy is taking the
action that maximizes the expected payoff from the corresponding state.

Exercise:

Implement the value iteration for the chain problem and plot the learning curve (how
the error changes over time), the optimal value function, and the optimal policy. Change
parameters such as N , γ, and the number of iterations and discuss the results.

10.4.2 Policy iteration

Another strategy to solve the MDP problem is to use the basic Bellman equation for a
specific policy, equation 10.8, instead of the Bellman equation for the optimal policy,
and than improve the policies from the latest value function. The basic algorithm is
outlined in Figure 10.3. In addition to an initial guess of the value function, we have now
also to initialize the policy, which could be randomly chosen from the set of possible
actions at each state. For this value functions we could then calculate the corresponding
state-value-function according to equation 10.8. This step is the evaluating the specific
policy. The next step is to take this value functions and calculate the corresponding
best set of actions to take accordingly, which corresponds to the next candidate policy.
This policy is again simply to take the action from each state that would maximize
the corresponding future payoff. These two steps, the policy evaluation and the policy
improvement are repeated the policy won’t change any more.

This method has some advantages over value iterations. In value iteration we have
to try out all possible actions when evaluating the value function, and this can be time
consuming when there are many possible actions. In policy iteration, we choose a



| 113Different schemes of solving MDPs

Choose initial policy and value function
Repeat until policy is stable {

1. Policy evaluation
Repeat until change in values is sufficiently small {

For each state {
Calculate the value of neighbouring states when taking

action according to current policy.
Update estimate of optimal value function.

 V π

equation 10.8

} each state
} convergence

2. Policy improvement
new policy according to equation 10.11, assuming V ∗ ≈ current V π

} policy

Fig. 10.3 Policy iteration with asynchronous update.

specific policy, although we have then to iterate over consecutive policies. In practice
it turns out that policy iteration often converges fairly rapidly so that it becomes a
practical method.

As an example we want to apply policy iteration to the chain problem. We can
directly implement the above algorithm for evaluating each policy iteratively using
Bellmans equation 10.8, which is very similar to the previous implementation.

Exercise:

Solve the chain problem with the policy iteration using the basic Bellman functions
iteratively, and compare this method to the value iteration.

Finally, in the case of complete knowledge of the environment, we can replace
the iterative policy evaluation with an explicite solution of the N linear equations as
mentioned above. For this calculation it is useful to write the basic Bellman equation
10.8 in matrix notation,

Mvπ = R (10.12)

where M is the matrix of coefficients that are multiplied by the column vector of state
values vπ and rewards are represented by the column vector R. For the chain example,
where the agent can move either left (π(s) = −1 ) or right (π(s) = +1), the typical
equation in this linear system is derived from the Bellman equation as follows:

V π(s) = R(s) + γ
∑
s′∈S

Pπ(s)s(s
′)V π(s′) (10.13)

−R(s) = −V π(s) + γ
[
Pπ(s)V

π(s+ π(s)) + (1− Pπ(s))V
π(s− π(s))

]
(10.14)
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V π(s)− γPπ(s)V
π(s+ π(s))− γ(1− Pπ(s))V

π(s− π(s)) = R(s) (10.15)

This last equation gives coefficients for three states of V π: the current state, s, and the
two states on either side. Implicitly, the coefficients for all other states are zero. The
matrix form, depicting a state where the policy is to move right, would be


m11 · · · · · · m1N

...
...

0 · · · 0 −γ(1− Pπ(s)) 1 −γPπ(s) 0 · · · 0
...

...
mN1 · · · · · · mNN



vπ1
vπ2
...
vπN

 =


r1

r2

...
rN


(10.16)

Note that ones line the diagonal of the matrix, signifying the V π(s) term for each
equation except for the first and last state with the reflecting boundary conditions. For
the opposite policy (going left at s), the two coefficients on either side of the 1 would
be swapped. Thus, the missing coefficients can easily be filled in, given the policy for
each state. The linear system can be solved by rearranging equation 10.12,

vπ = M−1rT (10.17)

To implement this solution in Matlab, we have set the following parameters
N=8; gamma=0.9; Psa=0.8;

whereN is the number of states, gamma is the discounting factor, and Psa is the
probability of reaching state s when initiating state a. We need then to initialize
the value function and initial policy,

Vpi=zeros(1,N); %initial value function

policy=2*floor(rand(1,N)*2)-1; %random initial policy

We then need to set up a loop which includes the policy evaluation and policy im-
provement. The policy evaluation can be done by implementing the Matrix and then
using the Matlab function inv() to solve the linear eqaution system,

%solving Bellman equation

M=diag(ones(1,N));

M(1,1)=1-gamma*((1-policy(1))/2*Psa+(1+policy(1))/2*(1-Psa));

M(1,2)=-gamma*((1-policy(1))/2*(1-Psa)+(1+policy(1))/2*Psa);

for i=2:N-1;

M(i,i-1)=-gamma*((1-policy(i))/2*Psa+(1+policy(i))/2*(1-Psa));

M(i,i+1)=-gamma*((1-policy(i))/2*(1-Psa)+(1+policy(i))/2*Psa);

end

M(N,N-1)=-gamma*((1-policy(N))/2*Psa+(1+policy(N))/2*(1-Psa));

M(N,N)=1-gamma*((1-policy(N))/2*(1-Psa)+(1+policy(N))/2*Psa)

Vpi=inv(M)*r’;

This value function can then be used to find the optimal policy for these specific values,
for example like

[tmp1,tmp2]=max([Psa*Vstar(1)+(1-Psa)*Vstar(2),...
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(1-Psa)*Vstar(1)+Psa*Vstar(2)]);

policy(1)=(tmp2-1)*2-1;

for x=2:N-1

[tmp1,tmp2]=max([Psa*Vstar(x-1)+(1-Psa)*...

Vstar(x+1),(1-Psa)*Vstar(x-1)+Psa*Vstar(x+1)]);

policy(x)=(tmp2-1)*2-1;

end

[tmp1,tmp2]=max([Psa*Vstar(N-1)+(1-Psa)*Vstar(N),...

(1-Psa)*Vstar(N-1)+Psa*Vstar(N)]);

policy(N)=(tmp2-1)*2-1;

The whole procedure should be run until the policy does not change any more. This
stable policy is then the policy we should execute in the agent.

10.4.3 Monte Carlo methods and Q-learning

We have just seen that it is possible to solve the Bellmann equations exactly, but this
requires to go repeatedly through every possible state, and in case of value iteration,
also through every possible action. This is not only demanding, but seems also not
the way a biological agent would go about learning the environment. It seems more
biological plausible that an agent would take a specific action and end up in a new
state, and the agent could then only use the corresponding feedback to evaluate the
the value function. It might then use the new value function to update its policy. This
approach looks a little bit like policy iteration without evaluating the Value function
for every state. Monte Carlo methods follow this ideas by taking only specific actions
that are a combination of biased choices to maximize the expected payoff, and some
randomness to allow for an exploration of the state space. A big advantage of such
methods is also that they do not require a full knowledge of the environment as the
previous methods and can hence be used in an online mode.

When using specific actions rather than iterating over all possible states and ac-
tions, one major problem is the exploration-exploitation tradeoff mentioned at the
beginning of this chapter. To avoid getting trapped in self-reinforcing suboptimal poli-
cies, we need include some kind of escape mechanisms. A simple example is using an
ε-greedy decision algorithm instead of the to greedy algorithm used above. Above we
chose the action that maximizes the expected reward to calculate the optimal policy.
In the ε-greedy decision algorithm we choose this maximal policy most of the time
but chose another action with probability ε. Such an stochastic escape algorithm is
important to find good solutions.

There are several variant of such algorithms. For example, it is natural to go to the
state that is recommended by the policy and use this sequence of actions to evaluate the
value function. Such a strategy is labeled as on-policy. In contrast, it is also possible
to take different actions to explore environment while still suing the recommended
actions to calculate the value function. Such methods are labeled as off-policy. Many
other strategies can be devised to improve the appropriate exploration of specific
environments.

Finally, we have mainly discussed situations where each state has a unique value
in terms of reward, and a slightly more general case is the situation where each
state can have different values when combined with different actions. Thus, instead of
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considering a state value functionV π(s), we can consider a state-action value function
Q(s, a). This slightly more general case is often called Q-learning. The principles and
formulas are very similar to the previous case, but will not be discussed here further.

10.5 Temporal Difference learning

One of the most influential and practical methods in reinforcement learning has been
invented by Rick Satton and Andrew Barto. This methods is essentially a Monte Carlo
method of policy iteration in the sense that it is an on-line method of exploring the
environment. The difference lies in the estimation of the value function. To derive this
algorithms, we start again with Bellman’s equation for a specific policy (eq.10.8),

V π(s) = R(s) + γ
∑
s′

Pπ(s)a(s′)V π(s′). (10.18)

The sum on the right-hand side is over all the states that can be reached from state s.
Another difficulty is that we typically don’t know the transition probability and have
to estimate this somehow. The strategy we are taking now is that we approximate the
sum with only the step actually taken by the agent, the state which put the agent into
state s+ 1, ∑

s′

Pπ(s)a(s′)V π(s′) ≈ V π(s+ 1) (10.19)

While this term makes certainly an error, the idea is that this will still result in an
improvement of the estimation of the value function, and that other trials have the
possibility to evaluate other states that have not been reached in this trial. The value
function should then be updated carefully, by considering the new estimate only
incrementally,

V π(s)← (1− α)V π(s) + α(R(s) + γV π(s+ 1)) (10.20)
= V π(s) + α(R(s) + γV π(s+ 1)− V π(s)). (10.21)

The constant α is called a learning rate and should be fairly small. We can then use the
latest estimate of the value function to update our policy such as choosing the policy
that maximizes the newly calculated expected future reward,

π(s) = argmax
a

∑
s′

V (s′). (10.22)

This correspond to a greedy policy which works only in the case where there are
distributed transition probabilities that enable some exploration of the environment.
If the system to too deterministic it is advisable to use some other stochastic policy
instead. For example, the TD algorithm can be summarized in the ε-greedy case as
shown in Figure 10.4.
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Choose initial policy and value function
Repeat until policy is stable {

1. Policy evaluation
Repeat until change in values is sufficiently small {
Remembering the value function and reward of current state (eligibility trace)
If rand>ε

Go to next state according to policy of equation 10.22
else

go to different state
Update value function of previous state according to (equation 10.20)
V π(s− 1)← V π(s− 1) + α(R(s− 1) + γV π(s)− V π(s− 1))

} convergence
2. Policy improvement
new policy according to equation 10.11, assuming V ∗ ≈ current V π

} policy

Fig. 10.4 On-policy Temporal Difference (TD) learning

10.6 Robot exercise with reinforcement learning

10.6.1 Chain example

The first example follows closely the chain example discussed in the text. We consider
thereby an environment with 8 states. An important requirement for the algorithms
is that the robot must know in which state it is in. As discussed in Chapter ??, this
localization problem is a mayor challenge in robotics. We use here the example where
we use a state indicator sheet as used in section 5.3. You should thereby use the
implemented of the calibration from the earlier exercise.

Our aim is for the robot to learn to always travel to state 8 on the state sheet from
any initial position. It is easy to write a script with explicit instruction for the robot, but
the main point here is that the robot must learn the appropriate action sequence from
only given reward feedback. Here you should implement three RL algorithms. The
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first two are the basic dynamic programming algorithms of value iteration and policy
iteration. Note that you can assume at this point that the robot has full knowledge of
the environment so that the robot can find the solution by ‘contemplating’ about the
problem. However, the robot must be able to execute the final policy.

The third algorithm that you should implement for this specific example is the tem-
poral difference (TD) learning algorithm. This should be a full online implementation
in which the robot actively explores the space.

10.6.2 Wall Avoider Robot Using Reinforcement Learning

The goal of this experiment is to teach the NXT robot to avoid walls. Use the Tribot
similar with an ultrasonic sensor and a touch sensor mounted at the front. The ultrasonic
sensor should be mounted to the third motor so that the robot can look around. An
example is shown in Fig.10.5. Write a program so that the robot learns to avoid bumping

Fig. 10.5 Tribot configuration for the wall avoidance experiment.

by giving negative feedback when it hits an obstacle.



Appendix A Basic NXT toolbox
commands

The following instructions have been adapted from RWTH’s website. Installation in-
structions from:

http://www.mindstorms.rwth-aachen.de/trac/wiki/Download4.03
Coding instructions from:

http://www.mindstorms.rwth-aachen.de/trac/wiki/Documentation

You can find more instruction on installation and usage of the RWTH Mindstorms
NXT Toolbox from both of these sites.

Startup NXT

The first thing to do is make sure the workspace is clear. Enter:
COM CloseNXT(’all’);

close all;

clear all;

To start, enter:
hNXT=COM OpenNXT; %hNXT is an arbitrary name
COM SetDefaultNXT(hNXT); %sets opened NXT as the

%default handle

NXT Motors

Motors are treated as objects. To create one, enter:
motorA = NXTMotor(’a’); %motorA is an arbitrary name, ’a’ is

%the port the motor connected to

This will give:

NXTMotor object properties:
Port(s): 0 (A)
Power: 0

SpeedRegulation: 1 (on)
SmoothStart: 0 (off)

TachoLimit: 0 (no limit)
ActionAtTachoLimit: ’Brake’ (brake, turn off when stopped)
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A.0.1 Basic Motor Commands & Properties

Below is a list of these properties and how to change them:

Power
Determines speed of the motor
motorA.Power=50; % value must be between -100 and 100 (negative

% will cause the motor to rotate in reverse)

SpeedRegulation
If the motor encounters some sort of load, the motor will (if possible) increase it power
to keep a constant speed

motorA.SpeedRegulation=true; % either true or false, or
alternatively, 1 for true, 0 for
false

SmoothStart
Causes the motor to slowly accelerate and build up to full speed.
Works only if ActionAtTachoLimit is not set to ’coast’ and if TachoLimit>0

motorA.ActionAtTachoLimit= true; % either true or false, or
% 1 for true, 0 for false

ActionAtTachoLimit
Determines how the motor will come to rest after the TachoLimit has been reached.
There are three options:
1. ’brake’: the motor brakes
2. ’Holdbrake’: the motor brakes, and then holds the brakes
3. ’coast’ the motor stops moving, but there is no braking

motorA.ActionAtTachoLimit=’coast’;

TachoLimit
Determines how far the motor will turn

motorA.TachoLimit= 360; % input is in terms of degrees

Alternative Motor Initiation
Motors can also be created this way:

motorA=NXTMotor(’a’, ’Power’, 50, ’TachoLimit’, 360);

Other Motor Commands
SendToNXT
This is required to send the settings of the motor to the robot so the motors will actually
run.
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motorA.SendToNXT();

Stop
Stops the motor. There are two ways to do this:
1. ’off’ will turn off the motor, letting it come to rest by coasting.
2. ’brake’ will turn cause the motor to be stopped by braking, however the motors will
need to be turned off after the braking.

motorA.Stop(’off’);

ReadFromNXT();
Returns a list of information pertaining to a motor

motorA.ReadFromNXT();

Entering motorA.ReadFromNXT.Position(); will return the position of the motor
in degrees.

ResetPosition
Resets the position of the motor back to 0

motorA.ResetPosition();

WaitFor
Program will wait for motor to finish current command. For example:

motorA=(’a’, ’Power’, 30, ’TachoLimit’, 360);
motorA.SendToNXT();
motorA.SendToNXT();

This command will cause problems as the motor can only process one command at a
time. Instead, the following should be entered:

motorA=(’a’, ’Power’, 30, ’TachoLimit’, 360)
motorA.SendToNXT();
motorA.WaitFor();
motorA.SendToNXT();

The exception to this is if TachoLimit of the motor is set to 0.

Using Two Motors At Once

Some operations, for example driving forward and backwards, require the simultaneous

use of two motors. Entering:

B=NXTMotor(’b’, ’Power’, 50, ’TachoLimit’, 360);
C=NXTMotor(’c’, ’Power’, 50, ’TachoLimit’, 360);
B.SendToNXT();
C.SendToNXT();
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will start the bot moving, but the signals for both motors to start at will not be sent at
exactly the same time, so the robot will curve a little and fail to drive in a straight line.
Instead, you should enter:

BC=NXTMotor(’bc’, ’Power’, 50, ’TachoLimit’, 360);

OR

BC = NXTMotor(’bc);

BC.Power=50;

BC.TachoLimit=360;

Turning left or right can be achieved by only running one motor at a time, or by moving
both motors, but one slower than the other.

Sensors

The following commands are used to open a sensor, plugged into port 1:

OpenSwitch(SENSOR 1); % initiates touch sensor
OpenSound(SENSOR 1, ’DB’); % initiates sound sensor, using

% either ’DB’ or ’DBA’
OpenLight(SENSOR 1, ’ACTIVE’); % initiates light sensor as

% either’ACTIVE’ or ’INACTIVE’,
% plugged into Port 1

OpenUltrasonic(SENSOR 1); % initiates ultrasonic sensor
% plugged into Port 1

The following com-

mands are used to get values from the sensor plugged into port 2:

GetSwitch(SENSOR 2); % returns 1 if pressed, 0 if depressed
GetSound(SENSOR 2); % returns a value ranging from 0-1023
GetLight(SENSOR 2); % returns a value ranging from 0 to

% a few thousand
GetUltrasonic(SENSOR 2); % returns a value in cm

To close a sensor, ex. Sensor 1:

CloseSensor(SENSOR 1); %properly closes the sensor

Direct NXT Commands

PlayTone
Plays a tone at a specified frequency for a specified amount of time

NXT PlayTone(400,300); % Plays a tone at 400Hz for 300 ms



| 123

KeepAlive
Send this command every once in a while to prevent the robot from going into sleep
mode:

NXT SendKeepAlive(’dontreply’);

Send this command to see how long the robot will stay awake, in milliseconds:

[status SleepTimeLimit] = NXT SendKeepAlive(’reply’);

GetBatteryLevel
Returns the voltage left in the battery in millivolts

NXT GetBatteryLevel;

StartProgram/StopProgram
To run programs written on LEGO Mindstorms NXT software, enter:
NXT StartProgram(’MyDemo.rxe’) % the file extension ’.rxe’ can be

% omitted, it will then be automatically
% added

Entering NXT StopProgram stops the program mid-run


